タグ別アーカイブ: Energy

Energy is element of all the world. あらゆる素粒子もその根源的本質はすべてエネルギー一つから成り立つ。

物理学理論は自然現象を説明出来ない

 物理学者は物理学理論が自然現象解釈に欠かせない学問だと言う。本当だろうか?日常生活で誰もが経験的に知っていて、感じる事がある。

 日向ぼっこ。それは冬を過ぎた春先や、暑い夏が過ぎて涼しい風の吹く秋にお日様の光を浴びるととても暖かくて気持ちが良い。それは陽の光を浴びることが原因でもある。では太陽光線の陽を浴びると何故暖かくなると思うか。そんな余りにも簡単な筈の自然現象の意味について、現代物理学理論では、その解説をする物理学者あるいは先生方はどの様に子供達に説明するだろうか。

 一方、光の物理学理論での解釈はプランク定数での光の振動数との関係表式での捉え方が基本に成っている。

 e = hν [ J ]

と言う表現での捉え方である。

 この式で表現される光の意味はどの様な物理量であろうか。

 日向ぼっこで温かくて気持ちが良くなる訳を、その物理学理論での捉え方で『振動数』という意味との関係を、具体的に分かるように説明して欲しい。

 巷の検索情報記事から拾うと、それも大学の研究室からの解説でも、光は波であるからとの解説から始まる。波は水面波のように波打ち、その波が広がる性質を持っているものである。と当たり前の説明がされる。しかし、そのような波を打つ現象の性質を持つ光を浴びる、日向ぼっこが何故気持ち良く暖かくなるかの説明に成っているだろうか。子供はそんな説明を聞いても決して納得できない筈だ。偉い学者が説明するのだから、それが理解できないのは自分が利口でないからだと諦めて先生の言う事を『ふーん』と聞き流してしまう。少しも子供の心に響く解説には成って居ない筈だ。

 學者が解説する内容は殆どそのような、曖昧模糊とした不可解なもので終わっている。学者は子供達が納得しているとも考えていない事が分かっている筈なんだ。それでもそれ以上具体的に子供達が納得できるように、どう説明すれば良いかを自分自身が考えていないのである。

 それは光が振動すると言う、その振動の物理的解釈法の意味を恐らく理解できていない筈だ。『何』がどの様に『振動』する物理的実体なのかの、具体的空間現象像を頭の中に描き切っていないのではないかと思う。『振動数』は科学的検査器具、実験装置とその手法によって共通に解釈する検出結果量の専門的測定結果法の測定概念量を指しているだけであろう。

 そんな曖昧な専門的科学的と言う手法の解釈法的結果の評価量を『振動数』と言う概念に置換えているだけだと思う。だからそんな科学的手法による決まった概念量を子供達に説明しても分かる訳など無いのだ。その分かる訳が無いという事さえ理解できない程専門的常識概念化した用語が光の『振動数』なのではないか。同じく光の『波長』という科学概念用語も同様の具体的な意味不明の筈だ。

 水面波を見て、そこに『エネルギー』の空間像を理解、認識できないようでは、子供達が納得できて嬉しいと思うような教育結果を決して示せない筈だ。光の『エネルギー』の空間像など認識できていない筈だ。

 要するに物理学理論は空間に実在する『エネルギー』を認識できていない学問なのだ。日常生活との結び付かない学術用の理論なのだ。経済的競争や生活の利便性の為の科学技術に役立つ解釈理論ではあるが、自然現象の理解に役立つ訳ではない理論体系なのだ。

 そこには余りにも有名な「マックスウエル電磁場方程式」と言う『電磁波』の『電界』と『磁界』と言う横波解釈手法の概念が在るからでもあろう。決して『電界』や『磁界』などの特別の概念など不要なのだが、とても数学的表現形式が高等数学を理解しないと及び付けない高度な専門的領域の理論体系で、専門家としての優位性を誇示できるからに精神的余裕を与えられるからかも知れない。『電磁波』も空間を縦に流れる、光速度で伝送する『エネルギー』の流れでしかないのだ。この電磁波理論の数学式的解釈理論とその手法が『波』の解釈に利用することで、とても高度な専門性の味付けになる点で大切なのかも知れない。専門性の為に!

