タグ別アーカイブ: Energy

Energy is element of all the world. あらゆる素粒子もその根源的本質はすべてエネルギー一つから成り立つ。

電気現象の哲学的課題

1990年(平成2年)に『JHFM』単位系-エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18) ーを作った。自然現象は『エネルギー』がその根源をなすとの認識である。その時の課題が真空透磁率μo[h/m]と真空誘電率εo[F/m]の『エネルギー』の伝播現象に果たす空間構造の哲学的解釈であった。

伝播定数γ=√(CL)  [s/m] 。それは『エネルギー』の単位長さを伝播するに要する時間。光速度と同じ物理的意味であるが、光速度の逆数で評価するものでもある。記事、空間定数とエネルギー伝播現象 (2019/09/14) が参考になるでしょう。

電線路空間は線路定数によって統一的にその特性を評価できる。その電線路空間を伝播する『エネルギー』の特性を特徴付けるのは電線路単位長当たりの C[F/m] およびL[H/m] そして伝播定数γ[s/m]である。線路定数は分布定数回路空間の世界 (2019/10/14) に示した。

電線路の電気現象についてまとめるにあたって、今も自然の時空構造をどう解釈すれば良いかと疑問のままであるので、最終的課題として提起しておきたい。

光の相対速度と空間

Light never makes its way for the observer.It’s just a matter of nature. (2020/06/04)

光とは世界の不思議を背負っている。道端に咲く花をみれば、その鮮やかな色彩も光の姿だ。不思議が故に、その科学論も不可解な世界を生み出す。1675年の昔、レーマーが光の速度の測定をして、毎秒22万kmの有限な速度であることを発見した。それは観測者と光の関係が相対性であることをも示している。素敵な感性に基づく実験による業績だ。しかし1905年、アインシュタインが「特殊相対性理論」を発表した。アインシュタインは光の速度測定の実験はしていない筈だ。光速度はほぼ30万km毎秒と今は理解している。空間定数とエネルギー伝播現象 (2019/09/14) 光はその伝播する空間媒体によってその速度が決まる。金属導体があればそれは障害となり、回析現象も起きる。光は空間エネルギー分布波であるから。電磁波とアンテナ導体との関係と同じ性質を示す。その上で、『光速度一定』とはどの様な空間座標に対しての意味かをハッキリさせなければならない。

光はいつも『相対速度』で観測される。光は厳正な世界創造の役割を担っているから、決して観測者に対して光速度一定にはならない。空間と時間を司っているから。光は基本的に一定の光速度で空間を伝播するエネルギーの縦波である。その基準空間は光の光速度によって規定される世界の標準であるから。一定の光速度の光の観測者が、その基準空間座標に対して静止していない限り相対速度で観測することになる。天体からの光となれば、観測者との相対運動によって、それは『相対速度』になる。しかも地球上での観測となれば、地球の運動体の速度の影響がない筈はない。光は魔術師ではないから、規定の光速度であれば必ず相対性の基に在る。朝日と夕日の太陽光線は何故違うか。当たり前の現象を素直に観測して考えてほしい。光も空間に分布したエネルギーの周期波でしかないのだから。何も振動する物理量など無いのだから。観測上直交成分で観測できたとしても、観測技術の問題でしかないのだ。電気回路のエネルギー伝播現象と基本は同じものだから。電気回路のエネルギー流を電圧と電流で解釈する技術概念と同じものでしかないのだ。古い投稿記事に、光の速度と空間特性 (2011/5/22) がある。その記事は分かり難い。改めて、大切な内容なので、ここに再度書き直す。電気現象の解釈で、光エネルギーの伝播現象の理解なくしては困難であるから、『電荷』否定と同じく統一的な基本に光の解釈が重要であるから。

光規定空間

光が空間と時間を司る。その意味で、光の速度と言う解釈の基本に、その空間の定義が明確でなければならない。図は地球での観測になっているから、回転体の空気層に包まれた観測環境は理想的ではない。光の伝播に障害となる地球であることは間違いない。しかし、天体からの光がどのような空間で光速度一定という意味を認識できるかを考える意味で取り上げる。星から光が放射されたとする。その速度はどの様な空間に対して時間と空間長さを規定して伝播するのだろうか。決して地球上の観測者の運動に合わせて速度を決める訳ではない。光が伝播する直線状の伝播距離と時間は決まった光の速度によって規定される筈である。その軌跡によって光の速度を規定する空間座標を想定することが出来よう。その光が障害のない空間に付けた道が直線で規定する空間座標が定まる空間を『光規定空間』と定義する。その空間に於いて光は『光速度一定』と言える。

