タグ別アーカイブ: pq理論

リサジュー図形と技術

リサジュー図形は技術評価の観測手段として有用である。オッシロスコープで3次元(時間と平面)図形として観測できる技術手法である。先日、記事整流回路とリサジュー図形が見られていた。そこに図5.スイッチングとリサジュー図形(e.i)がある。電流ベクトルiの描くリサジュー図形は6角形の頂点の6点を示す断続のリサジュー波形となる。その直流側の負荷は平滑リアクトルLが在るため、直流電流は一定値となる。三相交流電流波形は方形波である。その為電流のリサジュー図形が6点のみになり、6角形の辺は見えない筈だ。瞬時に6点にジャンプ移動する筈だから。今回リサジュー図形の意味を理解するのに参考になるかと少し追加して置きたい。この三相全波整流回路で、負荷がリアクトルL=0で、抵抗のみの場合は電源側の電流も波を打つ

変動波形となる。この場合の瞬時空間ベクトルのリサジュー図形で、電流ベクトルi に変化が現れる。その時のリサジュー図形を示す。a、bおよびc相の電流瞬時値ia、ibおよびicの値から図のように6角形の頂点に臍のような軌跡が現れる。

 

 

 

 

 

 

この電流ベクトルリサジュー図形に似た波形が在る。pq理論のリサジュー波形を見つけて (2014/11/21)の写真②に似た波形が在る。この写真波形は、後に空間瞬時ベクトル解析法と交直変換器への適用 (2011/10/30)と言う研究会資料になった基である。この研究会資料のp.77~p.79 の3次元軌跡図はリサジュー図形である。電力系統監視システムとして有効な手法と考えた。電力系統の状態を瞬時監視手法として生かされる筈だ。系統の瞬時アドミッタンス値と言う捉え方は余りなかった手法と思う。しかし、諸般の事情によりもっと大事な『静電界は磁界を伴う』の物理学基礎概念への方向転換になり、大学の講座性も工業高校と同じような気分で意識なく、研究能力の欠落かと、人権侵害の中に居るとは知らず、非常識の立ち位置から居場所も無く頓挫した。昭和62年、63年に電磁界理論研究会で、 電磁エネルギーの発生・伝播・反射および吸収に関する考察(EMT-87-106) と 瞬時電磁界理論の実験的検証とその意義 (EMT-88-145) を発表した。それはパワーエレクトロニクスの電力部門の講座に所属する内容ではなかった事を後で理解したが、無我夢中の夢の中のこと。 考えてみれば、昭和39年から、新潟県教育委員会はじめ、採用説明会と事務の取り扱いを一度も受けた経験が無かった。共済組合の加入手続きも書類に記載し印鑑の捺印など、一切した事も無かった。しかしそんな中で30年、50年以上の思考で、不可解な電荷の物理学の本質に辿りついた。研究者の端くれとしての責任と社会への貢献の一部は果たせたかと。

電気工学とリサジュー図形としてはピタゴラスの定理とオイラーの公式そして電気ベクトル (2017/01/15) 、ソーヤータワー回路の謎 (2016/07/19) さらに励磁電流とは? (2019/04/14) および変圧器-物理学解剖論- (2011/09/13)などを過去の記事から拾っておく。

pq理論と瞬時空間ベクトル。そのリサジュー図形を理解するには少し専門的な意味を理解する必要があろう。三相交流瞬時空間ベクトル (2017/04/07)  および単相瞬時空間ベクトルと瞬時値 (2017/03/04) が参考になるか。三相交流に瞬時虚電力qのベクトルを導入したことで、電気ベクトル空間座標が時間と合わせて4次元座標となった。