 理科教育は高等教育の為の基礎学術論であってはいけないのだ。日頃、身の周りの景色を見て、これはこのような意味なのではないかなと不図不思議に思う事の助けになるような卑近な現象を解釈する助けになる事を目指すべきものだと思う。/

雷と電気回路の相似性

雷。それは、雷の自然現象として現れる物理的現象の意味と自然世界を人が解釈するための科学技術理論との間の関係を考えるに良い考察対象である。

雷の正体を示せば、それは水蒸気の『熱エネルギー』である。しかし、ベンジャミン・フランクリンは〈雷は電気である〉と言った。

筆者は雷の正体が何物かを、その物理現象の本質を示せば、丁度電気回路と相似な現象と見做せると解釈する。

雷と電気回路の相似性

雷の解釈を、その火花放電現象の、大きなエネルギーの放射から、その現象を空間に発生する大きな『電圧』で捉える点では、ベンジャミン・フランクリンが言う意味に共通している。ただ、現在の電気理論では『電圧』の物理的意味を『電荷』で解釈している。しかし自然世界には『電荷』などは存在しないと言う点で、解釈の基本が大きく異なる。筆者は『電圧』という概念が空間の『エネルギー』の偏りの分布による『エネルギーギャップ』を評価した科学技術概念であると捉えている。

その『エネルギーギャップ』という意味は、電気回路で言えば、電源電圧の負極側の電線付近の空間が正極側電線付近に対して、より高密度の『エネルギー』の分布の偏りの状態になっているという意味である。

さて、雷に対しては、決して『電荷』等の現象でないことは電気回路と同じく、空間に生じる『エネルギーギャップ』が空気絶縁の限界に達した時、その空間の『エネルギー』が発光放射に至る現象なのだ。その『エネルギー』は何処から来るかと言えば、海からの水蒸気が持ち込む『熱エネルギー』なのだ。地上の上空に張る寒気で、水蒸気の体積収縮が起き、上空に水蒸気の水分が上昇気流となって積乱雲を発生する。地上と積乱雲との間の空間に丁度電気回路の静電容量の空間が出来る。水蒸気の『熱エネルギー』が地上に残り、空間に『エネルギー』の貯蔵されたコンデンサ状の空間が発生した状況となる。『エネルギー』の貯蔵量が限界に達すれば、丁度高電圧の火花放電現象と同じ状況が起きる。それが『雷』の正体の物理現象である。それは丁度熱爆発現象と見做せる。雷と電荷の物理 (2021/06/22) でも述べた。

雷は海から蒸発した水蒸気の『熱エネルギー』の限界爆発現象である。

『熱』の正体 (2014/05/15) 。沸騰を読む―原子と寸法― (2014/05/21)。古い『熱』についての記事だ。

『熱』は光や電気というものと本質は同じ『エネルギー』で、その間に差はない。人には、見えるもの 見えないもの (2015/03/04) がある。『熱』も『エネルギー』もその空間の姿を科学的に測定できない。検証できない存在は科学論の認識になり難いのだろう。

 

 

電荷の定義?

『電荷』が自然科学論の根幹で矛盾の権化となっている。これが科学論の論理性とは驚き桃の木だ。科学論には論理性等無縁と思える。

『電子』や『陽子』などが原子論構成素子として解釈の基礎となっている。原子は科学論を論じるに、意識するか無意識かに関わらず、自然世界の根源的概念となっている。その原子の中でも『電子』は普通の電気回路での『電流』と言えば、その『電子』の逆流等と、多くの検索記事で論説されている。学校でも『電荷』はとても大事な必須概念として教えられる。そこから科学理論の、教育によって考えずに、記憶する集団科学論の抜け出せない『地獄門』に入ることになるのだ。

それは教育の放棄にも等しい事だ。考える事から逃げているように思える。

しかし、『電子』はどの様なものかと問えば、10桁の数列の驚くべき精度?の数値で示される。ただ桁数で権威付けした、定義と言うだけの、説得性の何もない意味不明の提示がされている。