光相対速度のベクトル図

光の伝播を空間ベクトルで解釈する。光規定空間を直交座標 Xi, Yj and Zk で規定する。この座標上で、光の軌跡は直線となり、速度は光速度の一定値となる。光源S(t) が座標原点O(時刻t=0 )で、単位ベクトル nc の方向に光パルスを放射した。光源 S(t) は単位ベクトル ns の方向に速度 V で運動している。

時間 t で光と光源の位置ベクトルは(1)式で示される。

光と光源の空間軌跡の間には単位ベクトルのスカラー積によって、 θ=cos^-1^(nc・ns) の角度がある。さて、光源からの光パルスは光速度で時刻tでは P(t) 点に到達している。さて光源に観測者が居て、その放射パルスの位置 P(t) 点をどのように認識するか。その空間距離は r となる。

その距離は(2)式となる。その距離 r は光源から見た光の時間 t で進んだ距離と見做される。時間で割ればそれは光の相対速度となり。

(3)式となる。この式の意味は、光源から光が放射された瞬間から光源の運動や、観測者の運動には一切関わりなく光規定空間で光速度一定の速度で伝播することを示す。その光と時間と距離の関係は全く普通の相対関係にあることを意味したものであり、決して特殊な関係は無いという意味である。

そこには運動体上の観測者と光の速度の認識の基本問題が存在する。もし角度が、θ=π とすれば、観測者と光のパルス間の距離は相対的に光速度と観測者の速度との加算となる。

光の相対速度 cr

相対速度 cr (3)式。光が相対速度に関して、特殊な意味など持っていない。

むすび

光はすべてのものに平等である事をその基準としている筈だ。科学理論においても特権階級の席は作らない。

 

 

I think now Between nature and scientific theory.

何故自分の記事に『フォローマーク』が出るのか?自分が二人いるようだ??

Electronic theory is a lost way for science education. (電子論は科学教育にとって迷い道。)

The mission of universities is not limited to technological development like companies. (大学の使命は企業のような技術開発だけではない。)

What should education aim for? (教育とは何を目指すべきか?)

Now,the scientific theory is in the darkness of losing energy. (今、科学理論はエネルギーを見失った暗闇の中だ。)

 

電気回路要素の『エネルギー』処理機能

電気回路は芸術だ。
電気回路要素は『エネルギー』の演技舞台
直流回路は電源とコイルとコンデンサと抵抗の組み合わせだ。電源は『電子』など貯めていない。それは『エネルギー』を供給するための『エネルギー』の貯蔵ダムだ。『エネルギー』を緑色で示した。電池の負(?)側の銅線に沿って『エネルギー』はその近傍空間を流れ出る。定常状態では、『エネルギー』は抵抗体にだけ流れ込む。コンデンサもコイルも『エネルギー』を貯蔵して、電源との『エネルギー』のやり取りはない。回路要素の機能を纏めてみた。

コイル
コイルLは『エネルギー』の忍者宿。コイルは既に電源回路とは切り離されたような状態にある。だからその端子電圧は零である。コイル内に貯蔵された『エネルギー』は回路側からは見えない。端子電圧がゼロという意味は回路から切り離された『エネルギー』の隠れ蓑の貯蔵宿だから。あたかも忍者によって『エネルギー』が隠されたようだ。

コンデンサ
コンデンサはその電線間の電圧分だけの『エネルギー』を貯蔵している。電線路空間もコンデンサもその『エネルギー』分布を支配する空間構造定数回路と見做せる。だからコンデンサ機能の静電容量が電源『エネルギー』分布を導く道標役の道祖神だ。