単相瞬時空間ベクトルと瞬時値

はじめに 瞬時電力理論(pq理論)は三相交流回路に対してその威力を発揮する。当該理論は電力エネルギーの制御・補償で、スイッチング機能を伴うなど、絶えず瞬時変動する負荷に対して、その電気現象の意味を捉えるに欠かせない理論である。物理的には電荷に基づく電流は流れずと言いながら、ここでも電流の解説をしようとする。昔pq理論に基づいて、電流の微細制御を論じた論文「電圧型PWM変換器を用いた瞬時無効電力補償装置の動作解析と設計法」(電気学会)電学論B106,323(昭61-4)もある。この論文の意義は変換器の半導体素子のスイッチング動作限界を明らかにし、変換装置の設計基準を示した点にある。しかし瞬時電力理論は単相回路に対しては特別有用とは看做されていないだろう。単相では、三相回路での空間ベクトル積で定義される瞬時虚電力の概念が得られないからであろう。電気工学の学習でも、電気現象理解の初歩では、オームの法則から直流、単相交流回路と学習が進み、インピーダンスベクトルや電圧ベクトルの複素表現法によって電気現象解釈の目標に到達したと成るのじゃなかろうか。遥か昔の30年も前の学校現場での教育内容であるから間違っているかも知れない。もし教育内容が昔のままであるとしたら、三相交流での瞬時空間ベクトル解析法との隔たりが大き過ぎるだろうと懸念する。単相交流回路でも、瞬時空間ベクトル概念に依る解釈法を学習する必要があろうと思う。従来の複素ベクトル解釈法は負荷変動の無い、平均電力回路現象の理解を目的にした方法である。今回少し単相交流回路で、瞬時値に対する瞬時空間ベクトル解析法として理解に優れているだろうと思う方法を考えたので、『単相瞬時空間ベクトル解析法』を提案する。電気現象も瞬時空間ベクトルとしてみると芸術的に見えるから不思議だ。今電気現象をこのように感じるのも、いろいろの電気回路の中で起こる『エネルギー』の挙動に常に注意してきた結果のように思う。初めて電気回路の魅力に取りつかれたのは、1970年頃にパワーエレクトロニクスに出会ったからである。Principles of Inverter circuits  by B.D.Bedford ,R.G.Hoft の名著によって、電気回路技術の深さに興奮を覚えた。同時に電気理論に教育的矛盾のあることをこの頃に確信した。ファラディーの電磁誘導則とアンペアの磁束発生解釈の間の埋められない溝を何故誰も指摘しないのかであった。『磁束は電圧時間積分で決まる』その基本原理を!その意味を知ったのが『ロイヤーのインバーター』(静止電力変換回路の基礎(2)新潟県工業教育紀要第8号、このインバータで単相誘導電動機の速度制御を行った)である。この回路の動作原理を知れば、誰でも電圧時間積分の意味を理解できる。アンペアーの磁束発生原理はどこかに飛んで行ってしまう筈だ。これは物理学原理の根幹を問う問題でもある筈だ。伝統理論に偏り過ぎた理科教育はもっと技術に寄り添わなければ、存在意義が問われる筈だ。

単相瞬時空間ベクトルの要点 単相交流回路の電気現象の瞬時の状況をどう捉えるかは殆ど論じられて来なかったのではないか。電源電圧が正弦波の場合だけに限って考えてみた。従来はインピーダンスベクトルに対して電流が流れた時、各負荷要素に掛かる電圧分担分を基本的考察の拠り所としていた。今回提案する解析論は負荷に対して、電流を電源電圧と同位相の成分と90度位相差の成分とに分離して考えた点が特異な観点である。その二つの瞬時電流の算術和は勿論回路電流の瞬時値に等しい。負荷が変動する場合、変動瞬時では電流は正弦波ではなくなるから、その過渡状態では解釈上でも分離は出来ない。三相瞬時電力理論とは違って、単相では過渡時に電流を分離する威力を発揮できないきらいはあるが、今のところ単相回路ではそれも止むを得ないと考える。ベクトルを扱う空間は4次元の抽象概念空間である。電源電圧が角周波数に従って一定速度で回転する電圧最大値のベクトルとして捉える。回転電圧ベクトルに対して電流は空間的な位相差を持ったベクトルとなる。

