タグ別アーカイブ: Energy

Energy is element of all the world. あらゆる素粒子もその根源的本質はすべてエネルギー一つから成り立つ。

瞬時電力の具象解剖

(2022/02/01) 電力とは何か?

誰もが生活に欠かせない、ライフラインである事を知っている。それが電力である。これほど日常生活で無意識に利用しながら、その物理的意味ほど理解していない事も無いかも知れない。そのように書く自分も、長く電気回路現象を考えて来たにも拘らず、本当に深く理解してなかった。二月に入り、今年のカレンダーを一枚剝がした。何となく気持ちも穏やかでない中で、瞬時電力とはどの様な物理的意味で捉えれば良いかと考え直した。

概して、学術理論は、物理学理論は抽象的な数学式などの解釈手法で論じられるものが多い。決して電気現象を論じる時、『電荷』とは何か、『電流』とは何か等の本当の基礎的な概念については全く考えることをしない。決まった科学論の常識の上での話になる。その科学的常識に習熟していない一般の市民はその話に採りつくことが出来ない事に成り易い。

抽象論と具象論。誰もが理解し易い話は、目の前にある空間にその具体的像を提示することが求められる筈だ。光の振動数がどんな特性を示すか等との話は全く学術の解釈法に慣れなければ理解できない話になろう。漸く電力の空間での像が示せるかと言う処まで辿り着いた。だから具象解剖論とも言えよう。その意味で電力の解釈を示したい。電気回路現象には『電子』など何の役にも立たない過去に人が創り上げた空想的仮想概念である事をはじめに指摘しておく。

『オームの法則』と電力。

電気技術の基礎理論は⦅オームの法則⦆である。そこには『電圧』と『電流』と言う基礎技術概念で電気回路現象を解釈する基本が示されている。上の図は2005年に描いたものだ。2010年に  電流は流れず で電気回路は『エネルギー』の現象である事を述べた時も使った。この回路をオームの法則では

瞬時電力

の様な回路図で表現し、解釈する。『電圧』V[V] 、『電流』I[A]そして負荷抵抗 R[Ω]の3つの技術概念で回路動作を解釈できる。とても優れた、完全な電気理論と成っている。直流回路であるが、その電力も瞬時電力として、電圧と電流の積で評価できる。これが科学技術の自然現象を利用するための理論体系の重要な基礎を成している。

科学技術概念と自然現象。

電気理論が完璧であるから、『電圧』、『電流』がどの様な物理的意味かを問う事をしない、疑問にも思わない。その科学技術用の理論体系を構築するには、理屈が成り立たなければならない。論理的である為に、『電荷』とか『電子』などの理論の基礎とすべき物理概念を創造し、定義した。それらは物理学理論の分野から特に組み込まれた概念のように思える。電気回路論や電力技術分野で組み込んだものでは無いと思う。しかし、どう考えても自然世界に『電荷』や『電子』が存在するとは信じられない。今、電気回路現象のその真相が分かった時、やはり電源から負荷まで何が伝送され、供給されるのかと言えば、それは他でもない『エネルギー』でしかないのだと分かった。電力の単位ワット[W]は書き換えれば毎秒当たりの『エネルギー』量ジュール[J]を評価する単位である。その『エネルギー』の単位ジュール[J]で計量するものは物理量として意味を成さないと考えるのか?物理学の回路解析に『エネルギー』と言う概念が認識されていないから。電気料金を支払って使っている電気量『ジュール[J]』を電気回路の現象に考慮しないで理論が成り立つ筈は無かろう。長い科学技術の歴史の中で、理論物理学の中でその『エネルギー』と言う自然世界の根幹を成す『実在物理量』が無視されてきた事への驚きを禁じ得ない。

「瞬時電力」という意味。

その物理的意味を考えてみよう。筆者も感覚的に「瞬時」と言う用語はとても厳密性のある概念を表現すると思って、良く使った。『瞬時実電力』や『瞬時虚電力』あるいは瞬時電磁界などと使って来た。しかし、『瞬時電力』と言う用語の使い方は初めから矛盾を含んでいたことに気付いた。電圧と電流も瞬時値がある。その積も当然瞬時値になる筈と思う。しかし電力の単位の意味は1秒間当たりの値である。1秒間は理論的に時間の瞬時ではない。光なら30万キロメートル先まで届く時間だ。電気現象も光の伝送速度に近い変化の回路動作だ。『電流』だって「電荷」概念で解釈すれば、その単位アンペア[A]も『電荷』との関係で、[C/s]の様に1秒間当たりの値だ。それらの積が瞬時値になる訳は論理的に無理だ。然し実用的には「瞬時電力」と言っても電気技術論としては許されよう。然し乍ら、論理性を身上とすべき理論物理学では、そのような意味は使えないだろうと思う。確かに物理学では『電力』など意識しないから『エネルギー』と同様理論には無用の電気量なのかも知れない。

『電力』とは何か?

