タグ別アーカイブ: Energy

Energy is element of all the world. あらゆる素粒子もその根源的本質はすべてエネルギー一つから成り立つ。

光エネルギーと速度と時空

光の速度は何故決まる?

光は空間のエネルギー分布密度波の縦波である。その速度が何故、秒速30万キロメートルなのか?それも『疑問』の宝物。空間には空間定数という真空透磁率と真空誘電率の二つが定義されている。

単位系・JHFM自然系 も光と空間定数の関係から導き出したものである。光速度 c[m/s] は

c=1/(μo εo)^1/2^ [m/s]

と真空透磁率μo[H/m]と真空誘電率εo[F/m]の空間定数との関係で捉えられる。そこに時間の次元秒[s]とヘンリー[H]とファラッド[F]の関係が生まれる。[(HF)^1/2^] = [s] と関係付けられる。その訳が理解できた。

人はモノの速度を目で追うことで感覚的に理解する。それが視覚感覚の機能でもあるのだろう。同じ現象でも、1[m] を通過する時間何[s]という捉え方はしない。しない訳ではない。100mの競争で10秒切るかどうかが注目される。それでも1mの距離の通過時間を気にかけることは普段はない。

エネルギーの伝播実験 光速度を超える信号伝送手段はないから、伝送速度を計ることは困難なため無理ではあるが。(次の実験で、電源スイッチを投入した時刻を負荷端で瞬時に知ることは無理であるから。)

エネルギー伝播 電気回路のエネルギー伝播現象を考えてみよう。電気回路の伝送路は基本的にインダクタンスと静電容量の分布定数回路になっている。その様子を図に示した。実際には2本の電線が張ってあるだけで、外見的にはそこにインダクタンスやコンデンサがつながっている訳ではない。図では単位長さ当たりL[H/m](一区間に上下二つのLが有るが、等価的には一つのLと考えてほしい)とC[F/m]の分布定数回路となっている。実験的にエネルギー伝送現象を確認するには、実際にある値の LやCを変化させた分布回路として、原理的には可能であろう。負荷終端には電線路の特性インピーダンスと等価な抵抗負荷とする。負荷で到来波のエネルギーを消費し、反射波を防ぐための条件である。電源は十分大きなエネルギー量を貯蔵したコンデンサとする。スイッチSをオンする。瞬時にエネルギーは伝送路に流れ込む。そのエネルギー波が負荷に到達する、その波形を電圧vで観測する。恐らくその波形は雷の衝撃波形に似たものになろう。負荷端のエネルギーは電圧vの2乗で波形を理解できる。その電源からのエネルギー伝送現象は回路定数を大きくすれば、エネルギー伝送時間は長くかかる。定数が小さければ伝送速度は速くなる。その意味は誰もが理解できよう。電線路の静電容量やインダクタンスが大きければ、エネルギーが静電容量に貯蔵される余裕が大きく、インダクタンスが大きければ、そこを通過するのを阻止する反発が強くなる。だから分布定数が大きい程エネルギーの伝送に長い時間がかかることになる。即ち回路定数によって、エネルギーの伝播速度、光エネルギーの速度が変化する訳である。この辺の現象は電力系統の管理技術者には当たり前の感覚的認識になっていることであろう。電気エネルギーはエネルギーの空間分布波としてみれば、光のエネルギー分布波と同じ訳で、光の真空空間の伝播速度即ち光速度がその空間定数で決まるのが当たり前と理解できよう。空間の長さ1m当たりの静電容量とインダクタンスがその空間を通過する光エネルギーの「時間」を規定する訳である。だから、JHFM自然単位系で、時間の秒[s]が空間定数の[√(HF)]になる訳である。ここには速度という見方と逆の、1mを通過する時間は幾らかという [s/m]の見方になっている。それも速度と意味は同じである。

不思議の極み 空間定数の「真空透磁率」を誰が何時決めたかが分からない。μo=4π×10^-7^ [H/m] はあらゆる計量単位の基準として定められた筈だ。誠に不思議な数値である。4πは球の全立体角 ステラジアン [㏛]と解釈する。すべての実用計量単位MKSAがこの空間定数の真空透磁率μo[H/m] が基準になった事によって決まる。そこに選ばれた単位が電気回路のコイルが持つ電気的空間構造の特性機能の評価量を表す意味のインダクタンスの単位ヘンリー[H]である。この定数を決めた時点で、真空空間が持つ空間のエネルギーに対する誘導性という物理的定数だという認識の下で決めたのだろうか。空間が誘導性のインダクタンスの機能を備えていると認識して確定したのだろうか。この基準を決めたことに因って、空間にはもう一つの真空誘電率εoという定数が確定されたと考える。その単位もやはり電気回路の静電容量という機能要素の物理的評価量の単位ファラッド[F] で示される。それがεo[F/m] である。この意味もまことに不思議な単位である。決めた時点で、空間が電気回路の静電容量の次元を持っていると認識して決定したのだろうか。それなら誠にその確定については慧眼の至りと驚かざるを得ない。しかし、それらの空間定数が何処で、どのような機関又は人に決められたかが分からない。しかしその空間定数があった事のお陰で、現在幸運であったと確信して使っている、自然単位系JHFMを闇の中で、1990年春に見つけた。

その夏7月に何の説明もなしに、大学職員が大勢で我が家に御出でになられて、玄関で白紙に拇印を押させてお帰りになられた。後でそれは筆者に対する分限免職の承認と見做す捺印のようだった。その拇印も誠に不鮮明であったようで、後には他の機会の、たぶん庶務課での茶碗から採取の鮮明なものに変わっていたようだ。誠に国家公務員の人事行政の意味も知らない筆者の無知のために、多くの皆さまに御迷惑をお掛けし、それが原因で招いた当時の過ぎてしまいましたが、失礼をお詫びいたします。と言っても今でも全く理解不可のまま、無知の上塗りでぼーっと日々が過ぎ、流され続けております。

真空誘電率 εo=(1/36π)×10^-9^[F/m] とこれまた誠に気持ち良い数値である。そこに自然空間における光のエネルギーの伝播速度が決め手となっていることが、これまた自然の美を意識せざるを得ない。