4次元座標と電圧ベクトル 4次元座標は3次元の直交空間座標軸と時間から成る。この空間は実在空間とは異なることは当然である。電線路導体の空間は実在空間であるが、この座標は電気現象を解釈するための抽象化した空間である。三相伝送線路の瞬時電力理論の三相ー二相座標変換への橋渡しの意味を込めて、α軸とβ軸で構成した。

vec-1%e5%ba%a7%e6%a8%99%e3%81%a8%e9%9b%bb%e5%9c%a7%e3%83%99%e3%82%af%e3%83%88%e3%83%ab座標と電圧ベクトル 三本の直交した座標軸α軸、β軸およびγ軸から成り立ち、その単位ベクトルをnα,nβ,nγ とする。電圧ベクトルe は最大値Emの正弦波で、時間の原点ωt=0を-nβ方向とする。電圧ベクトルはα軸とβ軸の成す平面上を反時計方向に回転する。この電圧ベクトルeの回転速度はαβ座標面に垂直なγ軸上に電源周波数の回転角速度ベクトルωを定義することにより決まる。単相交流回路には電圧が回転する現象がある訳ではないが、その電圧波形が正弦波の場合では、正弦波の周期性から電気現象を空間ベクトルの回転として捉えると電気特性を理解し易くなるだろうと思う。その座標と回転基準ベクトルとなる電圧ベクトルの解釈基準を示した。

瞬時電流ベクトルと瞬時値 エネルギー消費負荷の内部インピーダンスは外部からは分からない。特性不明の負荷の電気現象を知る手掛かりは電圧と電流の瞬時値しかない。その事から電圧と電流の関係を空間ベクトルとして認識しようと言う事である。電流の瞬時値を電圧同相分と直交成分に分離し、その関係を空間ベクトルとして表現した。

vec-2%e7%9e%ac%e6%99%82%e7%a9%ba%e9%96%93%e3%83%99%e3%82%af%e3%83%88%e3%83%ab%e3%81%a8%e7%9e%ac%e6%99%82%e5%80%a4瞬時空間ベクトルと瞬時値 空間ベクトル値が計測できる訳ではない。計測できる瞬時値はα軸上に下ろした垂線によって示された値となる。電圧瞬時値はeαであり、電流はiα が瞬時値として検出できるものである。計測できないが電流値i(電圧ベクトルeに位相差φで追従するベクトルiの値)を解釈上二つに分離した空間ベクトル上での電流ipは電圧瞬時値の位相に同相の瞬時有効電流になる。さらに同様な分離電流iqは電圧と位相π/2だけ異なる瞬時無効電流となる。電流の空間ベクトルについて、線路電流の瞬時電流ベクトルiは負荷特性によって決まる力率の位相φで電圧との関係が決まる。位相φは正弦波電流の場合の意味であり、単相回路の瞬時変動負荷に於いては電流ベクトル i は残念ながら確定できない。

瞬時電流分離の意義 電流を瞬時有効電流ipと瞬時無効電流iqの二つの成分に分離することの意義は何か?確かに従来の抵抗とリアクタンスによる電気回路解析法に馴染んだ解釈法からすると、回路要素に依らない解釈が正しいのかと疑問に思うだろう。電圧と電流と言う科学技術概念量の魅力はほれぼれするものである。しかしその概念が、『電荷』と言う実在しない物理量によって解釈されることから、実際の電線路空間内に分布する『エネルギー』の自然の眞髄に気付かない事から来る、余りにも数式に厳密性で依存する科学理論が社会的な問題を含んでいないかと、それが気掛かりである。電線路近傍空間の『エネルギー』は電気現象の根底で、空間の空間定数によるインダクタンスやコンダクタンスの過渡的現象を大きく受けているのである。そんな自然現象の意味を数式で捉え切れるものではない。だから、前回の記事瞬時電力問答で疑問を呈した「Ri^2^の不可解」での関係で、瞬時有効電力との位相の差の問題に答えなければならなかろう。実際の負荷は抵抗とリアクタンスに厳密に分けられる訳でない。負荷は負荷空間全体が一体としてエネルギー処理に当たっているのである。だからこのエネルギーは抵抗分で、このエネルギーはリアクタンス分と分離することを実際上は厳密に分けなくて良いだろう。単相交流回路の負荷内で、リアクタンスに蓄えられた『エネルギー』が時間差を持って抵抗に消費される現象と考えれば、電流を二つの成分に分けて解釈しても何ら矛盾はない筈だ。『エネルギー』にとっては抵抗もリアクタンスも特別の差はないのだ。また電源から監視する技術面で見ても、電源側に影響するかどうかで評価すれば良い事であろう。だからと言って学習しないで良い訳ではなく、抵抗とリアクタンスの『エネルギー』に対する基本的特性の違いは十分理解していなければならない筈だ。この電流分離の意味を、前記事の具体例でもう一度確認したい。その前に一つ注意しておきたい。瞬時電流ipやiqの値が分離計測できる訳ではない。