ところが、『電荷』とは何かと問うても、その『電荷』についての定義はない。

電気回路でコンデンサに蓄えられるものは『正』と『負』の『電荷』で解釈される。その『電荷』とはどの様なものかは一切不明のままである。『電子』でもなく、『陽子』でもなくまた、『原子イオン』あるいは『正孔』でもない。兎に角『電荷』で解説される。電気回路の解説で、『電荷』が論理の中に使われるとき、その『電荷』が『電子』でもなく、『陽子』でもなく、ただ『正』と『負』の『電荷』なのだ。『電子』でもなく『陽子』でもない、別の独立した『電荷』という物理量が論者の思い通りに、自由に、お呼び寄せられる極めてご都合の良い自然世界の「物理量」と成っている。科学者はとても有能だから、只思えば、『電荷』が『正』と『負』で天から降臨するようだ。それは、〈雷〉の科学論文にも、ただ『電荷』だけで論理が成り立つとの思し召しの論になっている。コンデンサの両電極に〈クーロンの法則〉を無視して自由に同一極性の『正』あるいは『負』の『電荷』が反発力を考慮もせずに御集合なさるとなっている。誠に自由な、科学的権威が取り仕切る概念の世界が、自然世界と別に存在するようだ。

だから『電荷』と言う物の空間像も、その物理的概念の『定義』も提示できないのだ。

『電荷』の概念?

電荷の論理性❓

自然世界の風景や日常生活あるいは科学理論の基礎の解釈において、本当に『電荷』がこの世界に在ると感覚的に実感しているのだろうか。『電荷』と『電子』や原子核の『陽子』は勿論同じものではないと考えるだろう。『電子』や『陽子』は『電荷』がその質量と言う物理的実体に、別な物理概念としてその質量に付加している訳だ。その意味での『電荷』はどの様な空間の実在体として、『電子』や『陽子』に特別な『正』とか『負』という機能を発揮する意味が有るのだろうか。『正』と『負』という自然世界に存在する物理的意味が、どの様な物であるかが明らかに説かれなければ、その『電荷』という物理的概念は意味が無いのだ。曖昧なままで、実在すると言うだけの権威に掛けた主張に従ってはいけないのだ。そこには科学的と言う論理性が無いから。

さて、上の(2)式で、『正』と『負』の『電荷』が結合すると何になるか?数学の論理に従えば、『0』になる筈だが、決してそうはならない。雷の研究者、専門家の論説では、『正』と『負』の『電荷』が折角離れたのに、何故か再結合して、稲妻の光放射に変化する。その光になる現象の厳密な物理的論理の解説はどこにも無い。『正』と『負』の結合が何故光の『エネルギー』の放射になるか、その物理的原理の解説は無い。白熱電球の放射する光の『エネルギー』がどの様な物理的現象によって発生するかさえ解説できない。『エネルギー』の流れの論理的解釈もできない。決して『電子』では解説できないのだ。それも全て『電荷』という自然界に存在しない物理量が、恰も自然世界の真理の如く考えたところに誤りの原因が有ったのだ。電気回路現象に『電子』は決して、その概念の意義は存在しないのだ。雷の光の発生原因をどの様な物理現象かを解説できなければならない筈だ。

上の(2)式の❓が如何なる意味かを『電荷』で論説できるだろうか。

瞬時電力の具象解剖

(2022/02/01) 電力とは何か?

誰もが生活に欠かせない、ライフラインである事を知っている。それが電力である。これほど日常生活で無意識に利用しながら、その物理的意味ほど理解していない事も無いかも知れない。そのように書く自分も、長く電気回路現象を考えて来たにも拘らず、本当に深く理解してなかった。二月に入り、今年のカレンダーを一枚剝がした。何となく気持ちも穏やかでない中で、瞬時電力とはどの様な物理的意味で捉えれば良いかと考え直した。

概して、学術理論は、物理学理論は抽象的な数学式などの解釈手法で論じられるものが多い。決して電気現象を論じる時、『電荷』とは何か、『電流』とは何か等の本当の基礎的な概念については全く考えることをしない。決まった科学論の常識の上での話になる。その科学的常識に習熟していない一般の市民はその話に採りつくことが出来ない事に成り易い。