光速度をc[m/s]とすれば、

c^2^μoεo=1

である。不思議は美しさでもあるのか。

雨粒と波紋

雨粒と科学

今は梅雨。日本雨蛙も田んぼの畦の柔らかな土の中(水中のオタマジャクシではなく)から深夜に新生児が多く誕生していることだろう。最近は雨も豪雨災害となり、犠牲者も出ることが多くなった。無事過ぎて欲しい。気象災害が地球規模で起きている。その原因を海水の温度上昇と観る。汽力発電所(水蒸気で蒸気タービンを回す発電方式、原子核分裂方式や石炭、重油燃焼方式)では、水蒸気熱サイクル利用の為熱効率は40%程度である。燃焼、発生熱量の50%以上は海水などに放熱しなければ機能しない発電方式である。結果的に、復水器を通して海水を加熱して初めて発電が出来る方式なのである。我々が1[kWh]の電力量を使えば、それ以上の相当エネルギーで海の海水を加熱していることを科学リテラシーの基礎知識としてみんなが認識していなければならない。それもサイエンスコミュニケーションの現代的科学常識として広く知ってもらわなければならない。雨粒一粒は小さい。しかし時間雨量30mmと言えば、土砂降りの雨となる。海の海水温度が高くなれば、広い海水面からの水蒸気の蒸発は増加する。海水温度の上昇は直接蒸発量の増加を来たし、偏西風などに因る高水蒸気密度の気流の流れ込みを生み出す。

水面に踊る水滴と波紋

先日強い雨が降った。バケツに溜った水の面に雨粒が踊っていた。珍しい現象に出会ったと写真に収めた。運良くバケツには水が満杯に張っていて、雨粒に比して水深が深い状態であった。水面に雨粒が白く光っている。同時にその雨粒の水面落下現象の波紋が広がって見える。水と雨粒は同じ物体と思う。両方化学記号で表現すれば H2O の液体であり、水面に落ちた雨粒は溶けて消えると思う。しかし雨粒のままその姿を保持し続けている。立派に一つの雨粒の象を保持しつつ、独立の物体として水面に波を作っている。如何にも水面の水と異なる物体の如くその存在を躍らせている。

雨粒の衝撃

時には小さな雨粒が多数できて、波紋の中に踊って見せる。雨粒の物理現象として解釈を示さなければならないかも知れない。注意して見ると、水面の右上に深い窪みも見える。きっと雨粒が水面に落ちて質量の落下エネルギーの運動理論に基づく最初の衝撃力を示している様子と観てよかろう。以前日本学術会議の提言「理科基礎(仮称)」を読む-エネルギーと波-で少し考えた。その時は落下物体は堅いものを想定した。しかしここでは、水の雨粒であるから、深く底に沈むことなくその形状のまま水面に跳ね返されて、浮き上がって雨粒の姿を見せている。雨粒は一つの塊としてその表面張力の膜で囲まれたものとなっている。水面に落下衝突した時、水面も表面張力で強い膜となっていると見做される。それにしても、複雑に重なり合った波面の乱れにも拘わらず、雨粒と水面が異なる物体同士の如くに、作用し合う姿はまた不思議な物理現象に思える。こんな雨粒の自然現象が起きていることを物性論や水力学の理論で想定できるのかな。なかなか自然現象は理論で捉え切れない魅力に満ちている世界のように思える。雨粒は、その体積に比して、核に塵が含まれ更に落下運動速度エネルギーを表面張力と言う衣で包み込んだ単一の質量体として頑張っている主役の演技舞台の象かもしれない。

波紋とエネルギーの伝播

波紋は互いに重なり合って、その合成波の形は如何にも山岳地帯の山を見る如くに思える。水面で雨粒が一つトランポリン運動をしたら、どんな波紋に成るか。写真の波面を見れば、決して正弦波ではない。やはり波頭値が衝撃波のように中心から円周方向に広がっている様子が見える。波形の半径が広がるにつれて、だんだん正弦波形に近づいては来るだろう。津波の波形は必ずしも円周方向に円形に広がる波形ではなく、殆ど衝撃波状の形を保って伝播して来る。しかし遠方、南米西海岸からとなれば波頭値も衝撃度は少なくなろう。上の雨粒の波紋も徐々に正弦波に近くなって広がる。その波の波形についての物理的解釈を如何に考えるか。何が原因で、そのような波紋を生むか。波は上下する性質を持っているものだ等と解説するのでは物理学・理科教育にはならない。しかも波は半径方向に進む縦波である。雨粒が水面を叩きつけて落ちる。その雨粒は水面に垂直に圧力として衝撃力を加える。水面は圧力により圧縮する。それは圧力波と言う圧力エネルギーに因る水の体積収縮波となる。それは水面に垂直に掛り、水面の下降で水圧の上昇に因る雨粒を押し上げる力が強くなる。その反動力で雨粒は上昇し、しかも雨粒のまま水面との間の力の作用力で次にはまた落下しはじめ、水面を押し下げる。それは水面から離れないが、丁度雨粒が水面との間でのトランポリン運動をしているようなことになると看做せよう。圧力のエネルギーが波面を広がって行くことに成り、円周の長さが広がるにつれ衝撃波形は正弦波形に変わると考える。こんな解釈で自分の感覚とエネルギーの間の繋がりに納得して終わる。殆ど気分の整合性を求めているようだ。

電子とエネルギーと質量

『エネルギー』を窮めよう。エネルギーと繋がりのない世界は無いから。全宇宙、この世界で『エネルギー』の構成要素となる素粒子は決して存在しないから。

mc^2^から物理学を問う (2019/04/25) で述べたかった質量の意味。独楽の心 (2019/01/05) や熱の物理 (2019/02/07) にも繋がる。

時代はエレクトロニクス全盛期。
電子(Electron)と光子(Photon)が科学理論の根幹を担っている。物質の元素は原子である。原子理論は電子あっての基に成り立つ。そんな時代のど真ん中で、独り妄想にふける。端無くも電流は流れず (2010/12/25) にはじまる多くの顰蹙の種なるお騒がせを招き申し訳なく思いつつも已む無き事情に流されながらここまで遣って参りました。古くを辿って、再び電池の回路(電池のエネルギー)に戻る。電池は何を貯めているのかと不図の病が頭を支配する。電池の重さの意味に耐えきれず、その質量を計らんと無理を承知で心の感性に乗せて観んと思い付く。不図の病、それは電池からエネルギーが負荷ランプに供給され、エネルギーが光と熱に変換されて消費される。電池は少しも熱くはないが、電池の何が負荷で熱に変わるのか。ここの『エネルギー』と言う意味・物理量が現代物理学理論で捉えられ、説明されているのか。それは決して高等数学の式では説明できない自然の易しさの中に隠されている真理と言うもので御座いましょう。電池の中味がどのような化学物質ででき、構成されているかは分からなくても、自然の心を捉えるには特別難しいものではない筈なんだ。『エネルギー』が何たるものであるかを感じ取れれば宜しいのだ。それは電池の中に確実に溜って実在しているものなんだ。重量が計れなくても、化学物質の質量増加分として蓄えられているものなんだ。『質量』とは何かとまた顰蹙(ヒンシュク)の《問答》にもなる話だから、誠に御迷惑かも知れない。化学物質を顕微鏡で覗いても見えるものでも、質量増分を計れるものでもないから科学論証も出来ない話であるので、ご迷惑か混乱の基となるかも知れないが。筆者は原子質量が『エネルギー』の局所集合体としての、電子も陽子も無視した「Axial energy flow」結合構造と看做す物としての科学常識離れの認識に在る。マグネット近傍空間のEnergy flow は全く熱に関わりのない『エネルギー』であることも心に乗せて。それが電池の『エネルギー』と『質量』の等価性の原理の基である。E=mc^2^[J] の物理的意味である。ここから電池が電子を導線の中に流し出して、回路を還流したら、どのように電池に蓄えた『エネルギー』を負荷ランプに供給することになるかの《問答》が始るのだ。特別数式など無くても日常用語で説明できる筈だ。それが『電子』の意味を問うことになろう。