%e7%9e%ac%e6%99%82%e6%9c%89%e5%8a%b9%e9%9b%bb%e6%b5%81%e3%81%a8%e7%9e%ac%e6%99%82%e7%84%a1%e5%8a%b9%e9%9b%bb%e6%b5%81瞬時有効電流ipと瞬時無効電流iq 電源電圧に対して位相角φの遅れの線路電流iが流れる。Vec.2のベクトル図で、α軸電流iαがこの電流波形iとなる。Vec.2はα-β二相座標でベクトル展開したものであるが、それは三相回路の瞬時電力理論との関係で単相回路の電気現象を考えるためである。この具体的回路例をVec.2のベクトル場に対応して考えると、線間電圧vを三相回路のα相の相電圧eと考えればよいだろう。その上で、瞬時電力理論の瞬時有効電力p=(ei)のベクトルのスカラー積で解釈すると、p=eα・iα +eβ・iβの内の第1項分のeα・iαがそれに当たる。しかしこの電力は有効電力と無効電力の両方を含むものである。そこに、単相回路の空間ベクトルと三相回路の空間ベクトルでの解釈上に含む違いの意味を考えなければならなかろう。Vec.2の瞬時電流でのipとiqが確かに有効電力と無効電力を分離している意味で意義がある。

瞬時電力 電気回路で計測できるのは線間電圧と線路電流である。その瞬時値を観測・計測するにも方法が必要だ。電圧は2本の電線に高抵抗(ほとんど電流が流れない程の抵抗値)か変圧器を繋いで、分圧電圧を利用する。電流の瞬時値はやはり電線に低抵抗(抵抗値ほぼゼロの電圧降下値)か変流器(CTと言う電流変成器)で測定するしかなかろう。制御回路では絶縁が基本だから、Tr.とCTが使われよう。その信号を波形観測機器で観測できよう。先のVec.2の空間ベクトルとの関係を示さなければならない。線路電流iは、i=iα(Vec.2のα軸上の成分になる)である。電圧vはv=eα(Vec.2のα軸上の電圧成分)の意味である。

%e7%9e%ac%e6%99%82%e6%9c%89%e5%8a%b9%e3%83%bb%e7%84%a1%e5%8a%b9%e9%9b%bb%e5%8a%9b瞬時有効電力p_p・瞬時無効電力p_q

前記事瞬時電力問答では「Ri^2^の不可解」と疑問を取上げたが、同様にリアクトルの電力Lidi/dt[W]も同じ意味を含んでいる。ここでの電流iもVec.2のベクトル図では、電流i=iα(α軸上の電流)、電圧v=eα(α軸上の電圧)であることを了解して頂きたい。瞬時電力p=vi[W]は

p=v ip +v iq =p_L + p_R  [W]

と各瞬時電力の和で、電流分離による電力の和も各要素電圧による電力の和も当然ながら同じくpに等しい。当然ながら、無効電力も有効電力もその次元はワット[W]である。従来の電力理論で言う無効電力は瞬時値を論じてはいないから、平均値の無効電力はゼロワット 0[W]となり、単位[Var]で零ワットの意味を表記するのである。無効電力VIsinφ[Var]とその無用なエネルギー流の関わりの悪影響の大きさを表記するのである。ただし、V,Iは電圧電流の実効値であり、最低でも1サイクルの2乗平均の平方根値で算定する訳で、瞬時値としての捉え方はない。だから瞬時電力pの平均値はP=VIcosφ[W]となる。それは瞬時有効電力p_p=v ip [W] およびRi^2^[W] の平均値に等しくなり、無効電力分は結果的に、エネルギー量の評価量としては表面に現れないのである。だから無効電力評価単位を[Var]とする。電気工学を学ぶ初期の方がよく質問しているので老婆心いや老爺心で単位について説明を。なお電力の単位ワット[W]についても瞬時値表現としては意味に明確さが見えなくなるのだ。ワットは[W=J/s]であり、エネルギー量の時間微分値である。電線路空間を伝送する『エネルギー』の時間微分とはどんな概念と理解すれば良いか。電線路を伝送するエネルギーは送電端と受電端では距離が離れているから、たとえ光速度で伝送されるとしても、その離れた場所での空間のエネルギー分布は異なる。その事は電流についても、一本の電線であっても送電端と受電端の離れた点では等しくないのである。この辺の論になると所謂物理現象、電磁現象を論じる内容につながる。