ここから電気物理学は始めなければならない筈だ。地球温暖化の社会的問題にもなる『エネルギー』を意識しない理論物理学では社会的責任も果たせない。「瞬時電力」は『電圧』と『電流』の積と言う捉え方では、その『エネルギー』の瞬時的状況を理解するのは無理である。せめて空間に流れる『エネルギー』の分布量を理解することで、その実態がわかろう。『電圧』も『電流』もその概念の奥には『エネルギー』を評価する技術概念であったことが隠されていたのだ。その意味は自然単位系の[JHFM]での解釈が必要になる。時空は[H] [F]で、そこには『エネルギー』だけが展開する自然世界がある。その『エネルギー』とは光であり、見える光も見えない電磁波もある。

「瞬時電力」は伝送エネルギー分布として。

オームの法則の回路を『エネルギー』伝送現象として観る。

漸く電気回路現象が『エネルギー』の伝送回路として理解できた。余りにも有り触れた電気回路だから、その現象を科学論文とするには拍子抜けするような気もする。到達した結果は誰もが分かり易いと思う。中学生でも『電圧』とは何ですか?等と質問したくなる科学技術概念の理論はそれなりに難しい意味なのだった。ただ『エネルギー』が流れている事を感覚的に捉えられるかである。特別に難しい数式もいらない。電線路の導体で挟まれた空間を、電圧の負側の電線導体近傍の空間を導線に沿って、ほぼ光速度に近い速度で、『エネルギー』が流れているだけなのだ。その『エネルギー』の分布量が幾らになるかは、電源の所謂「電圧」と言う技術概念がとても良く示しているのだ。

 

『電圧』は電源が持つ『エネルギー』供給能力を捉えた技術概念だ。電線路を張れば、その張り方で電気回路の空間構造が決まる。空間構造は電気解析で、分布定数回路として取り扱われる。電源電圧が直流であろうと交流であろうと、その回路特性はただ空間構造で決まる。科学技術解釈で『静電容量』と言うコンデンサの意味を使っている。それは正しく電線路の空間の、電気の『エネルギー』をどれ程保有できるかの特性値に成っている。電源に電気回路空間を繋げば、自動的にその電源の能力にあった『エネルギー』が電線路空間に流出し光速度の速さで、全体に規定の『エネルギー』分布空間を生むのである。電線路の単位長さ当たり、1m当たりの『エネルギー』分布量をδ[J/m]で捉えれば分かり易かろう。その意味なら「瞬時電力」と言った場合の物理的意味が分かると思う。光速度で流れる『エネルギー』だから、1m当たりの値など数μジュールでも大きな電力量となる筈だ。

無負荷時。『エネルギーギャップ』と『エネルギー』分布密度。

『エネルギー』分布密度δv[J/m]は電線路の空間構造に対して、電源が規定する『電圧』に対応して自動的に決まる。無負荷時なら、静的定常分布密度で電線路空間が『エネルギー』の値となる。この『エネルギー』の分布密度量は、電気技術量『電圧』の意味を表すものとして『エネルギーギャップ』と言う表現を使って来た。半導体接合面や電池の陰極電極表面空間に対してその『エネルギーギャップ』と言う用語を使わせて貰った。『エネルギー』は空間で片側に偏る性質があると認識しての使い方である。ロゴウスキー電極への印加電圧に対して、負電極側に高い密度の『エネルギー』分布を示して流れる。

負荷時。

負荷抵抗値は単位オーム[Ω]で決まる。純抵抗負荷なら『エネルギー』を一方的に消費する機能要素だ。しかしそれも抵抗内部は微細構造体であり、『エネルギー』を線路空間から吸収し、内部空間に貯蔵しそして高エネルギー密度空間と、温度上昇を来し、遂には外部空間に『熱エネルギー』、『光エネルギー』として放射する。負荷が掛かれば、電線路の特性値 C[F/m]から抵抗体内の構造空間に『エネルギー』が自然に流れ込む。抵抗体も内部は空間構造であるから、その機能はR=√(Lr/Cr)[(H/F)^1/2^] の様な次元で捉えられる。だから線路特性、特性インピーダンスZoとの比較値で解釈して良い。R=αZo と置いて良い。α=1.であれば負荷と電線路が整合した状態である。電圧による供給エネルギーがそのまま負荷に流れ込み、δv=δI [J/m]である。一般には、1<αである。その時のα値は

α=R/Zo=√(δv/δI)      (訂正して、√を付けた。)

の関係がある。

新電気回路解析法。

自然世界の実在物理量『エネルギー』を認識した、電気回路解析法の新しい物理学理論への扉でもある。電気回路現象には『電荷』も『電子』も無縁の長物概念である事を認識することから教育は始めるべきだ。

(参考): エネルギー[J(ジュール)]とJHFM単位系(2010/12/18)

日本物理学会に参加させて頂き、最初の発表内容でもある、2p-D-11  物理概念とその次元 (1998).