抽象論と具象論。誰もが理解し易い話は、目の前にある空間にその具体的像を提示することが求められる筈だ。光の振動数がどんな特性を示すか等との話は全く学術の解釈法に慣れなければ理解できない話になろう。漸く電力の空間での像が示せるかと言う処まで辿り着いた。だから具象解剖論とも言えよう。その意味で電力の解釈を示したい。電気回路現象には『電子』など何の役にも立たない過去に人が創り上げた空想的仮想概念である事をはじめに指摘しておく。

『オームの法則』と電力。

電気技術の基礎理論は⦅オームの法則⦆である。そこには『電圧』と『電流』と言う基礎技術概念で電気回路現象を解釈する基本が示されている。上の図は2005年に描いたものだ。2010年に  電流は流れず で電気回路は『エネルギー』の現象である事を述べた時も使った。この回路をオームの法則では

瞬時電力

の様な回路図で表現し、解釈する。『電圧』V[V] 、『電流』I[A]そして負荷抵抗 R[Ω]の3つの技術概念で回路動作を解釈できる。とても優れた、完全な電気理論と成っている。直流回路であるが、その電力も瞬時電力として、電圧と電流の積で評価できる。これが科学技術の自然現象を利用するための理論体系の重要な基礎を成している。

科学技術概念と自然現象。

電気理論が完璧であるから、『電圧』、『電流』がどの様な物理的意味かを問う事をしない、疑問にも思わない。その科学技術用の理論体系を構築するには、理屈が成り立たなければならない。論理的である為に、『電荷』とか『電子』などの理論の基礎とすべき物理概念を創造し、定義した。それらは物理学理論の分野から特に組み込まれた概念のように思える。電気回路論や電力技術分野で組み込んだものでは無いと思う。しかし、どう考えても自然世界に『電荷』や『電子』が存在するとは信じられない。今、電気回路現象のその真相が分かった時、やはり電源から負荷まで何が伝送され、供給されるのかと言えば、それは他でもない『エネルギー』でしかないのだと分かった。電力の単位ワット[W]は書き換えれば毎秒当たりの『エネルギー』量ジュール[J]を評価する単位である。その『エネルギー』の単位ジュール[J]で計量するものは物理量として意味を成さないと考えるのか?物理学の回路解析に『エネルギー』と言う概念が認識されていないから。電気料金を支払って使っている電気量『ジュール[J]』を電気回路の現象に考慮しないで理論が成り立つ筈は無かろう。長い科学技術の歴史の中で、理論物理学の中でその『エネルギー』と言う自然世界の根幹を成す『実在物理量』が無視されてきた事への驚きを禁じ得ない。

「瞬時電力」という意味。

その物理的意味を考えてみよう。筆者も感覚的に「瞬時」と言う用語はとても厳密性のある概念を表現すると思って、良く使った。『瞬時実電力』や『瞬時虚電力』あるいは瞬時電磁界などと使って来た。しかし、『瞬時電力』と言う用語の使い方は初めから矛盾を含んでいたことに気付いた。電圧と電流も瞬時値がある。その積も当然瞬時値になる筈と思う。しかし電力の単位の意味は1秒間当たりの値である。1秒間は理論的に時間の瞬時ではない。光なら30万キロメートル先まで届く時間だ。電気現象も光の伝送速度に近い変化の回路動作だ。『電流』だって「電荷」概念で解釈すれば、その単位アンペア[A]も『電荷』との関係で、[C/s]の様に1秒間当たりの値だ。それらの積が瞬時値になる訳は論理的に無理だ。然し実用的には「瞬時電力」と言っても電気技術論としては許されよう。然し乍ら、論理性を身上とすべき理論物理学では、そのような意味は使えないだろうと思う。確かに物理学では『電力』など意識しないから『エネルギー』と同様理論には無用の電気量なのかも知れない。

『電力』とは何か?