電力ベクトル

vec-3%e9%9b%bb%e5%8a%9b%e3%83%99%e3%82%af%e3%83%88%e3%83%ab電力ベクトル α―β―γ空間ベクトル場で単相交流回路の電力を考えてみた。従来は三相交流回路に対してしか瞬時電力(瞬時電力理論)を考えなかっただろう。その研究分野から離れて30年もたったから実際のことは知らないが。単相交流回路を4次元空間ベクトル場で、その電気現象の解釈を試みた結果、新しい電気工学ベクトル解析の一手法になろうかと思うので報告する。こんな基礎的な内容が学校教育の教科書の中味を探ると見えて来ると言う事が驚くべきことに思える。従来の電力ベクトル図では、有効電力P=VIcosφ [W]と無効電力Q=VIsinφ [Var]を直角三角形のベクトル図として解釈していた。Vec.3 の電力ベクトルでは、

有効電力p=2P=2EIcosφ =Em Im cosφ [W] 、

無効電力q=2 Q=2EI sinφ =Em Im sinφ [Var]

となる。有効電力の算定値pは平均電力Pの2倍値となるから、少し注意する必要があろう。無効電力までが三相交流回路の場合と同じように算定されることが不思議だ。勿論無効電力Q=q/2と言う電力が流れている訳ではないのだ。それは三相回路における瞬時虚電力と同じような意味を単相回路ベクトルの中に捉えることが出来ると言う意味で、新しい認識を得たと言えるのだろうか。なお、E(=Em/√2)およびI(=Im/√2)は電圧、電流の実効値である。

まとめと考察 回路の瞬時電力pαはpα=eα・iα [W] で、有効電力と無効電力の両方を含む。このα軸上の電流iαは電流計で計る回路電流の瞬時値iである。vec.2のベクトル図で、iα=ip+iq であり有効電流分ipと無効電流分iqの両方を含んでいる。ここで論じた事をまとめる。

vec-4%e7%a9%ba%e9%96%93%e3%83%99%e3%82%af%e3%83%88%e3%83%ab%e3%81%a8%e9%9b%bb%e5%8a%9bVec.4 空間ベクトルと電力(sinφの正・負に注意) 単相回路の瞬時空間ベクトルを三相回路の瞬時電力理論と対比してみよう。電力ベクトルとして瞬時実電力に対応させて、電圧・電流のスカラー積p=(e・i)を計算すると、図の(6)式のように単相電力P=EIcosφの2倍となる。それはα相とβ相の二相分を計算したことになるからである。α相の単相分を計算すると、pαは(5)式の通り、単相回路の電圧と電流の積の瞬時電力となる。平均電力P=EIcosφに対しての2倍周期の正弦波電力となる。次に瞬時電力理論の瞬時虚電力に相当するベクトル積[e×i]=[×]+[×]を計算すると、q=2Qと従来の電力ベクトルの無効電力分Q=EI sinφ [Var]の2倍値となる。単相回路の場合はこの虚電力に関しては余り意味があるとは言えない事が分かる。三相回路では、瞬時有効電力は電圧電流のスカラー積で得られるが、単相のα相電力pαは有効電力と無効電力の両方を含んでいるので、有効電力と無効電力に分離することは出来ない事が分かる。しかし今回の考察で、単相回路の電圧と電流及び負荷力率角φから、空間ベクトル図上で有効電流ipと無効電流iqに容易に分離できることが分かった。Vec.4 図のp_p の(8)式およびp_qの(9)式である。具体例を挙げておこう。