電子の実相を尋ねて。
最近の電子論、エネルギーから電子殻を問う (2018/05/21) や電池における電子の役割を問う (2018/05/24) で論じてきた。電気回路の問題では、必ず電流が含まれる。その電流概念で、正の電荷が流れるとは言えない為、電子が電流の流れと逆向きに流れていると解説される。この解説が検索情報の標準的なものとなっている。誰もその解説に疑念を表明することも無い。だからそれは世間の科学常識として子供達に教えられることになる。多分学習塾でも同じ説明がなされているのだろう。ここで再び、電流は電子の逆流か?と言う事を考えて置きたい。考えるにはその電子の逆流と言う回路状況を具体的に図に表現して見るのが良い。まず電子が電線路にどのように分布している状況かを示さなければならない。大事なことは、解説する人が先ず自分がどのように考えているかを空間的に図に表現することが必要だ。筆者もその意味で、皆さんが電子の逆流だと解釈する意味を、電気回路の電線に書き表してみた。電子が電流の方向と逆向きと言うことは、電線路全体に均一に分布していることと考えてよかろう。その分布電子が同一の速度で均等分布の流れとなっていると考える。それが図のようになる。この図の表現内容が間違っていると言うなら、それの間違いを指摘して欲しい。どのような電子の密度で分布するか。それは電子の速度が何によって決まるかにも因る訳で、その訳が明確に示されなければ分布も決まらないと思う。 『電子電荷』の速度を決める力学原理は何だっけ?電気回路の現象も特別難しい訳ではない筈なのである。解説する原理や論理性が明確であれば、それは日常用語で十分説明できる筈なのである。クーロンの法則に従うのか従わないのかを解説者自身が立ち位置を明確にして述べれば分かる筈である。上の図を見て、教科書を執筆されている専門の方々が、怪しいと思うか思わないか。そこに抱く意識に問題の解決の糸口が有る筈だ。ネット上の解説が正しいか間違っているかを。まず電子が電線路導体を流れると言うことは、図のように『負』の電荷だけの分布で良いのか?『正』の電荷の分布は無いのか?電池とは電子の回路循環機能だけなのか。電池の『エネルギー』はどのように負荷に供給されるのか?解説の中には、電子が移動すると、逆に電子の抜けた殻の穴が『正』の電荷の意味を担って、電流の方向に流れると考えれば良い。等の解説をする方も居られる。その方も自分の思う電気回路図を描いて、その全体の図で御説明されればよいと思う。兎に角、上の図では電気回路は『負』の電子だけで『正』の電荷の出る幕がないことになる。今までの説明には数式は使わないできた。どこか数式がないと説明にならない処が有っただろうか。科学の心を伝えるには数式など無くても良いのだ。政府の津波対策の防災情報で、海岸線の津波波形の図が余りにも滑稽過ぎて、誰があんな波を津波と考えるかも水の心が理解できていない科学論が招く怪しさなんだ。科学とは自然の心を心で受け止めて、心で伝えることだろう。解説者が自分の心に偽りのない意味を伝えてこそ科学論になる筈だ。偽善科学はやめましょう。

 

不可解な電荷

電気理論は易しいようで難しい。その訳の一つは数式で解釈する処に在るのだろう。数式で表現されると、数学的な内容を理解しようとして、電気的な現象の中味を理解する事に注ぐ余裕が無くなることも原因に成っていよう。後で不図不思議だとか、何故かと疑問が浮かんでも、考え直す時間的余裕がない為、後々までももやもやが残るのかと。ITなどに、質問で『電荷』とは何かと疑問が多いようだ。数学・数式は『電荷』が実在するかしないかを論証はできない。人が設定した条件・仮定の上での解釈しか論証できない。科学理論の根源的概念に、『電荷』、『質量』更に『光』あるいは『エネルギー』などを挙げて良かろう。それらの中で際立って不可解な物理量・概念が『電荷』である。多くの皆さんが自然界に実在すると考えているかと思うその『電荷』を否定する為に長い30年以上の道程を辿って来た。学術論の「雷」などもその『電荷』概念に基づいて論じられている。その『電荷』を考えることは、自然科学理論の何たるかを考えることにも通じることである。
《電荷問答》
初学者が後々疑問に思うだろうことを問答形式で取り上げたい。この辺の内容を授業をなさる先生方に良く汲み取って解説をして頂きたいと思ってもいる。授業の展開方法に、論理的矛盾は無いか?本質的に見過ごしている視点は無いか?本当に深く突き詰めて納得して教えているか?失礼を顧みず少し気掛かりな視点を取上げて論じてみたい。『電荷』とは実に不可解な概念であり、とても自然界に実在するとは信じられないから。

①クーロン力。クーロン力はこの世界には『正電荷』と『負電荷』の2種類の『電荷』が実在することを絶対的な科学理論の条件に据えて、その電荷間に働く力を数学的な式で表現した自然世界の法則である。と言うことが現在の電気理論の世界の科学常識となっている。その法則が論理的に矛盾だらけで、これが科学理論と言うものの実体を示しているのだ。ここでは高校生があるいは大学生が教室で学習する教科書の内容の意味を自分で解釈する手掛かりに成ればとの意味を込めた解説の心算でもある。本当のところは、電気工学や物理学を学んだ、その後の大学院生あるいは現役の先生方に考えて欲しい内容でもある。

《問答第1》 そこで、最初の『問答』となるのはその電荷の『正』と『負』の違いはどのようなことなのか?形が違うのか?大きさが違うのか?色が違うと言うことは無いだろう。何が『正』と『負』の違いを生む原因となっているのか?