エネルギーの計測と物理概念

(2022/01/24)エネルギーの計測。この記事を書きながら、渦電流の技術概念を先にと思って、渦電流とは何か?を投稿した。

『積算電力計』が正しく『エネルギー』の消費量を計量している。電気量としてその『エネルギー』の使用分を電力会社に毎月支払っている。その『エネルギー』の意識が物理学理論には無い。不思議に思わないか?

(2022/05/28)追記。物理的概念としての『エネルギー』を理論で捉え、理論の基礎概念としているかをこの記事で問うのである。電気回路内の電線路で囲まれた空間を光速度で伝送されている『エネルギー』を認識しているかを問うのである。現代物理学理論の論理性があるかの根幹を問うのである。それは電線路の空間の単位長 1 [m] 当たりに流れている『エネルギー』の分布量を認識しているかを問うのである。決して『電圧』や『電流』という電気技術概念ではその自然現象としての『エネルギー』の認識は出来ないという意味である。ただ、一か月間の電気使用量として各電気需要家は電気料金として『エネルギー』の使用料を [KWH] の計量値に支払いをしている。その『エネルギー』の電線路の流れを物理学理論として認識する事が科学論の論理性として欠かせないという意味である。

空間の『エネルギー』。電気エネルギーや光エネルギーあるいは熱エネルギーなどは真空空間にも伝播し、実在する。

物理学理論で⦅エネルギー⦆と言えば、質量に関わる『エネルギー』で、運動エネルギーと位置エネルギーが学校でも教えられる。しかし、質量に関わらない空間の『エネルギー』については学校では教えられていない。その空間の『エネルギー』を科学技術で計測する事は不可能だ。光の空間伝播する『エネルギー』を測定できない。太陽光線の空間伝播の『エネルギー』を計測できない。電磁波の空間分布『エネルギー』を計測できない。科学では測定できないものは論議の対象にはなり難い。だから空間を伝播する『エネルギー』と言うものの実在認識が無いのだろう。

『エネルギー』の物理量としての計測。唯一科学技術で『エネルギー』の利用物理量を計測する方法が『積算電力計』([kWH])だろう。電力会社からの電気量の請求書に記されている[kWH]の量である。

1[kWH]=1000×1[J/s]×60×60[s]=3.6×10⁶ [J]

を基準量として物理量の『エネルギー』を計量している。

電気エネルギーQ[J]を商品として、商品の売買の経済の仕組みに成っている。決して自然界に存在しない『電子』の量を使っている訳ではない。電気需要家は電気の『エネルギー』を商品として買っているのだ。

積算電力計は各家庭の玄関に設置されている少し大きめのボックス型のメーターである。内部を観察すると、電気の使用時にはアルミの円盤が回転している。電力の時間積分値として計測しているのだ。『アラゴの円盤』と言う有名な物理現象を利用した『エネルギー』の計測器だ。勿論空間の『エネルギー』の計測ではないが、ジュール量[J]の取引量として計測している。光のhc/λ[J]の評価エネルギー量概念とは違って、正しく物理量の『エネルギー』の使用した絶対量を計測しているのだ。

ヤッパリ『電荷』だ❓

(2021/07/03)。『電荷』否定への道 (2014/06/03)に思う。

今、矢張り勘違いでなかったと。科学論の根源概念を否定するなど正気の沙汰ではなかった。

しかし、『電荷』が何時どのように科学理論の岩盤となったかを考えると精々100年少しの期間であったように思う。

いま改めて、30年程の無駄と思える孤軍奮闘を振り返って感謝したい思いだ。

多くの物理学の歴史で、ラザフォードの原子論やアインシュタインの特殊相対性理論などについて、改めて物理学理論の意味を考える具体的な考察対象になるような気がする。何か素人の物理学論と笑われそうだが。『電荷』だけは自然世界には存在しないと確信した。新潟県立十日町高等学校の化学の授業で「共有結合」の意味が理解できずに、化学の学習を諦めた事を思い出す。

大学入試問題例(エネルギー問題)

基礎ほど難しい。『電荷』と『エネルギー』の間の問題。記事の文末に追記した。電気現象の解釈矛盾の最大問題、それが電池が『エネルギー』の供給源であるとの認識の欠落であると理解した。論理性の欠落が科学論の課題だ。電気回路技術論は貴重な実用における技術科学文化である事には変わりがない。『電子』による科学理論・物理学理論が自然現象の真理を説くものではない事である。『電荷』は決して自然界には存在しないのだ。そこで次の問題である。