%e5%9b%9e%e8%b7%af%e4%be%8b%e3%81%a8%e7%9e%ac%e6%99%82%e5%80%a4具体例と瞬時値 α相の単相回路で、電圧、電流の実効値およびその位相差角φが分かると、その回路の瞬時値は確定できる。『問題』波形図で、位相ωt=2π/3 の時の瞬時空間ベクトル図はどのようになるでしょうか。

単相回路を空間ベクトルで考える手法について論じた。電気工学学習での一つの解釈法になればと思う。一つ留意しておきたい。三相回路の瞬時実電力pとここで論じた単相回路の瞬時有効電力p_pおよびpαとの間の関係についてはまだ十分分かっているとは言えないかも知れない。

ピタゴラスの定理とオイラーの公式そして電気ベクトル

ピタゴラスの定理は中学の算数の内容らしい。直角三角形の三辺の長さの間の関係の定理である。現実世界の寸法に照らし合わせて理解できる日常生活と結び付く、簡便で有用な定理だ。それに比して、オイラーの公式は複素平面と言う現実の世界には存在しない、見る事の出来ない数学特有の公式である。『虚数』は実在しない世界の概念である。電気工学でも、多く虚数は使われている。ウイキペディアにオイラーの公式が図形で説明されている。

%e3%83%94%e3%82%bf%e3%82%b4%e3%83%a9%e3%82%b9%e3%81%a8%e3%82%aa%e3%82%a4%e3%83%a9%e3%83%bcピタゴラスとオイラーの式の比較 オイラーの公式の図はWikipediaの図形を参考にした。ただ、sin φに虚数記号 i (赤色文字で)を書き加えた。ピタゴラスの定理の各辺はすべて実数で、現実世界の数量を対象にした数式である。同じ直角三角形でも、オイラーの場合は一辺が虚数である。直交座標軸の縦軸が実数でなく虚数である。虚数はこの実世界に存在するものでなく、あくまでも非現実世界の表現量である。私は非現実的な数が現実の世界認識に有用な数であるとは理解できないのである。具象平面のピタゴラスの定理に対照してみたい。

z=e^iφ^ ,  x=cos φ ,  y=i sin φ

として、z,xおよびyの間にピタゴラスの定理を適用してみると、『虚数の2乗は-1』の大原則から、

|e^iφ^|=√(x^2^+y^2^)=√(cos^2^φ-sin^2^φ)

となる筈だが、虚数の原則は無視する不思議な数学的論理即ち、

y^2^=+sin^2^ φ と決してマイナスに成らない論理

が理解できないのだ。具象平面の現実世界にオイラーの公式の複素平面の数を対照すると、直角三角形の斜辺は他の二辺より大きいと言う実在世界認識に反する結果をもたらす。だからその時は虚数の原則は無視する論理に成るのかと思う。

『オイラーの公式の現実世界表現への価値はどこに在るのか?(命題)』と高等数学論理に弱い頭で考えてしまう。

さて、上の命題はそのままとして、実際に虚数記号(iあるいはj)は電気工学で多用される。折角であるから、平面2軸座標における電気工学の虚数利用上の特徴を考えてみよう。

%e8%99%9a%e6%95%b0%e3%81%a8%e3%83%99%e3%82%af%e3%83%88%e3%83%ab虚数とベクトル 電気工学では虚数記号に j を使う。負荷インピーダンスベクトルZ=R+jωL と複素数表現をする。実軸の実数に抵抗Rとその垂直ベクトルを虚数で捉えてjωLと表現する。インピーダンスZと抵抗RおよびリアクタンスX=jωLの間に、直角三角形の図形評価で捉える。この回路では、R=ωLの場合として考えている。この場合の電圧を時間軸に展開して示せば、e 、e_rおよび e_lのように三つの正弦波形となり、その電圧ベクトルも虚数記号jに因って、インピーダンスベクトルと全く同一の直角三角形でベクトル図が描かれる。これらの直角三角形はその三辺の大きさは、ピタゴラスの定理の関係で捉えることに決まっている。だから虚数記号jによる複素平面解釈の電気工学理論が何故[j^2^=-1 の原則]が成り立たないのに伝統として確立しているのか。何故虚数jでなければならないのか。虚数の原則に気付くと、誤って合成インピーダンスZ=√(R^2^-(ωL)^2^)で有ったかな?と考えてしまう。