《問答第2》 同じ電荷同士、『正』と『正』などは反発し合う。異種電荷同士、『正』と『負』の間では引き合う。それがクーロンの法則の基本的内容である。そのような力の掛り方が違う訳は、原因はどのような意味から起きる事か?科学論は理屈が大切であるから、因果律を大切にしたい。何か『電荷』の間で異なる現象を生む理由が有って言えることであろう。

《問答第3》 図のように、+Q[C] や-q[C]で同じ『電荷』同士が集合する状態を説明に使うが、その集合する訳は何ですか。クーロンの法則に逆らって同符号の『電荷』が集合する理由は何ですか?それは雷の発生原因として学術論で論じられている手法の訳にもなることであろう。摩擦電気で『電荷』が『正』と『負』に分離し、同符号同士の『電荷』が集合すると言う論理にも関わることである。その原因となる力は何ですか?

②コンデンサの充電・放電現象。コンデンサはエネルギーを貯蔵する回路機能素子である。しかし余り『エネルギー』を貯蔵すると言う解釈が示されていないようである。『エネルギー』より『電荷』の貯蔵機能素子と見られているようだ。『電荷』で解釈することが本当に『エネルギー』貯蔵機能として捉えられると言うのか?それは電気技術感覚から考えても無理に思える。本当に理解してもらいたい事は、感覚的にコンデンサの貯蔵という意味を、『エネルギー』の空間像として捉えて欲しいのである。『電荷』には『エネルギー』が見えないから。

《問答第4》 コンデンサの充電はどのようになされるか?直流電源のバッテリーB.にコンデンサ(容量C[F])を繋ぐ。たちどころに電極板の正と負側に『電荷』が『正』と『負』に分かれて集合すると解釈される。《問答第1》での『電荷』の2種類の話であるが、『正電荷』は基本的には陽子の電荷で、『負電荷』は電子の電荷となっている。しかし、陽子が自由に電子のようには移動するとは考えていないようだから、原子の電子が抜けた『ホール』と言う原子イオンを『正電荷』と看做して論理を組み立てているようだ。電極板の原子は移動できないから、その正電極板の金属原子の中の電子が負側の電極板まで速やかに移動しなければならないことになる。と言うことは直流電源のエネルギー供給の役割は正側電極板から電子を引き出し、負側の電極板まで運ぶことに費やされると考えるのだろうか?さて、コンデンサはエネルギーの貯蔵がその機能である。確かに電子を引き剥がして負側まで運ぶとなれば、仕事をすることになるとは言える。それでは何処でエネルギーが費やされるか?となる。コンデンサは電源のエネルギーのある分を受け持って貯蔵する役目であり、『エネルギー』は消費しない筈だ。エネルギーが費やされてしまうのはコンデンサの機能としては意味が違う。正電極板の原子から電子を引き剥がすにはエネルギーが要る。それはコンデンサの面目を潰すことに成り、許されない。原子から電子を剥ぎ取る力を電源がどのように働くのか?原子に対して電源の電圧は働きようがない筈だ。例えクーロン力(電荷間の)を仮定したとしても、直流電源の一方の端子だけでは何の電源電圧の役目も果たし得ない訳だから。勿論電源とコンデンサを繋ぐ導線内には電界は生じ得ない。この事は物理学会の専門家・学会発表の座長さえ電界が在るとの認識で有ったのは今でも驚きの一語に尽きるが。どのような意味で電界が有ると成るのかその辺から討論をしなければ話が噛み合わないのも確かなことである。導体内に、現在の物理学理論で解釈すれば、電界が在って初めて、電子が移動する可能性は生まれると解釈されている。電界で電荷に力が働くと言う理論そのものが自然の真理ではないのだが。しかしそれでもその科学常識の理論に従うとしても、そんな電界が電源電圧に因って、どのように導線内に生じると考えるのだろうか。結局、直流電圧で電極板に正と負の『電荷』を分離する理屈は成り立たない。当然直流電源が正と負の『電荷』を電源内部から供給する機能も同様に成り立たない。そこで初めて、電源の供給する『エネルギー』のコンデンサへの貯蔵がどのようになされるかの問題意識が生まれる筈だ。『電荷』でなく『エネルギー』の実在性を意識することが物理学の極める視点でなければならない。直流電源の負側の導線の近傍空間を通してコンデンサ内の空間に『エネルギー』が貯蔵されるのがこの場合の電磁現象の真相である。 

《問答第5》 電源が電池でなくて変圧器の場合も取上げた。はじめに、電池の場合は電池の『電荷』がコンデンサに供給されると解釈されるかと考えたが、上の《問答第4》でそれは無いことが分かったと思うから、変圧器を取上げる意味も無かったかもしれない。しかし、この変圧器電源ではコンデンサの『電荷』貯蔵機能は直流の場合よりさらに交流の為、極性まで交互に代わるだけ複雑になろう。『電子』は両極板の原子から剥ぎ取る機能の論理性を問うことになる。『電子』はそんなに光速度の速度対応は出来ない筈だ。それ程の論理的な困難が在っても、『電荷』『電子』で理論を構築するのかが問われる筈だ。それに対して『エネルギー』は光エネルギーのように、電線路空間を通してコンデンサ貯蔵機能に光速度の素早さで対応可能である。

むすび

『電子』論の矛盾を力学論から拾い上げて、アンペアの法則の論理的矛盾を解説する前にもう一度、『電荷』の持つ科学概念をサイエンスコミュニケーションの題材として取り上げた。ここでも数式に頼らないで、前の記事力の概念と電気物理に関係した意味で取上げた。

光量子空間像(D線)

光量子と波の概念
現代物理学理論における光量子、光子はその基礎認識で、必ず振動数あるいは周波数に基づいている。物質から光が放射される時、そのエネルギーは連続的な周期性を持って放出される。単発で放射されることはなかろう。だから光量子の検出には周波数、振動数を伴うことになる。振動数を一粒の光が持ち得る訳は無いのだ。振動する一粒の光量子など無い。エネルギー放出時における一群の光がそれぞれの周期的な時間差で起こるだけである。どんな波も横に振れる波動性は本質的に持たないのである。水の水面波も、進行方向への縦のエネルギー流でしかないのである。表面の水面を見れば、確かに横の上下に波打つのが観察される。しかしそれを「横波」と解釈するのが誤りなのである。波は表面だけではなく、水中深く底まで伝達するのである。水底に向かう波をどのように解釈しようとも横に振れるものなどない筈である。みんな『エネルギー』の縦波なのである。シュレーディンガーの有名な波動方程式も横波が基本になっている。それは筆者には受け入れ難い方程式である。