ここから電気物理学は始めなければならない筈だ。地球温暖化の社会的問題にもなる『エネルギー』を意識しない理論物理学では社会的責任も果たせない。「瞬時電力」は『電圧』と『電流』の積と言う捉え方では、その『エネルギー』の瞬時的状況を理解するのは無理である。せめて空間に流れる『エネルギー』の分布量を理解することで、その実態がわかろう。『電圧』も『電流』もその概念の奥には『エネルギー』を評価する技術概念であったことが隠されていたのだ。その意味は自然単位系の[JHFM]での解釈が必要になる。時空は[H] [F]で、そこには『エネルギー』だけが展開する自然世界がある。その『エネルギー』とは光であり、見える光も見えない電磁波もある。

「瞬時電力」は伝送エネルギー分布として。

オームの法則の回路を『エネルギー』伝送現象として観る。

漸く電気回路現象が『エネルギー』の伝送回路として理解できた。余りにも有り触れた電気回路だから、その現象を科学論文とするには拍子抜けするような気もする。到達した結果は誰もが分かり易いと思う。中学生でも『電圧』とは何ですか?等と質問したくなる科学技術概念の理論はそれなりに難しい意味なのだった。ただ『エネルギー』が流れている事を感覚的に捉えられるかである。特別に難しい数式もいらない。電線路の導体で挟まれた空間を、電圧の負側の電線導体近傍の空間を導線に沿って、ほぼ光速度に近い速度で、『エネルギー』が流れているだけなのだ。その『エネルギー』の分布量が幾らになるかは、電源の所謂「電圧」と言う技術概念がとても良く示しているのだ。

 

『電圧』は電源が持つ『エネルギー』供給能力を捉えた技術概念だ。電線路を張れば、その張り方で電気回路の空間構造が決まる。空間構造は電気解析で、分布定数回路として取り扱われる。電源電圧が直流であろうと交流であろうと、その回路特性はただ空間構造で決まる。科学技術解釈で『静電容量』と言うコンデンサの意味を使っている。それは正しく電線路の空間の、電気の『エネルギー』をどれ程保有できるかの特性値に成っている。電源に電気回路空間を繋げば、自動的にその電源の能力にあった『エネルギー』が電線路空間に流出し光速度の速さで、全体に規定の『エネルギー』分布空間を生むのである。電線路の単位長さ当たり、1m当たりの『エネルギー』分布量をδ[J/m]で捉えれば分かり易かろう。その意味なら「瞬時電力」と言った場合の物理的意味が分かると思う。光速度で流れる『エネルギー』だから、1m当たりの値など数μジュールでも大きな電力量となる筈だ。

無負荷時。『エネルギーギャップ』と『エネルギー』分布密度。

『エネルギー』分布密度δv[J/m]は電線路の空間構造に対して、電源が規定する『電圧』に対応して自動的に決まる。無負荷時なら、静的定常分布密度で電線路空間が『エネルギー』の値となる。この『エネルギー』の分布密度量は、電気技術量『電圧』の意味を表すものとして『エネルギーギャップ』と言う表現を使って来た。半導体接合面や電池の陰極電極表面空間に対してその『エネルギーギャップ』と言う用語を使わせて貰った。『エネルギー』は空間で片側に偏る性質があると認識しての使い方である。ロゴウスキー電極への印加電圧に対して、負電極側に高い密度の『エネルギー』分布を示して流れる。

負荷時。

負荷抵抗値は単位オーム[Ω]で決まる。純抵抗負荷なら『エネルギー』を一方的に消費する機能要素だ。しかしそれも抵抗内部は微細構造体であり、『エネルギー』を線路空間から吸収し、内部空間に貯蔵しそして高エネルギー密度空間と、温度上昇を来し、遂には外部空間に『熱エネルギー』、『光エネルギー』として放射する。負荷が掛かれば、電線路の特性値 C[F/m]から抵抗体内の構造空間に『エネルギー』が自然に流れ込む。抵抗体も内部は空間構造であるから、その機能はR=√(Lr/Cr)[(H/F)^1/2^] の様な次元で捉えられる。だから線路特性、特性インピーダンスZoとの比較値で解釈して良い。R=αZo と置いて良い。α=1.であれば負荷と電線路が整合した状態である。電圧による供給エネルギーがそのまま負荷に流れ込み、δv=δI [J/m]である。一般には、1<αである。その時のα値は

α=R/Zo=√(δv/δI)      (訂正して、√を付けた。)

の関係がある。

新電気回路解析法。

自然世界の実在物理量『エネルギー』を認識した、電気回路解析法の新しい物理学理論への扉でもある。電気回路現象には『電荷』も『電子』も無縁の長物概念である事を認識することから教育は始めるべきだ。

(参考): エネルギー[J(ジュール)]とJHFM単位系(2010/12/18)

日本物理学会に参加させて頂き、最初の発表内容でもある、2p-D-11  物理概念とその次元 (1998).