具象と抽象 とかく科学技術理論はその世界(専門家)特有の概念によって共通理解の常識の世界認識で解釈している。上の例の正弦波波形表現も時間軸で展開して理解し易いように表現したものであろう。しかし実際にその状態は見ることは出来ない抽象化の表現であろう。オッシロスコープによる波形観測は掃引輝点の軌跡の残像(蛍光)に依るからだ。

%e5%85%b7%e8%b1%a1%e3%81%a8%e6%8a%bd%e8%b1%a1具象と抽象 電圧もその瞬時値の連続として脳で認識する訳である。時間軸に展開した表現法は理解し易くしているだろう。しかしそれも一つの抽象化表現法と看做せよう。その抽象化の解釈法に虚数表現が取上げられよう。特別に虚数表現にしなければならない理由があるのだろうか。直交座標の取上げ方で合理的な方法があるのじゃなかろうか。

回転ベクトルと単位ベクトル 実数軸と虚数軸での複素平面表現法に対して、実数の現実世界の数の概念の範囲で、電気工学に使われる便利な直交座標を考えてみよう。なお、この単位ベクトルについては空間ベクトル解析と単位ベクトルで述べている。

%e5%9b%9e%e8%bb%a2%e3%83%99%e3%82%af%e3%83%88%e3%83%ab回転ベクトル 単相交流回路で、電源電圧が正弦波とする。一つのやはり抽象化表現法ではあるが、電源電圧が時間的にどのような状態に在ると考えるかの具体例を考えた。互いに直交した二つの『単位ベクトル』naおよびnb を平面に設定する。

スカラー積は (nanb)=0 、ベクトル積は[na×nb]=nc   と平面に直交した単位ベクトルnc に成る。

上のように大きさ1の方向だけを決める単位ベクトルを設定することにより、平面上を回転する電圧ベクトルを表現することが出来る。電圧の平面上のベクトルe

e=Em(na sin ωt –nb cos ωt)

によって時間 t の経過に従って、電圧ベクトルの先端の軌跡が円を描く。オッシロスコープのリサジュー図形観測で得られるだろう。

電流ベクトル軌跡 図の電流ベクトル軌跡は負荷変動があれば、その軌跡は複雑に変動軌跡を描くことになろう。一般には負荷変動が電圧波形の変動を生むから、電圧も円軌跡から外れるだろう。

電源電圧eを積分して- Em cos ωt をオッシロの縦軸入力(y)、電源電圧 e を横軸入力(x) とすれば円軌跡のリサジュー図形になろう。

奇妙な積分への疑問 積分回路を通した信号は『時間t』での積分か、『角度ωt』での積分に成るのか?

この電圧円軌跡は後で、pq理論の瞬時虚電力での座標展開への予備的な意味を込めた。

電気工学理論の虚数概念に対する結論 自然科学理論には様々な部門で虚数が使われているのだろう。電気工学理論では虚数記号に「j」が使われる。直角三角形の一辺を虚数で解釈する長い伝統によって電気工学理論は馴染み易い解析理論として定着している。上で論じたように、虚数は2乗によるマイナスの実数に変換される虚数論の原則との整合性で矛盾しているからと言うだけで、j記号の使用は悪いと言い切るのは浅はかであろう。直交したベクトル評価概念が電気工学理論として優れている事には間違いがない。ただ、実数軸と虚数軸で捉える表現法は虚数と言う実在物理量とは言い難い数であると言う点から、その二つの軸の物理量を共に実数とすれば合理的な論理展開で、伝統理論がそのまま生かせる。空間ベクトルの3次元座標の単位ベクトルをi 、 j およびk とするように設定すれば、何も虚数を必要とはしない。従って結論としては、[j]を単なる単位ベクトルと解釈すれば良い筈だ。

電気回路の電力とは何ですか?