抵抗 
抵抗は『エネルギー』の空間手品師。抵抗は『エネルギー』の処理には高度の技能を発揮して、まるで手品師のようだ。図1.抵抗は『エネルギー』変換要素。抵抗は『エネルギー』の空間構造による処理の手品師だ。抵抗は図の右上に示した単位・次元の関係 [(H/F)^1/2^] で捉えられる。抵抗は結局その内部空間構造がコイルとコンデンサの組み合わせと見做せる。回路要素の中で、この抵抗の物理的機能が最も手ごわいものであった。抵抗は単純で、単に『エネルギー』の消耗体と見做される。電源から供給される『エネルギー』はこの抵抗体の中で回路から消えてしまうから。しかし、本当は『エネルギー』が消耗される訳ではなかろう。実際は図のように、抵抗体の中で『エネルギー』が変換されて、電源の中で観えなかった『エネルギー』が熱や光に変換された姿になって空間に放射される。それは『エネルギー』変換現象を経た『エネルギー保存則』の自然の原理の表れである。抵抗の単位はオーム [Ω] である。そのオームの単位、次元では抵抗体の物理的機能は見えない。何を意味しているかは分からない。電圧と電流の比を示す単位でしかないから。元々『電圧』も『電流』もその現象の隠された真相には『エネルギー』があるので、ボルトとアンペアではその物理的意味は捉えきれない筈だ。長く、抵抗の次元が [(H/F)^1/2^] である意味と、その抵抗体の中での『エネルギー』が見え難かった。    結局、図2.抵抗要素構造 のような空間構造機能を持った要素素子の合成体と解釈した。抵抗体に入射する『エネルギー』が先ずコンデンサ要素に蓄えられる。その『エネルギー』が要素のコイル構造を通して、コイル終端が解放したアンテナからの空間に放射される。その抵抗体内からは二度と電源側には戻れない。抵抗要素の特性インピーダンス Zr がその次元は [(H/F)^1/2^] となる。抵抗体内の空間に蓄えられた『エネルギー』は熱の『エネルギー』となる。その『エネルギー』が高密度で貯蔵されると、光として自由空間の特性インピーダンス空間に放射される。一通りそのような物理的機能要素として“抵抗”を捉えた。

『エネルギー』は『電子』や『電荷』では捉えきれない筈だ。電池から『電子』が流れると解釈するなら、『エネルギー』の供給を『電子』の機能で解説しなければならない。

無為自然

(2020/03/06)追記。今日確認のために「日本雨蛙の尻尾」と検索すると、多くの写真が有ることを知って愕然とした。殆どが少し赤みを帯びた、一匹の透き通った写真である。それ等は水中のオタマジャクシの生態のカエルだ。みんな間違いの写真だ。日本雨蛙は田圃の畔の土の中などから深夜に生れ出るようだ。それも同時に多くが集団で生れる。6月末から7月初めの雨が多く降って土の表面が柔らかい時の深夜に生まれる。また、水辺の無い街中であるいは公園でも生まれる。日本雨蛙は生まれた瞬間から尻尾はすでに消えて、尻尾を見る事はできない。生まれた時から独特のあの緑色だ。一つ安心したことが有る。それは以前の Wikipedia でも他の記事と同じく、オタマジャクシ説で解説されていた。しかし今はその記述は無くなっていることで間違いが消えて安心した。

(2020/01/22)初めて知った。

「無為自然」老子の言葉らしい。紀元前4世紀の中国春秋戦国時代の哲学者と言う。

墨字に描いた。孔子の儒教に対照的な思想に思える。老子の思想は基本的に自由を根本に据えている。其れは禪の思想の原型をなしているように思う。

無為自然の意味は?

中国の歴史で、当時すでに文字が完成していたのだろう。何という高度文明を築いていたのか。文字が無ければ思想の形成は困難ではなかろうかと思う。インド哲学と中国思想の間の関係はとても複雑に融合していたのだろうとは思う。この言葉の意味を検索しても納得する解釈が観えない。自然への敬虔な思いを抱いて日々生活していたことを考えれば、自ずと自然の不思議と美しさ、その多様性更に恐怖が人の思いも及ばない偉大な神のごとくに思われただろうと感じる。ただ自然を前にして、何も余計な解釈を加えず、ただその心を受け止める事こそ大事だと唱えていると考える。現代的に言えば、高度な学説に捉われず、静かに自然に向き合い、己のこころと感じ合うことによって、そこに本当の姿が観えてくるという意味と解釈する。具体例を挙げる。日本雨蛙に関して、決してそれは水の中の「オタマジャクシ」ではない。また『電荷』などは世界に存在しない。

雅号『空道』について 昭和62年(1987/02)『空則無限なる有なり』と『空』の文字の意味を解釈した。自然界の実相は見える『色』と見えない『空』との間の認識ではないか。真空はすべてが生まれる究極の場である。『空』こそその可能性を無限に持っていると考えた。昭和から平成への変わり目(1989)で、老子の「道」を意識した。「色即是空」と「道」から採った。