エネルギーの計測と物理概念

(2022/01/24)エネルギーの計測。この記事を書きながら、渦電流の技術概念を先にと思って、渦電流とは何か?を投稿した。

『積算電力計』が正しく『エネルギー』の消費量を計量している。電気量としてその『エネルギー』の使用分を電力会社に毎月支払っている。その『エネルギー』の意識が物理学理論には無い。不思議に思わないか?

(2022/05/28)追記。物理的概念としての『エネルギー』を理論で捉え、理論の基礎概念としているかをこの記事で問うのである。電気回路内の電線路で囲まれた空間を光速度で伝送されている『エネルギー』を認識しているかを問うのである。現代物理学理論の論理性があるかの根幹を問うのである。それは電線路の空間の単位長 1 [m] 当たりに流れている『エネルギー』の分布量を認識しているかを問うのである。決して『電圧』や『電流』という電気技術概念ではその自然現象としての『エネルギー』の認識は出来ないという意味である。ただ、一か月間の電気使用量として各電気需要家は電気料金として『エネルギー』の使用料を [KWH] の計量値に支払いをしている。その『エネルギー』の電線路の流れを物理学理論として認識する事が科学論の論理性として欠かせないという意味である。

空間の『エネルギー』。電気エネルギーや光エネルギーあるいは熱エネルギーなどは真空空間にも伝播し、実在する。

物理学理論で⦅エネルギー⦆と言えば、質量に関わる『エネルギー』で、運動エネルギーと位置エネルギーが学校でも教えられる。しかし、質量に関わらない空間の『エネルギー』については学校では教えられていない。その空間の『エネルギー』を科学技術で計測する事は不可能だ。光の空間伝播する『エネルギー』を測定できない。太陽光線の空間伝播の『エネルギー』を計測できない。電磁波の空間分布『エネルギー』を計測できない。科学では測定できないものは論議の対象にはなり難い。だから空間を伝播する『エネルギー』と言うものの実在認識が無いのだろう。

『エネルギー』の物理量としての計測。唯一科学技術で『エネルギー』の利用物理量を計測する方法が『積算電力計』([kWH])だろう。電力会社からの電気量の請求書に記されている[kWH]の量である。

1[kWH]=1000×1[J/s]×60×60[s]=3.6×10⁶ [J]

を基準量として物理量の『エネルギー』を計量している。

電気エネルギーQ[J]を商品として、商品の売買の経済の仕組みに成っている。決して自然界に存在しない『電子』の量を使っている訳ではない。電気需要家は電気の『エネルギー』を商品として買っているのだ。

積算電力計は各家庭の玄関に設置されている少し大きめのボックス型のメーターである。内部を観察すると、電気の使用時にはアルミの円盤が回転している。電力の時間積分値として計測しているのだ。『アラゴの円盤』と言う有名な物理現象を利用した『エネルギー』の計測器だ。勿論空間の『エネルギー』の計測ではないが、ジュール量[J]の取引量として計測している。光のhc/λ[J]の評価エネルギー量概念とは違って、正しく物理量の『エネルギー』の使用した絶対量を計測しているのだ。

ヤッパリ『電荷』だ❓

(2021/07/03)。『電荷』否定への道 (2014/06/03)に思う。

今、矢張り勘違いでなかったと。科学論の根源概念を否定するなど正気の沙汰ではなかった。

しかし、『電荷』が何時どのように科学理論の岩盤となったかを考えると精々100年少しの期間であったように思う。

いま改めて、30年程の無駄と思える孤軍奮闘を振り返って感謝したい思いだ。

多くの物理学の歴史で、ラザフォードの原子論やアインシュタインの特殊相対性理論などについて、改めて物理学理論の意味を考える具体的な考察対象になるような気がする。何か素人の物理学論と笑われそうだが。『電荷』だけは自然世界には存在しないと確信した。新潟県立十日町高等学校の化学の授業で「共有結合」の意味が理解できずに、化学の学習を諦めた事を思い出す。