電気回路を考える時、電圧、電流及び電力と言う技術概念量を思い描く。電力に関係して力率などの用語も使われる。電気製品にはその消費電力の定格値が示されている。電子レンジでチンする時に、電力500Wか600Wかで加熱時間が違う。少し専門的になると、電力にも有効電力と無効電力がある。更にもう少し専門的になるとpq理論では瞬時虚電力などと言う用語も使われる。日常生活に関係しているにも拘らず、考えて見ると電力と言う意味が結構難しい事のように思われる。消費するのは電力(エネルギーの時間微分)ではなくて『エネルギー』なのである。消費電力量と言う言葉でエネルギーを単位キロワットアワー[kWH]で計算して電気料金を払っている。誠に巧い電気技術計測法が確立している訳である。電力とその消費時間の積を『ワットアワーメータ』積算電力計(アラゴの円板の原理)で計るのである。電圧にも電流にも、その概念には『エネルギー』が見えない。何故『エネルギー』が伝送されるのか。『エネルギー』は何が運ぶのか。まさか『電子』が背負い籠に入れて運ぶ訳ではなかろう。その『エネルギー』の時間微分が電力だ。
[問答 電力とは何か?] 電力の意味を『エネルギー』との関係で、実際の電線路上に於いてどのように解釈すべきか?
『瞬時虚電力』の不思議を考えながら、先ずはその手始めの問題として取り上げた。

pq理論のリサジュー波形を見つけて

本箱(木製自作、釘なし組み込み書棚、約160cm×190cm)にくすぶっている古い研究ノートをひろげてみた。一体何の意味があって、研究をしていたのか今考えても、自分の所業を理解できない。ただ無為の時間を已むに已まれず、何かを求めて心の遣る瀬無さを紙とペンにぶつけていただけかも知れない。

とても古いリポート用紙の計算記録が出て来た。ファイルの表紙に1984年(昭和59年)とだけ記されている。その中に意味不明の写真が載っている。pq理論(瞬時実電力・虚電力理論)の意味を追究していた長岡技術科学大学での物のようだ。とても面白い波形であるので、折角だから投稿しておく。

pq理論の?pq理論の?

p,q,ip,q,i

pp

qq

以上の4枚の写真である。多分第6高調波のp、q等の軌跡であろうが、系統負荷アドミッタンスなどと記されているから、科学研究費申請用の基礎資料だったかもしれない。いつか計算資料の意味が理解出来たら、データ写真の意味を説明できるかもしれない。

空間瞬時ベクトル解析法と交直変換器への適用

古くて、捨てられた過去を背負って、しかも未練がましく、いつ迄も参考文献に挙げる「研究会資料」がある。当時を思い返すから避けたいものである。しかし、当時の電力技術理論と電気磁気学理論との統合に思いを馳せていた内容である。「複素数を解剖する」で複素平面でなく、4次元空間の例題として本論文が参考になろう。ここで、その電力技術開発に思い残したままの内容を示す。

誤字訂正「捕える→捉える」。当時は、長岡技術科学大学からも邪魔者として捨てられた事も知らずに、一人で頑張っていた。「馬鹿と利口は紙一重」と教授に陰口をたたかれている事も知らずに居た。呑気でおバカさんを今に成って噛み締めている。技術科学大学にもたった一度初代学長川上正光先生の講演以外に行く精神的余裕などなかった。なお、昭和62年2月下旬に、技術科学大学に戻るのをやめるように説得された。何の意味かも理解できずに、初志貫徹で、『以下余白』の不覚の墓穴に至った訳である。新潟県教育行政の過去と未来ー犯罪?ーがその事例だ。この過去の処理をする術を持たない自分には何の役にも立てない。昭和24年4月の行政の日本国憲法に従わない戦後処理にも原因があるか?。

(2017/06/06)訂正。一つ記事の内容を訂正させて頂く。ページ-74-に誤りがあることに気付いた。今年に成って、三相瞬時空間ベクトルの意味を考え直してみた。もう30年以上も考えずに過ごしたことであるが、今になって内容を見直して大変な勘違いに気付いた。サセプタンスと電流分離の関係を考えて気付いた。この間違いは図15の(c)にも言えることである。この(c)の場合は電圧ベクトルe と e_con_の採り方の混乱からの結果である。