エネルギー像(物理学基礎論)

自然世界の認識には(2019/12/01)、唱えることを具体的空間像で描写することが大切である。存在するものは空間を占有する形状を持つ筈だから。見えるとは限らなくても、実在するとは空間にしか存在し得ないから。数式の中に存在することはできないから。抽象的な数理式で表現する以前に日常用語で一般市民が納得できる論説が必要である。日常用語が専門的科学論を展開するに不足する程貧相であるはずがなく、十分な能力を持っている筈だから。例えば『電荷』とはどの様なものかを日常用語で説明できなければ、それは実在しない虚概念と見做してよい。空間に存在していながら、目で見る事のできないものの代表が『エネルギー』である。光は存在していることは理解できるが、その『エネルギー』を見る事は決してできない。この記事は年末の12月20日のまま年を越してしまったので最初の公開になる。

不図気になった。『エネルギー』の日本語の訳語が何故ないか?
ほとんどの科学的専門用語には日本語の対訳語が有る。日本が明治維新に外国の科学技術の目覚ましい発展を知り、その導入に欠かせない科学技術用語の翻訳で、名訳の専門用語の体形が確立したのだろう。運動エネルギー、位置エネルギーと言うが、何故その『エネルギー』だけ日本語の訳語がないか。『エネルギー』だけは日本語訳が無い。その訳は何だろうか。先進諸国の科学技術用語の中に、『エネルギー』だけ確立した概念が無かったからではなかろうか。目に見える物体が持つものと言う認識が基本になっているからではなかろうか。敢えて『エネルギー』の日本語訳語を求めれば、『素原』としたい。最も小さな原子が水素である。その水素も『エネルギー』から成り立っている。だから『素原』がお似合いかと思う。

誰もが目にする水の波が有る。水の波と言うが、その水の波は何が原因で発生すると考えるのか?水の波を見れば、同心円で拡がって行くのが分かる。どうも物理学などの科学論は自然現象を観測し、あるいは実験で確認するが、何故そのような現象が起きるかに疑問を抱かないまま、その現象の存在を記憶する暗記の学習に終始しているように思える。水を波立たせる原因が水中に掛かる水圧の『エネルギー』であると言う、『エネルギー』の本質の認識が無いからであろう。水の水中を伝播する、ボイルの法則の体積と水圧の積pV[J]の『エネルギー』の縦波が原因なのだ。電気回路のコイルの『エネルギー』が導線で囲まれたコイルの中の空間に存在することをどの程度認識しているかが心配でもある。その『エネルギー』は目には見えない物理的実在量である。『エネルギー』の空間像が認識されていないところに、大きな問題が有るのだ。だから「津波」の物理現象も分からないのだ。光の『エネルギー』とはどの様なものと理解しているのだろうか。光の『エネルギー』は振動などしていない。空間の『エネルギー』の密度分布波が光速度で伝播する現象が光なのである。その『エネルギー』を観測する方法が無い。だから目で見ることはできない。光によって世界を見ることはできても、その光の『エネルギー』を観測することはできない。

世界・生命は『エネルギー』の賜物である。世界の存在を認識するのは光エネルギーに依っている。人が生きて行けるのも細胞の活動を支える熱エネルギー(体温)に依っている。体温も体温中枢機能によると言われるが、その熱エネルギーは細胞の分解によって保有エネルギーの差が放出されることに依っている筈だ。決して脳が支配する程複雑ではないと思う。細胞自身が周辺環境を整える自律的機能を持っているからであろう。常にエネルギーを放射する必要があり、それが体温を保つ仕組みになっている筈だ。そんな素人の感覚的捉え方も、体温の熱エネルギーの解説が専門的に示されていないから考える自己流の認識でしかない。体温と身体活動エネルギー「理科基礎(仮称)」を想定して (2016/04/08) を読み返して思った。やはりアデノシン三リン酸では全く意味が理解できない生物学的理解力欠如の脳にお手上げで考えた。その原因をやはり理論物理学の『エネルギー』の認識が曖昧であるからと考えざるを得ない現在である。

水の電気分解と燃料電池

とても不思議な科学的現象である。普通の生活環境では起きない現象と理解する。直流電源によって水の中に電極で電圧を掛ければ、水分子の酸素と水素が分離してそれぞれの気体に分かれる。一方水素ガスを酸素と反応させれば、水分子に化合反応して電気エネルギーを作り出す燃料電池となる。化学反応式では、