式の意味
光量子の空間像を「空間エネルギー密度流」として次式で表した。

このエネルギーの縦波と言う空間像の意味を少し考えてみる。この光量子の一粒は1辺が光の波長λの立方体として捉えている。そのエネルギーの内部分布が波頭値H[J/㎥]の衝撃波状の指数関数形である。(1)式のHζの積のζは丁度1波長で値がゼロの繰り返しとなる為のものである。0≦ζ≦1である。しかしこの波形は正弦波でない為、周期関数形としての取り扱いが困難である。周期波形でありながら、数式での周期関数表現が出来ない。数学の関数がない。この光量子の式の表現する事の意味で、重要な1点は光に質量がなく、エネルギーそのものが光速度で伝播するということである。光と言うエネルギーは空間での極限の現れである。

式の具体的例題
実際に空間像の意味を捉えるには、具体例で考えるのが良かろう。ここで、ナトリュウムの演色反応で有名な色のD線を取上げて、(1)式のエネルギー空間像を計算してみよう。波長スペクトラムの5889.97 Åと5895.93Åがそれらしい。そこで、波長λ=5890[Å]を具体例に選ぶ。その光量子一粒のエネルギー量εDは

 

 

 

 

となる。このD線の波頭値は

 

となる。しかし、この値ではその大きさの意味が分からない。光量子の寸法で考えてみる。下にその寸法を図示した。進行する波頭で、厚み1Åの微小体積dvの波頭エネルギー密度を算定してみよう。

 

 

 

 

 

 

 

 

 

 

(4)式の体積dv内でのエネルギー密度波頭値Hは(5)式のように計算され、数値的にも納得できよう。そこで、この波頭値Hから、このD線の光量子エネルギーを求めれば、(6)式として算定される。その値は(2)式の結果と同じのは当然である。波頭値Hと自然対数の底e=2.718との比がエネルギー分布の平均値に等価であることになる。その平均値(H/e)の光量子体積倍が丁度光量子1粒のエネルギー量になる。

結び 光速度一定とはの記事を書きながら、光量子空間像を認識しなければ、光速度の意味が分からないだろうと、その参考にと古い記事光とは何か?-光量子像-の中の一部のファイルを取上げって載せた。なお(1)式の意味についてはその記事に示してある。

光量子一粒の形状を1辺が波長λの立方体として解釈している。この体積の取り方が妥当であるかどうかは断定できない。他の形状がより実際に合うかも知れず、その場合はそのように取ればよかろう。一つの空間エネルギー像としての描像を具体例で提示したものである。兎に角、ε=hνではその空間像を認識できないだろうから、これなら誰でも理解し易かろうという空間像を図に表現したものである。勿論自分が納得することを求めて導きだした解釈である。今までこのような具体像は無かったと思い、これが一つの物理学の求める易しさの道ではないかと思って。

 

 

励磁電流とは?

励磁電流否定の記事 変圧器の技術と物理 を投稿して。

(2019/04/16)追記。何処でも磁気や磁束は励磁電流で論じられる。元々電線の中に電子など流れていないにも拘らず、磁束まで電流との関係で定義される。ファラディーの法則の式を見れば、磁束と電圧の関係しかない。電流に因って磁束が発生するという意味など、その式には無いのだ。自然科学が科学技術理論で固められ、物理学としての自然哲学が欠落している処に理論の矛盾が放置されて来たと考える。変圧器を例に、巻線の1ターンコイル電圧 eu [v] = v/n [v] (nは巻数)を基準にして考えることを提案した。磁束や励磁電流という技術概念についても、長い技術的評価手法となっている伝統的な磁化特性を取り上げ、その意味の電圧時間積分との関係での解釈を図に示す。コイルの電圧という意味はコイル巻線導体近傍の空間に分布したエネルギー量の技術評価概念なのである。複雑な概念量を統一して捉えることが自然科学論としての未来の姿でなければならない。それを可能にするのは『エネルギー』しかない。励磁電流という曖昧な技術量を見極めて、磁束とは何かを考えて欲しい。なお、磁化特性は鉄心材料によって、図の①や②のように異なる。変圧器などでは特性が良く①に近く、インダクタンスはL[H]無限大とも見られよう。インダクタンスはその電気器具のエネルギー貯蔵機能を評価する空間特性の評価概念である。(2019/05/08)上の図を訂正した。磁束φと磁束鎖交数ψ=nφで、コイル巻数nの関係を訂正した。

気掛かりで、励磁電流とは?とITで検索してみた。1970,000件も記事が有り、様々な解説記事が検索される。変圧器をはじめ発電機あるいは電動機などすべての磁束の発生原理として、アンペアの法則の磁界発生原理で解説されている。変圧器の技術と物理で、せめて磁束発生原因の励磁電流という間違いはやめるべきだと指摘した。50年も前(正確には生命の危機を脱した、昭和46年秋に研究補助を頂いて、ロイヤーインバータでの単相誘導電動機の周波数制御運転をして、産業教育振興中央会の「産業教育に関する特別研究成果 別冊」に載せて頂いた頃)に筆者は既に励磁電流を否定していた。変圧器突入電流という電源投入時の現象も投入位相で電圧零時であれば、設計磁束の2倍程の ∫vdt [Wb=(HJ)^1/2^] の磁束量になるからと『電圧時間積分』で解釈すべきである。

誘導エネルギーに観る技術と物理

はじめに
電気回路現象を理解するにはその回路内でのエネルギーの振る舞いを感覚的に捉えることが大切である。この記事もロイヤーのインバターの記事の準備として書いている。誘導電動機の運転などでは、その誘導性のエネルギー処理の問題を理解して置かなければならない。インバーターは直流電源を交流電圧波形に変換する技術であり、変圧器と誘導負荷のエネルギーの物理的意味を、電気技術概念の更に深い処の意味で捉えて置きたいと思った。基本的な方形波電圧波形と純誘導負荷のエネルギーの特質を捉えて置く必要があるからである。

単相インバーターと基本動作
最も簡単な基本回路を取り上げ、その負荷が純誘導負荷、リアクトルだけの場合についてまとめておく。物理量のエネルギーをどのように認識しているかが理科教育特に物理学において極めて重要に思える。誘導エネルギーと言う用語は一般的ではないが、コイルに蓄えられるエネルギーの技術的表現である。空心コイルでなく、鉄心に巻いたコイルのエネルギー量が大きく、その電気回路動作に強い影響を及ぼす。鉄心も含めて、コイルの中の空間に蓄えられる貯蔵エネルギーをここでは誘導エネルギーと言う。正弦波交流電圧より直流電圧の一定値を切り替えた方形波電圧波形の方が、そのエネルギーの意味を感覚的に捉え易いだろうと思う。技術的な電流や電圧の意味とエネルギーの関係について、方形波交流電圧源によって考える中身が明確になるだろう。筆者自身の経験で、初めて電気の回路動作を知ったのが方形波電圧源に関わったからである。正弦波電圧では意識しないものが観えて来るからである。