大学入試問題例(エネルギー問題)

基礎ほど難しい。『電荷』と『エネルギー』の間の問題。記事の文末に追記した。電気現象の解釈矛盾の最大問題、それが電池が『エネルギー』の供給源であるとの認識の欠落であると理解した。論理性の欠落が科学論の課題だ。電気回路技術論は貴重な実用における技術科学文化である事には変わりがない。『電子』による科学理論・物理学理論が自然現象の真理を説くものではない事である。『電荷』は決して自然界には存在しないのだ。そこで次の問題である。

大学入学試験で、次のような問題を課したなら。

【問題】上の図の電気回路で、電池をスイッチSでコンデンサにつないだ。次の問いに答えなさい。

(問1)電池は何を供給する機能用品ですか。

(答) (         )

(問2)コンデンサには何が貯まりますか。

(答) (         )

現在の教育課程で子供たちに教えている事に対して、その教育内容をどれだけ修得し、大学での進んだ高等教育を受けるに必要な能力を備えているかを見るのが入学試験の目的であろう。

答えは (エネルギー) でなければならない筈だ。

もし (電荷)と回答したら、おそらく教育内容を修得した効果が出た事に成りそうだ。特に、(問2)のコンデンサに電荷が貯まるとなれば、教育内容に沿うとなろう。

コンデンサの正電極側には電池からどのように『正の電荷』が貯まる事になるか。クーロンの法則に逆らって、どれ程の同じ『正の電荷』が密集できるのだろうか。

(2021/05/27)追記。コンデンサと電荷‥についての記事で、電流は流れないけれども電荷は貯まると❓ この解説記事は余りにも酷過ぎる。こんな内容を学習する羽目にある学習者はどうなるのか。間違いを世界に広げる手先になるのか。通商産業省は、こんな解説の試験問題が出題されるとすれば、受験生に対して誤った知識を要求する事に成る。これが科学技術論か? と言わなければならない事態になった事はとても悲しい。50年前に、筆者も電気主任技術者第二種免許(宮澤喜一通産大臣)の認定を受けた。当時の電気工事士、高圧電気工事士などの免許も取得した。電気回路の解析は得意だ。しかし残念ながら、電気技術理論は極めて重要な技術論ではあるが、それは自然界の真理からは程遠い科学技術用の仮想概念(自然の真理としては、電圧や電流の概念が)でしかないのだ。その理論的現状の混乱の責任は『現代物理学理論』が背負わなければならない問題である。更に子供達への教育の未来について、喫緊の課題として教育機関及び授業担当の教育者・教科書編集者がその責任を負わなければならないのだ。論理的矛盾に目をつむる事は許されない筈だ。科学技術理論と物理学理論の違いを明確にすることが求められている。

電気現象の基礎を深く考えると、だんだん科学理論と言う内容はその論理性が無いことに気付く筈なんだが?結局『電荷』と言う自然界に存在しない物理概念量を仮想して構築したところに問題が有ったのだ。

『エネルギー』一筋の道

(2021/02/24)。

1986(昭和61)年10月1日。『電荷』否定の起点。

1987年8月5日。電流棄却の旅立ち。

1988年8月。人生の断崖に途方に暮れて最後の研究論文投稿に賭ける。社会的組織との不調和。

そんなことを振り返りたくなる今の心境。昭和の時代から、世間の渡り方を知らずに、愚直に一つの『エネルギー』に惚れ、よくぞここ迄生きて来たかと自分を褒めたい。

自然の多様性は純粋に因って生まれた。自然こそ神の仕業か。電気理論が難しい訳。それは人間の難しさが創ったものだから。自然の純粋さに心が感応し難いからかも知れない。純粋さなど何の得にもならないから。光が空間のエネルギー分布の縦波である事を認識できるかに電気理論の意味の理解が掛かっているのかも知れない。

『エネルギー』の実像を求めて!利益につながらない学問は、経済的・精神的・社会的孤立で、自由に羽ばたけないと言う処に『学問の自由』の難しさがあるのかも知れない。

『エネルギー』一つに思いを込めた電気磁気現象の認識を述べたい。空間に展開する電磁気現象を論じようとすれば、そこには電界と磁界の概念が必要になる。その基礎概念である電界や磁界の物理的意味を深く掘り下げて考えた結果、それも人間が創り出した解釈理論の為の概念でしかなかったことに行き着いた。