大学入学試験で、次のような問題を課したなら。

【問題】上の図の電気回路で、電池をスイッチSでコンデンサにつないだ。次の問いに答えなさい。

(問1)電池は何を供給する機能用品ですか。

(答) (         )

(問2)コンデンサには何が貯まりますか。

(答) (         )

現在の教育課程で子供たちに教えている事に対して、その教育内容をどれだけ修得し、大学での進んだ高等教育を受けるに必要な能力を備えているかを見るのが入学試験の目的であろう。

答えは (エネルギー) でなければならない筈だ。

もし (電荷)と回答したら、おそらく教育内容を修得した効果が出た事に成りそうだ。特に、(問2)のコンデンサに電荷が貯まるとなれば、教育内容に沿うとなろう。

コンデンサの正電極側には電池からどのように『正の電荷』が貯まる事になるか。クーロンの法則に逆らって、どれ程の同じ『正の電荷』が密集できるのだろうか。

(2021/05/27)追記。コンデンサと電荷‥についての記事で、電流は流れないけれども電荷は貯まると❓ この解説記事は余りにも酷過ぎる。こんな内容を学習する羽目にある学習者はどうなるのか。間違いを世界に広げる手先になるのか。通商産業省は、こんな解説の試験問題が出題されるとすれば、受験生に対して誤った知識を要求する事に成る。これが科学技術論か? と言わなければならない事態になった事はとても悲しい。50年前に、筆者も電気主任技術者第二種免許(宮澤喜一通産大臣)の認定を受けた。当時の電気工事士、高圧電気工事士などの免許も取得した。電気回路の解析は得意だ。しかし残念ながら、電気技術理論は極めて重要な技術論ではあるが、それは自然界の真理からは程遠い科学技術用の仮想概念(自然の真理としては、電圧や電流の概念が)でしかないのだ。その理論的現状の混乱の責任は『現代物理学理論』が背負わなければならない問題である。更に子供達への教育の未来について、喫緊の課題として教育機関及び授業担当の教育者・教科書編集者がその責任を負わなければならないのだ。論理的矛盾に目をつむる事は許されない筈だ。科学技術理論と物理学理論の違いを明確にすることが求められている。

電気現象の基礎を深く考えると、だんだん科学理論と言う内容はその論理性が無いことに気付く筈なんだが?結局『電荷』と言う自然界に存在しない物理概念量を仮想して構築したところに問題が有ったのだ。

『エネルギー』一筋の道

(2021/02/24)。

1986(昭和61)年10月1日。『電荷』否定の起点。

1987年8月5日。電流棄却の旅立ち。

1988年8月。人生の断崖に途方に暮れて最後の研究論文投稿に賭ける。社会的組織との不調和。

そんなことを振り返りたくなる今の心境。昭和の時代から、世間の渡り方を知らずに、愚直に一つの『エネルギー』に惚れ、よくぞここ迄生きて来たかと自分を褒めたい。

自然の多様性は純粋に因って生まれた。自然こそ神の仕業か。電気理論が難しい訳。それは人間の難しさが創ったものだから。自然の純粋さに心が感応し難いからかも知れない。純粋さなど何の得にもならないから。光が空間のエネルギー分布の縦波である事を認識できるかに電気理論の意味の理解が掛かっているのかも知れない。

『エネルギー』の実像を求めて!利益につながらない学問は、経済的・精神的・社会的孤立で、自由に羽ばたけないと言う処に『学問の自由』の難しさがあるのかも知れない。

『エネルギー』一つに思いを込めた電気磁気現象の認識を述べたい。空間に展開する電磁気現象を論じようとすれば、そこには電界と磁界の概念が必要になる。その基礎概念である電界や磁界の物理的意味を深く掘り下げて考えた結果、それも人間が創り出した解釈理論の為の概念でしかなかったことに行き着いた。

『エネルギー』にもその在り様はさまざまである。それは物に入り込めば、温度の上昇として認識される。電気回路要素なら、電熱器の抵抗体に現れる姿だ。物の煮炊きの熱現象に成る。全て『エネルギー』の形だ。それを電気理論の電界と磁界との関りで見れば、上の図のように解釈できよう。空間を自由に流れるとき、その『エネルギー』を光と言う。少し伝送空間を制限された状態が、電気回路の電気エネルギーに成る。