方形波電圧と誘導負荷電流 上の図のように、トランジスタとダイオードを逆向きに繋いだ一対で一つのスイッチを構成する。それを4個使って、負荷Lを電源につなげばトランジスタのオン、オフで方形波電圧が得られる。この方形波電圧で初めて、コイルの電流はどのようになるかを知ることが出来る。コイルの電圧voはLと電流ioの時間微分の積で得られることは知っていても、電流ioが電圧の時間積分となることは意識していない。コイルの電圧時間積分は磁束になる。磁束[Wb]をL[H]で割れば電流[A]になる。このような計算は科学技術理論であり、物理理論(現在の物理学は科学技術理論である)ではない。

科学技術理論と物理論あるいは自然論 科学技術論は電圧、電流などの計測量に基づいて理論を組立てたものである。当然現代物理学理論もその同じ概念に基づいて組み立てられているから自然論とは異なる。自然は人間が創り上げた自然観察手法ほど複雑な原則には無い。磁束も電荷も無い。原子構造もすべての素粒子と考えるものもたった一つの『エネルギー』の世界像である。磁束、インダクタンスおよび電流の単位間で、磁束[Wb]=インダクタンス[H]×電流[A] が何故成り立つのか?自然感覚としてその意味を捉え切れるか。せめて、磁束[(HJ)^1/2^]=インダクタンス[H]×電流[(J/H)^1/2^] なら、次元解析も容易であろう。如何に世界は『エネルギー』が根源を成しているか。エネルギーを論じない物理学は自然を論じているとは言えない。まだ、科学技術論からの要請で取り入れられた空間概念の空間容量ファラッド[F]と誘導容量ヘンリー[H]の時空論の曖昧性は残されたままのように思う。それは哲学的な思考によって解決されるべきものと思う。電流も電圧もそれらがエネルギーと関係付けて捉えられるには、それぞれ2乗によって初めて観えて来る筈だ。もう一つ触れておこう。トランジスタのnpn積層構造でも、ダイオードで表記すれば、ベース端子に対してエミッタもコレクタもダイオードの背向した構造体の筈である。コレクタ側からベースへ電流が流れないダイオードの構造の筈である。何故か不思議にもダイオードの逆向きの電流を制御していることになる。これも実際の製造現場では、単純なnpn積層構造ではない事が分かっているのだろう。考えても単純な頭では理解できない。これも何とも言えない不思議な科学技術論である。トランジスタにはエミッタに電流の方向が示されているが、量子力学論では電流ではなく、逆向きの電子の流れで論じられる。何故電子がコレクタ側に流れるかの明快な解釈は見えない。何しろダイオードの逆向きであるから。それも質量でもなく電荷でもないエネルギーの流れとして捉えなければ真の物理学にはならない筈だ。この辺に対する過去の悩み論を記した記事謎(p n結合は何故エネルギーギャップ空間か)がある。標題に技術と物理としたので少し脇道に逸れてみた。

誘導エネルギーの回生 誘導負荷エネルギーはその処理を的確にしないと、スイッチング素子が破損する。貯蔵されたエネルギーは回路から突然切り離そうとすれば、無限大のエネルギー放射源となり、回路内で炸裂する。だからと言ってそのエネルギー量が多いとは限らない。量は少なくても、そのエネルギーの流れを瞬時に止めることはできない。無理に止めようとすれば火花を放ってエネルギーを放射する。そのエネルギー感覚が電気回路解釈における筆者の感覚の基になっている。コンデンサのエネルギーにはそのような凶暴性を持った回路への危険はない。コンデンサの貯蔵エネルギーは簡単に回路から切り離せる。半導体回路のその誘導エネルギー処理の優れた機能に感心させられた。

リアクトルエネルギーの貯蔵と回生 ここでも技術論である。本来の電圧は電位が高い方がエネルギーの分布が少ないのである。負側がエネルギー源である。然し技術論では如何にも電圧の高い電位がエネルギー供給側のように解釈される。だから電流が流れて、負荷にエネルギーを供給すると理解する。本当は逆なのであるが、如何に科学技術論で頭が飼いならされたかは、電流と電圧の意識が手っ取り早い理解に結びつくかを思い知らされる。実に電圧、電流の技術概念が使いなれると便利であることか。しかしその物理的根本原理を明らかにしようとすれば、並大抵のことで解き明かせるものではない。だから電流が電線導体の中を電子が逆向きに流れる現象だなどと、実しやかなウソで誤魔化す事になる。質量の無い電子は定義されていない。電線の中を質量を移動させるにはどのような力が必要かは知っている筈だ。運動力学論で質量は電界では動かない。だから電荷と電界の関係で力を想定する。一般導線の中に電界をどのように想定できるか厳密に論理を展開出来るか考えてみれば分かろうと思う。無理なのである。それでも巷の電気解説論では堂々と電子が電線内を移動すると解説されている。しかし、だからと言って電流、電圧と言う概念を不要と言って切り捨てる訳にはいかないのだ。これ程実用的な便利な技術概念も無いから。その物理的実像を明確に捉えることは本当の自然の深い真髄を理解する上で大切な事でもある。それはトランジスタの内部あるいは近傍空間をどのようにエネルギーが流れるかを極めることに繋がる話である。技術論と自然の眞髄はどこかで明確に論理的に繋がる筈であるから。エネルギーの回生については何も述べずに来てしまった。一定周期でのスイッチングで、定常状態になった場合の負荷電流ioは三角形状に変化する。その各状態でコイル内にエネルギーが貯蔵される区間と放射(それが電源にエネルギーを回生)する区間とに分かれる。エネルギーの流れと電流値とは同じくはないが、コイルのエネルギーを電流で捉えるのが分かり易いという実に慣れという常識習慣の恐ろしさも感じながらの論理に従って理解する。本当のことは、エネルギーは電流の2乗で捉えられる筈だ。

半導体スイッチ回路をダイオードとスイッチSで書き換えてみた。二つのスイッチSを同時にx 側かy 側に投入すれば、電圧は方形波となる。スイッチの切り替えごとに打点のダイオードが電流の帰還回路を形成し、エネルギーの電源回生動作となる。なおコイルのエネルギーは電流の2乗だから放物線状に変化する。