O2 + 2H2 = 2H2O + E (電気エネルギー)     :燃料発電電池

2H2O + E (電気エネルギー) = O2 + 2H2 :水の電気分解

と燃料電池と電気分解は電気エネルギーを介して水素と酸素および水の間の化学反応現象の逆の関係になっている。ただし、一般の教科書の化学反応式では電気エネルギー E[J] という解説には成っていない。すべて電子の『電荷』が現象を司っているとなっている。それも不思議な科学理論である。決して『電子』では『エネルギー』の関りを説明できないにも拘らず、すべて『電子』で完璧であるが如くの解釈に終わっている。燃料電池でも何故『電子』が通過すると『エネルギー』を負荷に供給できると考えるのか。『電子』が電気エネルギーを背負い籠にでも入れて負荷に届ける役目を担うとでも考えるのだろうか。『電子』は『エネルギー』を運べるのか?このような最も基本的な科学論の根本で論理性のない矛盾を抱え込んでいることを放置して居て良いのだろうか。物理学理論に『エネルギー』の認識が欠如していることが全ての科学論の混乱の基になっているのだ。理学の生物学については全くの素人でしかないが、少なくとも電気回路の物理的な現象については少しは分かっているつもりだ。『電子』はその矛盾のために、論理的な科学論に堪えない概念であると思う。『電子』を論題にするには『エネルギー』との関係で解説できなければならないのではないか。水の電気分解については、前の記事水の電気分解 (2019/12/20) にファラディーの「ロウソクの科学」を読んで考えたことを述べた。過去にも水と水素とエネルギー流の図で水の妖精七変化(エネルギー) (2017/11/02) に記してあった。

 

霰の中に咲くサツキ

今年も師走に入って間もなく暮れる。霰が降る中にサツキが咲く。

このサツキは今咲いてほしくない。狂い咲きだから。植物は地球環境の生命存続の可否を示すバロメーターだから。日本の季節感の四季もなくなり、里山の棚田の日本の風景も消え去る予感が重なってくる。科学技術の経済競争が人をして都市型の過酷な労働環境と生活苦に押しやる。今年の夏に、紅葉の葉が太陽光線で焼け焦げて、枯葉となって哀れな姿をさらしていた。しかし来年の春にはまたその枝先にも新芽の葉が生い茂ることだろう。

振り返れば、今年の夏は猛暑であった。水害被害で生活の危機を認識した。今年は日中も耐えられずにクーラーを使った。去年までは田畑からの風を頼りに、何とか我慢して夕食時ぐらいに使って済ませた。今年は田の稲も酷暑(フェーン現象:水蒸気の水分だけ除いた高温度の熱エネルギーの山越えの風)で実りが悪かったようだ。クーラーは科学技術の賜物と酷暑を避ける電気製品の代表格である。クーラーに関わる『エネルギー』論はほとんど科学者からは発せられない。巨大なビルの中で酷暑の夏を過ごすにはもうクーラーが欠かせない。気温が高まれば、気中の水蒸気量はどんどん増加する。室内から外に水分と熱エネルギーを吐き出し、外気温度を高める。人も熱中症状で危機にさらされる。どんなに貧しくてもクーラーを使わないで過ごす人の生活環境を取り戻すべく、その役割が政治の基本目標でなければならない。雷が水蒸気の保有熱量(それが『エネルギー』だ)によって起きる現象だという科学認識が無ければならない。水蒸気が太陽光線に対して「レンズ効果」を果す。地球環境は命の水が支配している。原子力発電は生存の危機をもたらす人の制御能力を超えた巨大科学技術システムだ。避難訓練を人に強要する科学技術はそれだけで制御不可能を証明している。そんな化け物が生活の場に有ってはならない。そんな科学技術は地震・津波の自然現象とは次元の異なる話だ。

原子力発電の熱の行方 (2011/04/17) 、雷は熱爆発 (2014/05/23) 、フェーン現象の解剖 (2018/06/17)。

サヨウナラ『電荷』

(2019/11/27)追記。実験的検証法の電圧測定について。電圧の測定に普通の電圧計では巧くゆかない。一般に測定は必ず測定対象からエネルギーを取り込む。どのようにエネルギー量を失わずに測定するかの技術的工夫が必要だ。静電容量の小さいコンデンサで、電圧値が低ければ、実験の精度は得難いかも知れない。測定器の入力インピーダンスの大きなものが欲しい。あるいは減衰特性の写真判定など。電圧測定について一言ご注意申し上げたい。