少し理論的に解釈しようとすれば、電界と磁界でのその『エネルギー』の捉え方に成る。空間を伝播する『エネルギー』だから、空間の意味を解釈に取り入れなければならない。少なくても二つの解釈基準が必要だ。それが誘電率と透磁率に成る。その空間認識基準として直交したベクトル誘電率εo[F/m]とベクトル透磁率μo[H/m]を決めたい。それは電気回路であれば、回路定数の容量C[F/m]および誘導L[H/m]に通じるものである。

単位空間1[㎥]当たりの『エネルギー』の密度を w[J/㎥]とすれば、電界強度ベクトルE[V/m]は誘電率によって解釈することが出来る。磁界強度ベクトルH[A/m]も同じく、透磁率によって定義できる。

電界も磁界も基本的には同じ『エネルギー』の観方を変えた解釈概念と見做せる。だから、電界あるいは磁界が空間に独立に単独で存在することは有り得ないのだ。どちらも同じ『エネルギー』の観方を変えた解釈概念でしかないのだ。光の空間を伝播する『エネルギー』の姿を電界と磁界に分けて解釈するが、それも科学技術と言う見方での手法の故でしかないのだ。有名な「マックスウエルの電磁場方程式」も、具体的なパラボラアンテナの表面近くにその電界と磁界を描いてみれば、電界と磁界での解釈が矛盾であることが分かる筈だ。描けない筈だから。『エネルギー』の縦波としてしか表現できない筈だ。

冒頭の1986年10月1日『電荷』否定の起点ー『静電界は磁界を伴う』ー。そこに思いを馳せながら、その基礎論とする。

ペルチエ効果と熱エネルギー

(2020/11/19) ペルチエ効果。

ペルチエ効果を使う熱電素子の構造は図の(1)のような説明で示される。N型半導体とP型半導体を銅などの板で組み合わせて構成される。そこに電圧を加えると、吸熱面と放熱面が生まれる。吸熱面の空気から熱エネルギーが金属板に吸収される。その作用を使って除湿器が造られる。空気からと言うのはその水蒸気が保有する熱エネルギーを吸収することだ。水蒸気は熱エネルギーで水が体積膨張した状態である。吸熱面で熱エネルギーが奪われれば、水蒸気は体積収縮して水になる。それが除湿機の機能原理だ。それはペルチエ効果の説明のように実際の技術として機能している。しかし、何故n型半導体‐銅‐p型半導体の方向に電圧を掛けると銅で吸熱現象が起きるかの原理が理解できない。そこで、(2)図のように、n型半導体を銅版で挟んで電圧を掛けても、吸熱と放熱が起きるのか?予測では、実験すれば吸熱、放熱は起きる筈だ。起きなければ、原理の意味が成り立たない。これはn型でもp型でも同じ筈だ。p型では吸熱、放熱の反応極性が逆にはなるが。

除湿機能と降雨現象。空気中の水蒸気から熱エネルギーを奪えば、水蒸気は水に成って、体積収縮を起こす。気象で地上の低気圧も、上層気流の冷気で地上からの水蒸気が体積収縮を起こすから、空気の水蒸気が上空に吸い上げられ、その結果低気圧となる。水蒸気の熱が上層気流に奪われ、水蒸気が体積収縮を起こす結果、雨となって降り注ぐ。除湿器の機能も自然現象としてみれば、降雨現象と同じものである。その吸熱現象がペルチエ効果ではどのような原理で起きるかの問題と考える。電気回路現象は電子が主役を演じる解釈理論となっている。電子がどのような役割を担っているかを詳らかにするのが科学論の目的だ。降雨現象には電子は不向きだ。その違いの訳が説明できるか?という設問となる。この上層空気がより冷気が強ければ、遂には氷となり雪になる。地上と上空の温度差が急激に大きくなれば、熱エネルギーが空間のチリなどに蓄積され、その熱放射、熱爆発の「雷」となる-雷は熱爆発 (2014/05/23) -。

思考回路。

ペルチエ効果の意味を考えてみよう。図(3)はダイオードに電圧を逆方向に掛けた。これでは回路は on 出来ないから、off である。図(4)はn型とp型の間に銅板を挟んだ。この構造はペルチエ素子の構造と同じだ。原理から考えれば、やはり吸熱と放熱現象が起きる筈だ。銅板を挟むとダイオードのoff機能は消えてonするという意味になる。この構造でもペルチエ効果が表れる訳を説明できなければならない。さてどう解釈するか?