むすび 電圧、電流と言う技術概念が如何に便利であるかは慣れるに従って益々離れがたい価値を意識する。しかし、自然にはそんな概念は無く人が創りだした技術概念でしかないのだ。実に不思議なことである。こんな事を書くことが社会的な混乱を来たす元になるようで実に気が重い事でもある。社会的組織の中では許されない論議になるかも知れないことから、孤独の世界を歩くことに成ったとも考えられる。過去の電気技術の仲間や工業高校時代の仲間とも全くの繋がりのない世界での思考の論考である。5,6年前に住所録も消えて無くなっていた。日本物理学会での発表も所属欄が書けない無様で今は止めた。学術に関する処に参画するには所属欄の記載がなければ、参画資格が無いようだ。時どき昔のことの闇の声が聞こえる。竹下内閣の『約束』が有ると。地方創生資金配分の関係かとも思うが、何の『約束』かは知らない。

今回の記事で、単相インバーター回路を取上げたが、電流が電気エネルギーの流れを示していると電気技術者ならそう理解する。しかし直流電源のエネルギー放射・伝送は実は負側のマイナス側から送られるのだ。だからトランジスタのスイッチングによるエネルギー伝送機能も負荷に印加する電圧のマイナス側がエネルギー高密度空間の基になっているのだ。大学の電気工学・電子工学の教育上の『参照基準』はその辺に照準を合わせるべきと所属の無い身ながら恥ずかしさを忍んで提言する。残念ながら教科書が間違いあるいは矛盾に気付かない内容を広めているのだ。理論がもっと実学・技術の学びの上に基づくべきだ。何々の法則が矛盾に耐えない筈だ。

政府機関なのかどうかは知らないが、裏で何か決めているようで、実に気味の悪い精神的ストレスの毎日である。正に人権侵害の連続だ。人の繋がりのない断絶した過去の上の浦島退屈論ではあるが。

 

熱の物理

熱の概念
熱とは何か。熱はエネルギーの或る状態と解釈するだろう。それはどんなエネルギーか。日常の環境評価では温度と言う指標で熱の多さを捉えると言ってよかろう。例えば気体では、気体の熱エネルギー量を温度・気温として捉える。気体の熱エネルギーとは、物理学では気体分子運動エネルギー(気体分子運動論)として認識・解釈していると思う。この気体分子運動論が曲者に思える。その訳はエネルギーが質量に関係なくそれ自身で空間に実在しているものだから。光はエネルギーの伝播現象であり、質量はその光のエネルギーを論じるに必要ない筈だ。光が質量の運動エネルギーとは考えないだろう。その光の空間に実在するエネルギー像を物理学で認識していない処に問題の根源がある。

物理学理論(気体分子運動論)を斬る それでは、その気体分子運動エネルギーとはどのようなものを考えているのだろうか。気体にエネルギーが加えられると気体分子がエネルギーを吸収することになる筈だが、おそらく気体分子質量の速度の増加としてエネルギーを吸収すると物理学理論では解釈しているのだろう。何故気体分子が速度の増加を来たす事になるのか。気体を加熱したからと言って、分子の速度が上がる理由が見えない。調理用の圧力釜がある。加熱すれば、圧力釜内の水が蒸発し気体となる。加熱に因り圧力が上昇し水分子の圧力上昇としてボイルの法則の通り圧力エネルギーとして加熱エネルギーが蓄えられる。何も水分子が運動などする必要もない。蒸気機関でのピストンの仕事は水分子の運動エネルギーなど無関係で、水蒸気の圧力がその役割を果たしているだけである。水蒸気の圧力とは水分子が加熱によって体積膨張しようと内部圧力に変換されるから圧力上昇するのである。それが単純なボイルの法則による解釈である。水分子の運動速度など無関係だ。物理学理論でエネルギーと言うと、質量の運動エネルギーと位置エネルギーしか対象にしていないのではないかと誤解しそうになる。圧力エネルギーと言う概念が余り考えられていないようだ。ボイル・シャルルの法則も気体分子運動論としてボルツマン定数に因る解釈に終結している。圧力も膨張でなく分子運動速度に因る衝突力として捉えるようだ。気体の体積、水蒸気分子の体積膨張と言う現象は考慮されていないように思う。気体の発光現象も、気体に加えられたエネルギーが分子や原子に貯蔵され、その貯蔵限界を超えたエネルギーが放出されることと解釈できよう。原子の外殻電子の運動エネルギーが増減する解釈は意味がなく、間違っている。そもそも電子が回転していると考える必要など無い。電荷など無い筈だから。エネルギーと圧力の関係で一つ取り上げておきたい。海底1万メートルの水は静止状態でも途轍もない高圧に在る。その水圧も水の空間に蓄えられたエネルギーの筈である。さて、水圧だけではなく、海底の地殻深くになれば更に圧力が増していると考えられよう。その空間のエネルギーは特別の意味を持ち、日常生活での物理現象として関わることも無い異次元の世界の話であるが、圧力エネルギーであることには変わりがない。ただ、その圧力エネルギーと言う解釈が地球の中心核まで続くと解釈すべきかどうかを判断するべき根拠は不明だ。何も地殻が運動エネルギーの空間貯蔵帯とは考え難いという事からも、気体も同じように気体分子の運動エネルギーとして解釈すべきと言う論理性が見えないということである。当然気体の圧力分布に因り気体は流れて風を引き起すが、それは気体分子運動論でのエネルギーとは異なろう。温度の解釈には風は余り関係なかろう。

熱エネルギー 熱が物に蓄えられる時、物の質量の運動エネルギーの増加となるのではない。物の結晶格子等の空間に貯蔵されるエネルギーそのものの増加が熱の増加と言うことである。熱エネルギーは電気エネルギーや光エネルギーと同じく、空間に実在するエネルギーなのである。質量構造体の内部空間に貯蔵されて温度が高くなるのである。温度が高いということは、計測温度計にその物体から放射されるエネルギーが多いということであり、温度計に入射する熱エネルギーが多い準位で、温度計の出入りのエネルギーが平衡するのである。熱も電気も光もみんな同じエネルギーなのである。それは空間を占め、そこに独立した実在の空間エネルギー密度なのである。基本的に、熱とは光であれ電気であれ物に蓄えられたそのエネルギー量によって周辺空間に放射、伝導するエネルギー量が影響され、その量を計量する人の感覚や温度測定器の表示量として捉えるエネルギーの評価なのである。物のエネルギー量とその物の入射と放射のエネルギー平衡特性が比熱などの評価係数となっているのだろう。物の原子・分子の結合構造(勿論エネルギー還流のマグネット結合構造)でそれらの係数も決まると観て良かろう。