電気理論の根幹をなす概念は『電荷』である。また電力技術・工学では『エネルギー』が根幹をなす概念でもある。『電荷保存則』と『エネルギー保存則』がともに重要な基礎をなしている。電池電圧や分布定数回路現象を最近考えた。急に気付いたことがある。やはり『電荷保存則』は論理的に矛盾している。コンデンサとエネルギーと電荷 (2017/08/31) で満足に答えられなかった問題があった。高校生からの質問のようだった。電池と電圧(エネルギーの基礎研究) (2019/11/13) に答えが出ていた。

実験的検証法

 

回路はいたって簡単である。コンデンサが電圧V0に充電されている。同じコンデンサをスイッチでつなぐ。電圧は幾らになるか?結果は図のように、『エネルギー保存則』に従った電圧になる。だだ、スイッチオンでの追加コンデンサの充電時に突入電流(電流ではなくエネルギーの突入ではあるが)で、エネルギー消散が起きる分の誤差はあろう。小さなコイルでの突入制限を抑える方法はあろう。兎に角、『電荷保存則』は否定され、『エネルギー保存則』に軍配が上がる筈だ。実験確認が可能と考える。以上急な思い付きの報告。

 

電池と電圧(エネルギーの実験)

大人のおもちゃのような実験をしてみた(2019/11/13)。専門家の決して考えない実験かも知れない。乾電池の乾電池による充電実験。変圧器の奇想天外診断 (2015/06/03) に似た思い付きの実験だ。

実験の目的と結果

乾電池のエネルギーの意味を電流や電荷概念に依らずに、空間伝送の意味でランプへのエネルギー供給を確認したかったのが本当の目的であった。乾電池はエネルギーの充電ができないだろうという思惑があった。残念ながら思惑外れで乾電池も充電されることが分かって、一寸がっかり。

実験の概要

先ず、電池と電圧(エネルギーの基礎研究) (2019/11/14)で電気回路エネルギーと電圧との関係を具体例で解説しようと考えた。その過程で不図乾電池は充電できるのかと心配になった。早速実験で確かめることにした。初めに書いた通り充電可能であった結果で、思惑外れの失敗である。電荷概念否定あるいは電流否定の実験的検証にはならなかった。

実験回路と思惑

図1.に示した回路は電気回路の実験としては全く意味の分からないものであろう。同じ乾電池4個を3個と1個に分けて、差の電圧を豆電球にかける回路である。この回路を取り上げた訳は乾電池に充電作用が有るかどうかに疑問を抱いたからである。この回路構成で、一つの電池V1が充電せずにランプが点灯することを期待したのである。エネルギーが直接空間を伝送して、電池充電なしにランプだけ点灯となれば回路電流の解釈を否定できるかと思った。

 

図2.実験装置

図1.の回路構成を単3乾電池4個入りの電池ホルダーで作った。アルカリ乾電池4個と3V用豆電球(購入経費の費用891円也)で実験装置とした。

 

実験結果と考察

アルカリ乾電池はみんな同じかと思うが、どうも特性が同じくないように思った。V1用として使う電池で充電特性が異なるようだ。比較的早く電圧が高くなるものと、遅いものがある。充電の特性が異なる。

最初の実験。装置組み立て後すぐに回路でランプを点灯した。V1の電圧を計ったら、2.2[V]まで上がっていた。真逆(マサカ)とは思うが、破裂するかもしれないと少し危険を感じて中止した。数日後にまた同じ実験で電圧を計り、確認した。もうV1 の電圧が2.2[V]になるようなことはなかった。せいぜい1.7[V] 程度にしか充電しなかった。少しずつV1電池が充電され、電圧が上がっている様子は見られる。

スイッチSのon off による回路状態の違いの解釈。

スイッチoff

乾電池の負極側はエネルギーレベルが高い。スイッチと電池にそれぞれエネルギーギャップがある。負荷ランプにはそれが無く、電圧ゼロである。

スイッチ on

スイッチオンでランプにもエネルギーギャップが生じる。それが負荷端子電圧である。ここで、乾電池に充電はないかと予想したが、間違いであった。乾電池から乾電池にも充電でエネルギーが入射することが分かった。電池電圧V2のある割合でランプと電池V1 にエネルギーギャップが印加され、消費と充電が進行する。