電子と熱電効果の原理。

電源は決して電子を回路内を循環させる訳ではない。現在も、電子が主役の量子力学が半導体動作原理の解釈理論となっている。もし、電子が電気回路の機能を担うとすれば、電子が電流の逆向きに流れると解釈する限り、無理して『電荷』がその役割を担うと考えざるを得ない筈だ。電子の『質量』では無かろう。しかし、『電荷』が電気回路内を循環する具体的役割を、誰をも納得させるだけの論理性で示し得ないだろう。電子が『エネルギー』の伝送に役割を果たし得るか?電子が『エネルギー』を電源の負側からどのような状態で電気回路に運び出すのか?The electron did not exist in the world. (2020/05/15) 。にも述べた。電子の電荷と質量の空間像が定義できなければ、電子の熱エネルギーに対する機能も述べられない筈だ。電源は、電圧をその規定する値にするため、その繋がる回路の回路定数に対する『エネルギー』の放出源なのである。放出電子の数を調整する機能など電源には無い。電源は電子など制御対象にできないし、無用である。

電源と熱エネルギー。

電源は負側の電極電線路近傍空間を通して『エネルギー』を放出する。この電気エネルギーと熱エネルギーに違いがある訳ではないのだ。熱エネルギーは輻射熱として放出される。所謂赤外線と言う分類の光と見做せよう。可視光線に比べて、何か速度が鈍いような長波長成分と言う物のように感覚的に感じる。しかし電力波と比べれば波長は光に近い筈だが、衣服等に吸収された熱量値しての状況は何か粘性の強いエネルギーに思える。その熱が高密度に貯蔵されれば、遂にはより作用性の強い放射光となる。熱電現象は電気エネルギーと熱エネルギーの間の相互作用の変換現象と解釈する。とは言っても電気エネルギーと熱エネルギーは基本的に空間に実在する同じ『エネルギー』であることに変わりはなく、電池から電線路を通して負荷抵抗の空間構造に閉じ込められれば熱と言う人の解釈になる。

半導体の不思議。

トランジスタのスイッチング機能は技術の結晶に思える。しかしそのコレクタ側はダイオードの逆極性導通としか見えない。そこは吸熱特性を呈する。ダイオード電圧 (2020/08/26)。

 

 

導体と空間とエネルギー

(2020/11/07)エネルギーギャップ。
電磁気現象は『エネルギー』の動態を捉えて、その世界が観えるようだ。決して『電子』ではその真相は観えないだろう。
空間に在る『エネルギー』の姿を決めるのは、その空間構造を規定する金属導体と観ることも出来よう。その見方を纏めてみた。
電圧とエネルギーギャップ。


エネルギーギャップ。

少しづつ電気現象における『エネルギー』の姿が観えてきた。それらを繋げて行くと、すべての現象が金属導体とその近傍に関わる『エネルギー』の姿である。近接した導体が有れば、その間の空間にエネルギーが分布する。その分布の姿は、必ず不均一である。と解釈する。その様子を上の図に示した。コンデンサもコイルもその導体の間に不均一に『エネルギー』が分布する。その不均一分布を『エネルギーギャップ』と唱えたい。それはダイオードのp型と n型間に存在する不均一エネルギー分布との解釈と同じとみる。ダイオードはその『エネルギーギャップ』によって導通「オフ」状態となっている。n型側に『エネルギー』を加えれば、ダイオード「オン」となる。そのように基本的に空間構造体内に『エネルギー』が存在する姿は不均一である。その『エネルギーギャップ』が電気回路の回路定数、特に容量C[F/m]との関係で端子電圧V[V]となる。

『エネルギー』と光と空間定数。上の捉え方が誘電率εo[F/m]および透磁率μo[H/m]と光伝播現象との関係の哲学的考察につながるだろう。 

電磁誘導現象の真相

ファラディーの法則(2020/10/24)。それは19世紀初めに唱えられたアンペア―の法則と共に電気現象の不思議を解き明かす基本法則である。電気回路現象の解釈の要となる概念が『電流』と『磁束』であろう。ファラディーの法則で、『磁束』がその主要概念となる。しかしよく考えると、コイルに磁束が鎖交すると何故コイルに起電力が発生するかの理由が分からない。金属導体のコイルと磁束の間の物理現象はどの様なものか。『磁束』とは一体どのような空間的物理量か。「科学技術概念の世界」を書きながら、さきにこの記事を投稿する。

磁束が自然世界にある訳ではない。磁束とは、人が電磁誘導現象の訳を解釈するために仮想的に磁界の中に在ると考えた概念である。『電圧』とは何か?と同じように『磁束』の、その真相・意味も分からないのである。それは磁石のN極側から空間に放射する線束として仮想した概念である。空間に在る線束とはいったい何だろうか。磁束や磁界と言う解釈概念は、その本当の意味は、N極およびS極の周りをエネルギーが回転している、軸性エネルギー流の空間現象なのだ。その様子を図の磁束φの先端に記した。N極側から見て、時計方向に回るエネルギー流なのだ。コイルの端子電圧Vはコイル1ターン毎の単位電圧vuの加算の電圧となる。丁度乾電池を積み重ねたと同じことになる。