質量とエネルギー等価則

熱エネルギーとは 今常温でMo[kg]の鉄の塊がある。その鉄を加熱した。高温の鉄の塊からは熱と光が放射される。その熱い鉄の塊の重量を計ることを考えると仮定する。鉄の質量は計りに掛けると、加熱によって加えたエネルギー分だけ等価的に質量が増加する筈と考える。それが『質量・エネルギー等価則」の意味である。エネルギーは質量に等価である。しかしここまでエネルギーを実在物理量と捉える考え方は現代物理学の中に受け入れられるかどうかは分からない。高温の鉄の塊から熱放射・光放射が続く。その放射エネルギーは鉄の持つ熱エネルギーと等価な質量の一部をエネルギーとして放射するのである。『エネルギー』も質量と同じく物理的実在量なのである。と言っても、鉄の重量を計って、熱エネルギーに相当する質量・重量の増加した結果が観測など出来ることは無理であろう。熱エネルギーの増加分をほぼ光速度の2乗で除した分など計測に掛る筈はないだろうから。実験的に検証する科学的論証は無理であろう。それでも、原理的に熱エネルギーが質量と等価であるという意味は熱く加熱されたエネルギー分だけ質量が増加しているということである。同じ様に電気コイルに貯蔵される電磁エネルギーが有れば、そのコイル内に溜ったエネルギー分の質量換算量だけ質量が増加したコイルとなる。一般的な現代物理学理論で、エネルギーが質量とは無関係に実在するという認識がどの程度理解され、受け入れられるかははなはだ心許ない。化学理論でも同じく、原子構造で電子が外殻を周回運動しているとの捉え方をしている限りは受け入れ難い考え方であろうと思う。

 

和の趣き(2018年報告)

不立文字と言う東洋哲学の用語がある。筆者はその言葉の意味を、自然世界の事象を極めんとして深く学べば、常識的な言葉で表現出来なくなるという意味で捉えている。新しい科学的発見と言う意味で世界に新しい認識を広げる事と真逆の方向性、即ち今までの常識的解釈で認識していた世界の意味を深く突き詰める事によって矛盾が観えて来て、今までの常識的認識は真理から離れた上辺の捉え方で在ったと気付くことを表現した言葉のように思う。だから常識的な科学的専門用語が使えなくなってしまい、常識的な科学論が出来なくなる窮地に陥ることを指している言葉のようだ。電気磁気学を解釈するに「電荷」の必要が無くなってしまった。自然科学を論説するに科学常識となっている原子とその構造は誰もが納得し信頼する基礎概念であった筈であるが、電荷を否定したら、何を基礎として自然現象を解釈すれば良いか分からない窮地に陥ることとなる。当然電界も磁界も使えなくなる。それが自然世界を深く理解する結果の到達点で、いわゆる不立文字が表現する状態の意味になる。インドに生まれた東洋思想・東洋哲学の眞髄は解釈の矛盾を突き詰めて、削ぎ落しによる中心にある真理を悟ることにあるのだろうと考える。残るものは『エネルギー』一つになる。それは光であり、熱であり、結局質量である。すべては「色即是空」の見えるもの又見えないものと変幻自在に変化する認識量が『色』であり、見えたと思えば見えなくなる『空』でもあるという意味ではないか。そんな解釈論は自然科学の実証・検証による論理性が成り立たない話となってしまう。それが不立文字と言う事であろう。2018年の投稿記事をまとめてみれば、『エネルギー』の意味を尋ね歩いただけのようである。それでも自然科学論の心算である。『エネルギー』の空間分布構造を実験的検証で示すのが理想の科学的手法であることを突きつけられれば、記した記事の内容は空間エネルギー分布を測定していないから科学論でなく哲学となるかもしれない。(2019/02/01)追記。少し気が引ける思いである。標題の『和の趣き』で、ある出版社の本やお酒の名前に使われていることを知った。御免ね。(2019/02/02)追記。『不立文字』は昭和62年9月1日に始まったのかもしれない。電流は流れず の決断を自分に課したのがその年の8月であった。標題の『和』は総和で無く、東洋的という意味合いだ。Google翻訳では、「和の趣き」はTaste of Japanese で「和の趣」はWorth of Japanese Wisdom となる。とても翻訳は意味が深いと思った。

4月2日 哲学と科学 ここには『正の電荷』を誰が発見し、どのような場面でその存在が観測・証明できるのか。を問う事を記した。電子と言う負の電荷は陰極線として観察されている。しかし、正の電荷はどんな場面で観測されるのか。

生物とエネルギー 1月4日 体温とエネルギー 1月5日 生命と酸素 12月16日 生命活動とエネルギー 

原始・電子・エネルギー 原子・分子結合力と周回軌道電子論の矛盾(1月9日) 半導体とバンド理論を尋ねて(5月14日) エネルギーから電子殻を問う(5月21日) 電池における電子の役割を問う(5月24日) エネルギーと結合(10月10日) 結合エネルギー:不思議の砦(12月2日) エネルギーの象形(12月5日)

電気現象と技術・エネルギー 白熱電球のエネルギー変換原理は?(2月12日) 電気回路要素『抵抗』の物理的意味(2月24日) 『瞬時電力』の物理的意味 (3月15日)技術概念『電流』とその測定(9月24日) 瞬時電磁界と概念(10月23日) エネルギー その見えざる正体(11月6日)

地球の景色 青空と白い雲(1月18日) 太陽系はどのような力学によってその位置に存在するのか?(3月28日) 津波と圧力水頭(5月1日) フェーン現象(6月17日) 波の心を観る(11月14日) 山の木霊(12月20日)

哲学・光・エネルギー 光の正体(1月25日) エネルギーの速度(4月2日) 非力学的エネルギー(4月10日) 世界は不思議(5月6日) 焚火の科学(5月26日) 水辺の散策(6月16日) 水蒸気と蒸気線図(6月16日) プランク定数の概念(7月17日) 世界の実在物理量エネルギー(7月26日) 運動エネルギーの概念(9月15日)

大学教育に求められる「電気磁気学」

光は電磁波である。

光とは何かとの問いにそう答えるようだ。

その訳は、光も電磁波も同じ『エネルギーの縦波』であるからだ。

その意味を理解しなければ、電気磁気学の眞髄を教えることは出来ない。

電界や磁界の科学的仮想概念を幾ら論じても求められる大学教育には成らない。

『エネルギー』と電界、磁界の関係をどのように理解しているかが大学教育者に求められていることである。

『電荷』とは何か?と考えることを忘れた大学は歌を忘れたカナリヤと同じだ。

『電荷』無しで、空間を伝播する『エネルギーの波』で電磁波を描いて欲しい。

そうすれば光の意味が観える筈だ。

 

金澤:波はエネルギー流 日本物理学会講演概要集 第66巻2号2分冊、p.310.

金澤:瞬時電磁界理論の実験的検証とその意義 電気学会、電磁界理論研究会資料 EMT-88-145 (1988-10) 『電荷』の物理概念を問う実験写真データ。