考察

各電圧値はテスターで測定した。測定中にゆっくりと電圧値が変って行く。エネルギーの消費と同時に電池 V1 への充電が進む。総体的にはエネルギーが減少する。アルカリ乾電池の充電機能は電池の放電機能と同じく負電極亜鉛と電解質の間のエネルギーギャップの化学物質的エネルギーレベルの解釈に掛かっている。

構造と電池の原理

アルカリ乾電池

アルカリ乾電池の内部構造はマンガン乾電池とは相当違うようだ。しかし基本的には陰極の亜鉛Zn粉末が水酸化カリウムKOH電解質の中でエネルギーギャップを構成していると解釈できる。陽極は二酸化マンガンで構成されている。両極間は一応セパレータ(耐アルカリ性ビニロン)で分けられている。電解質は透過するとある。

アルカリ乾電池の原理

Wikipediaに示されている化学反応式

(負極) Zn(s)   +  2OH⁻(aq) → ZnO(s) + H2O(s) + H2O(l) + 2e⁻

(正極) 2ZnO2(s) + H2O(l) + 2e⁻ → Mn2O3(s) + 2OH⁻ (aq)

この化学式が示す原理は『電子』が負極から外部回路を通って正極に戻り、電荷の収支が整って電池の役割が成り立つという意味である。電子が『エネルギー』を負荷に供給する論理的な解説が全く示されていない。だから化学方程式は電池の『エネルギー』供給の説明には成っていない。物理学にも、化学にも『エネルギー』の概念が定義されていないところに大きな科学論の矛盾がある。『電荷』や『電子』の『エネルギー』との関係性が示されなければ科学理論の矛盾は解消しない。

エネルギーギャップによる原理解釈。

亜鉛Znと水酸化カリウムKOH の化学物質の間における接触エネルギーギャップEg[V]が電池エネルギー供給原理をなしているはずだ。上の化学方程式には水酸化カリウムの役割が示されていない。アルカリ電池であるから、カリウムK がエネルギー源としての主役をなしているはずだ。亜鉛 Zn とカリウム K の間のイオン化傾向の特性差が基本的意味を持っていると解釈する。

まとめ

電池がアルカリ電池であった。アルカリ電池は充電機能も少しは持っているようだ。まだ、マンガン乾電池での確認をしていない。マンガン乾電池も充電するか?

(2020/01/03)追記。元旦に単一乾電池で、マンガン乾電池2本とアルカリ乾電池2本が有ったので、マンガン乾電池1本を3Vランプと直列にして、アルカリ乾電池2本とマンガン乾電池1本の直列電圧4.5Vほどの電圧を掛けた。マンガン乾電池の電圧は徐々に充電され 1.7V以上に高くなった。破裂しないかと気味が悪くてそれ以上続けなかった。マンガン乾電池もアルカリ乾電池と同じく『エネルギー』の充電ができることだけは確認できた。その充電がどの様な化学的反応で成されるのか理由を知らない。

電池と電圧(エネルギーの基礎研究)

自然の本質(2019/11/13)。科学の世界はとても大きい。しかし、その本質は極めて単純にして純粋である。『エネルギー』一つの世界が自然の本質である。水素原子もその根源はただ一つの『エネルギー』の集合体でしかない。それなら『エネルギー』とは何かと問答になる。今日はハヤブサ2がリュウグウの岩石を採取して地球への帰還の途に就いたと報じられた。目出度い事です。地球の岩石の分析と合わせて研究が進むことお祈りします。

電池はエネルギーの供給源

電池のエネルギーとはどんなものか?その『エネルギー』をどのように認識するか。そんな意味を考えて、明確な解釈ができるような考究も科学基礎研究になる筈だ。決して経済競争に資する話ではない。科研費を要求するような研究でもないが。その訳は、次のような意味でも大切であろう。科学的手法でその『エネルギー』を測定する方法がない。『エネルギー』は秤にかからない。ジュール量を測定できない。『エネルギー』の極限は一粒の光の空間分布エネルギーだ。決してそれを見たり感じたりはできない。しかしその『エネルギー』は目の前に無限に存在している。木も草も花も石も光の賜物である。光が無ければ地球も存在しない。そんな不思議な『エネルギー』を電池の中に関連付けて思い描いてみたい。