コイルはコンデンサである。電線を二本平衡に張ればその間にはコンデンサが構成される。電線間の離隔距離と電線の形状・寸法でコンデンサ容量は変わる。コイルはその電線の間にはやはりコンデンサが構成されていると考えて良い筈だ。コイルの端子電圧の意味を少し深く考えれば、そのコイル電線間のコンデンサ容量と、そのギャップ間の貯蔵エネルギーとの関係を見直せば、新しい電圧の概念で統一的に捉えられると考えた。コイル巻き線間の間のエネルギー量をδ[J/1turn]とすれば、1turnコイルの電圧vuは図のように認識できる。丁度1turnの電圧を巻き数n倍すれば、コイル端子電圧Vとなる。

変圧器と『エネルギー』反射現象。

(2021/09/06)追記。コイルからの電源側へのエネルギー反射現象は起きない。コイルに印加される電圧に対して、コイル巻き線空間でのエネルギー分布がエネルギーの受け入れ限界を超えた時には短絡現象に至るだろう。コイルからのその意味での電源へのエネルギーの反射は起きない。従って以下の反射の解釈は訂正する。しかし、変圧器としての2次側負荷からのエネルギー反射現象とは意味が違う。あくまでもコイル内へのエネルギー入射に対するコイル端子電圧の物理現象の真相が如何なる事かの解釈問題である。

先に電気回路は直流も高周波も同じ電磁現象の基にあると述べた。変圧器は電気回路の中でも少し異なった、電力工学の捉え方が中心になって認識されているようだ。物理学の変圧器の解釈は励磁電流による磁束発生がその根本原理となっている。もう励磁電流などと言う解釈は過去の遺物概念と破棄しなければならない時にある。そこで更に先に進むには、変圧器も電線路に繋がれた一つの負荷でしかないと考えざるを得ない。其処では負荷と電線路特性との負荷整合の統一的解釈にまとめなければならない。変圧器での電源間とのエネルギー反射現象をどの様な認識で捉えるべきか。空芯であればすぐ短絡現象になる。鉄心がある事で、技術概念の『磁束飽和』に至らずに短絡せずに済む。それは鉄心へのエネルギー入射が時間的に長くかかり、鉄心でのエネルギー反射が巻き線空間を通して電源側に起きるからと考える。後に、追記で図によって示したい。ひとまず基本的な真相だけを述べた。

 

 

新電磁気学の事始め

電気磁気学への希望 (2020/09/14)。それは大きな代償を払わなければ難しい。困難の原因は現在のあらゆる科学理論の拠り所たる『電荷』概念の否定しかないから。

教育。 教育基本法(原)(昭和22年3月31日)の前文。

われらは、さきに、日本国憲法を確定し、民主的で文化的な国家を建設して、世界の平和と人類の福祉に貢献しようとする決意を示した。この理想の実現は、根本において教育の力にまつべきものである。                   われらは個人の尊厳を重んじ、真理と平和を希求する人間の育成を期するとともに、普遍的にしてしかも個性豊かな文化の創造を目指す教育を徹底しなければならない。

この教育の基本方針によって、真理を希求する人間の育成を期するためにも、過去の科学理論の矛盾を勇気をもって排除する以外に、未来への希望は無いものと覚悟すべきである。

第一の要諦。

決して電荷は自然界に存在しない。従って、「電荷間に生じる力」なる表現は論理的な矛盾を含み、使ってはいけない。「クーロンの法則」は間違った法則であった。それを教科書から排除してこそ未来の教育が始まる。記事の右上の検索で、クーロン力で検索すると過去の幾つかの記事が現れる。不可解な電荷 (2019/5/26) もその一つ。それは『電子』なる概念も否定されることになる。この主張は所謂「不協和音」(9月7日の新潟日報座標軸の記事を見て知った欅坂46の歌詞を見て、弱気になった。)になる。原子構造論の否定にもなるから。恐ろしい結果になる事、即ち教科書の電子論を否定する事が、また高分子結合の水素結合とは何か?の極めにもつながる事だから。すべてが軸性エネルギー流(Axial energy flow)の磁気結合につながる予測を生むから。『エネルギー』一つの基礎概念にまとまるから。

子供達への教育は、子供たちが余裕をもって日常生活が送れるように、少ない内容の広く応用につながる大事な基礎に重点を置くことに勤めなければならない。

『エネルギー』の意味を考えて欲しい。

 

 

科学論の土俵は

(2021/01/28) 追記。今日は朝、頭の上を大きな音を立てて、ヘリコプターが通り過ぎて行った。最近無かったが久しぶりの意味不明の雑音飛行だった。今、昨年1年間の投稿記事を整理、確認している。『電子』の概念矛盾が科学論全体を混乱に陥れていると、改めて確信した。懐中電灯の特性(2021/01/25) は昨年の一つの成果としての纏めに成っていよう。子供たちがこの記事を見て、どの様な反応を示すか少し心配でもある。教科書が間違いであることを指摘したものでもあるから。筆者は大学で不要の人材と切り捨てられて、学術機関から30年以上前に追放された。しかし『静電界は磁界を伴う』の発表は未来の希望として世界に示す科学論との確信から、今日まで戦う土俵を無くし乍らもここまで思いを届けてきた。今日のヘリコプターの轟音は陰で何を画策しているか分からないが、闇の音に聞こえた。

科学論の対象範囲は無限の広がりになっている(2020/08/31)。科学論を戦わし、勝者と敗者がわかる土俵は無いのか。生活の夢はどのような土俵で勝ち取ればよいのか。

科学論は基本的に科学者の組織に所属して、その所属機関の一員、科学研究者として生活資金の保障の下で研究が可能である。その上で研究内容の発表を通して、その科学者としての評価が社会的に成される。その研究論文はそれぞれの研究分野ごとに異なる学術機関誌上に、その研究部門の専門の査読者によって吟味され、価値あると評価されて発表されるものと理解している。それが科学論の土俵であろう。科学者が競う科学論には、その特殊性によって土俵が限られたことになる様である。特殊という意味は、そこで論じられる内容が普通の市民にとっては余りにも限られた概念や意味の用語で語られるため、全く関わり得ないものである。特に現代科学論は狭い専門領域によって分野別に仕切られてしまった。それぞれの科学研究者は厳しい競争社会の中で、その専門的研究に専念して、それぞれの土俵上で格闘されている。

スポーツにはその技量を競う土俵がある。科学研究と異なる一般社会に開かれた市民生活の場では、日常的に様々な土俵がある。みんな生活と夢とを結びつける土俵であろう。

教育あるいは理科教育の土俵。理科と言う教科は自然世界を科学的に捉えて、その基礎教育によって培われた科学的知識や感性を、後に社会生活の上で科学者に成るばかりでなく、あらゆる場面で的確な自然現象の解釈に生かす能力として重要である。さて、そこで気掛かりな事がある。それは科学研究の現代的姿が全く教育とかけ離れてしまったことである。学校教育で取り上げられる理科教育内容と最先端の科学研究内容との間の隔たりが極めて大きく、矛盾を孕んだままに放置されている事である。昔の「ロウソクの科学」のようなファラディーの話の時代との隔世の感がある。その原因は何に在るのだろうか。生命の科学、医学生理学のような研究分野はとても複雑で高度の専門的であり乍ら、その基礎となる理科教育については何も殆ど疑問もなく、現状の基礎概念がそのまま科学常識として是認されている。高度な専門分野の研究者は、その最先端の研究に心血を注ぐが故に、学校教育の基礎、物理学の基礎などを考える余裕などない。では、物理学科の教育の専門家がその基礎の概念を研究対象として疑問を拾い上げるかと思っても、殆どそのような事はしない。原子構造が原子核とその周りを周回する電子で構成されているとの古典的認識(誰も古典的とは考えない)で、少しも違和感を持たないように思う。『電荷』概念とクーロンの法則の間の論理的矛盾など少しも問題にしない。それは何故なんだろうか。同じ『電荷』同士は反発して、近付かない筈だ。しかしコンデンサの充電現象は『正電荷』同士、『負電荷』同士が集合、密接する事に矛盾も感じない。その思考の有り方を一体どのように、科学論の論理性と言う観点から捉えれば良いのかと考え込まざるを得ない。

日本政府(文部科学省)の教科書検定制度。社会的仕組みの問題としても考えなければならないような気がする。『電荷』に関して以下に述べる。

『電荷』否定論。ブログで一般市民も理解できるかと、電気回路現象や基礎的物理論の矛盾を取り上げて論じてきた。既に10年は過ぎた。しかし、ブログ記事に対して、専門家が批判を寄せる事はない。少なくとも『電荷』や『電子』で物理現象を大学講義でなさって居られる方が多いにも拘らず、反論も期待したが全く無い。ブログでの記事はそれを期待したが、やはり科学論を戦わす土俵としては期待外れの無駄であったかと、誠に残念である。情報の溢れるインターネットの場に、そこに土俵が在るかとの期待でもあったが。教科書の内容と言う、誠に基礎的な事であれば、一般の市民が質問できる場として有効な土俵と考えた。やはり『電荷』に関する公開の場での討論会が在れば、開かれた科学論となるとの期待を持っている。そんな機会に壇上で参加したい。新しい『パラダイム』に向けて。