図1.電圧実験回路 電圧vsの電池がある。容量 C[F] のコンデンサがダイオードを通して図のように電池に繋がった回路を想定する。我々は『エネルギー量』を測定できないから、その量を電圧値によって解釈するしかない。電気回路の解釈において、電気技術では電圧値が重要な量となる。電線路には必ず静電容量がある。その容量C[F]が電線路の空間に在る『エネルギー量』を認識する大切な回路要素である。電圧値ではエネルギー量は分からない。静電容量の値で、同じ電圧値でもそのエネルギー量は変わる。図1.のような回路で電池の電圧という意味をコンデンサの静電容量を変化させて、考えてみたい。

可変コンデンサ。ラジオ放送電波の受信には周波数検波用にバリコンが使われる。

図2.可変コンデンサC(ωt)  たとえば図のような二組の円盤で、1つが周期ω[rad/s]で回転するとする。コンデンサ容量は周期関数で変化する筈である。

図3.容量 C=εkA[F] 回転電極がO-Poの軸からの角度θの位置で重なり面積Aが決まり、コンデンサ静電容量もほぼその位置の関数と考える。なお回転速度は一定でなく、任意でよい。ε[F/m] は極版間の誘電率で、kはギャップなどの構造による定数である。

電圧値v[V]は?電圧はどのように変化するか。コンデンサ電圧は電池電圧より下がらない筈。回路のスイッチがオフの場合を先ず考えよう。回転盤の重なり面積がAoの最大の時に、コンデンサには最大のエネルギーが貯蔵される。面積がそこから減少すると、コンデンサ端子電圧vは上昇する。貯蔵エネルギーの最大値をEm[J]とする。電圧はコンデンサ容量C[F]によって、

v=(Em/C)^1/2^ [V]        (1)

と変化する。重なり面積がゼロとなれば、相当高い電圧値になろう。電極版の回転によって、周期電圧波形となろう。この意味が電線路電圧の意味を理解するに基本となる。この『エネルギー』による解釈に対して、『電荷』論を主張するでしょう。もし『電荷』Qm[C]で解釈するなら、電圧は

v=Qm/C [V]                          (2)

と静電容量に反比例する筈だ。平方根で変化するか、反比例で変化するかで、答えは得られるはずだ。『電荷』概念矛盾の結果になる筈だ。

図1.でスイッチがオンの場合。今度はコンデンサの電圧vと電池電圧vsとの関係で電池にエネルギーが回収される。電池の種類により、電池充電の特性が異なるから、様々な結果になろう。

図4.コンデンサ容量とエネルギー(係数1/2はその意味が確認できないので省く) コンデンサ容量Cは図のように変化する。図の打点部分が静電容量ゼロに向かって変化するときの、コンデンサエネルギー放電(電池エネルギー回収)特性による電圧変化の様子を想像で記した。もしスイッチオフの場合なら、ωt=2πで静電容量ゼロ近くで電圧は最大値に跳ね上がる筈だ。

インダクタンスの場合の例。

ついでにインダクタンスのエネルギー量と電圧の関係を考えてみた。

図1-2.電圧実験(2)

L-r 負荷のスイッチSオフによってLのエネルギー処理の問題が起きる。Lの貯蔵エネルギーは必ず放出しなければ済まない。この場合も余分エネルギーの放出による電池充電動作に入る。Lの電圧とエネルギー量El[J]との関係は図のようになる。

(2019/12/27)追記。上の図1-2 電圧実験(2)に示した回路には不備がありました。修正して電池充電現象の回路を示す。

訂正回路

右のように負荷ランプとスイッチS’の回路とした。スイッチS とS’同時にオフとする回路に変更。コイルのエネルギーはコンデンサCの放電と同時に電源の電池へのエネルギー充電とランプ負荷消費の回路動作となる。なおコイルエネルギーの次元は[J]=[FV^2^]とも解釈できる。L/r^2^[F]だから。以上追記。

電池がマンガン電池の場合、どの様な現象になるか不明だ。アルカリ乾電池では電池でエネルギー回収が起きるようだ。それは 電池と電圧(エネルギーの実験)  で確認した。

まとめ

(エネルギーの基礎研究)というには内容が乏しい結果だ。しかし、電池についてその電気現象を理解するにはとても多くの基礎概念の関係を解きほぐさなければ成らない。次々と理解困難な問答に突き当たり、際限のなさに戸惑う。やはり、『エネルギー』という物理的実在量の意識化が是まで為されてこなかったところに大きな欠陥があるからと思える。電圧とはこの『エネルギー』の技術的評価量であることを認識してほしくて、静電容量との関係でこの記事にした。