『エネルギー』にもその在り様はさまざまである。それは物に入り込めば、温度の上昇として認識される。電気回路要素なら、電熱器の抵抗体に現れる姿だ。物の煮炊きの熱現象に成る。全て『エネルギー』の形だ。それを電気理論の電界と磁界との関りで見れば、上の図のように解釈できよう。空間を自由に流れるとき、その『エネルギー』を光と言う。少し伝送空間を制限された状態が、電気回路の電気エネルギーに成る。

少し理論的に解釈しようとすれば、電界と磁界でのその『エネルギー』の捉え方に成る。空間を伝播する『エネルギー』だから、空間の意味を解釈に取り入れなければならない。少なくても二つの解釈基準が必要だ。それが誘電率と透磁率に成る。その空間認識基準として直交したベクトル誘電率εo[F/m]とベクトル透磁率μo[H/m]を決めたい。それは電気回路であれば、回路定数の容量C[F/m]および誘導L[H/m]に通じるものである。

単位空間1[㎥]当たりの『エネルギー』の密度を w[J/㎥]とすれば、電界強度ベクトルE[V/m]は誘電率によって解釈することが出来る。磁界強度ベクトルH[A/m]も同じく、透磁率によって定義できる。

電界も磁界も基本的には同じ『エネルギー』の観方を変えた解釈概念と見做せる。だから、電界あるいは磁界が空間に独立に単独で存在することは有り得ないのだ。どちらも同じ『エネルギー』の観方を変えた解釈概念でしかないのだ。光の空間を伝播する『エネルギー』の姿を電界と磁界に分けて解釈するが、それも科学技術と言う見方での手法の故でしかないのだ。有名な「マックスウエルの電磁場方程式」も、具体的なパラボラアンテナの表面近くにその電界と磁界を描いてみれば、電界と磁界での解釈が矛盾であることが分かる筈だ。描けない筈だから。『エネルギー』の縦波としてしか表現できない筈だ。

冒頭の1986年10月1日『電荷』否定の起点ー『静電界は磁界を伴う』ー。そこに思いを馳せながら、その基礎論とする。

ペルチエ効果と熱エネルギー

(2020/11/19) ペルチエ効果。

ペルチエ効果を使う熱電素子の構造は図の(1)のような説明で示される。N型半導体とP型半導体を銅などの板で組み合わせて構成される。そこに電圧を加えると、吸熱面と放熱面が生まれる。吸熱面の空気から熱エネルギーが金属板に吸収される。その作用を使って除湿器が造られる。空気からと言うのはその水蒸気が保有する熱エネルギーを吸収することだ。水蒸気は熱エネルギーで水が体積膨張した状態である。吸熱面で熱エネルギーが奪われれば、水蒸気は体積収縮して水になる。それが除湿機の機能原理だ。それはペルチエ効果の説明のように実際の技術として機能している。しかし、何故n型半導体‐銅‐p型半導体の方向に電圧を掛けると銅で吸熱現象が起きるかの原理が理解できない。そこで、(2)図のように、n型半導体を銅版で挟んで電圧を掛けても、吸熱と放熱が起きるのか?予測では、実験すれば吸熱、放熱は起きる筈だ。起きなければ、原理の意味が成り立たない。これはn型でもp型でも同じ筈だ。p型では吸熱、放熱の反応極性が逆にはなるが。

除湿機能と降雨現象。空気中の水蒸気から熱エネルギーを奪えば、水蒸気は水に成って、体積収縮を起こす。気象で地上の低気圧も、上層気流の冷気で地上からの水蒸気が体積収縮を起こすから、空気の水蒸気が上空に吸い上げられ、その結果低気圧となる。水蒸気の熱が上層気流に奪われ、水蒸気が体積収縮を起こす結果、雨となって降り注ぐ。除湿器の機能も自然現象としてみれば、降雨現象と同じものである。その吸熱現象がペルチエ効果ではどのような原理で起きるかの問題と考える。電気回路現象は電子が主役を演じる解釈理論となっている。電子がどのような役割を担っているかを詳らかにするのが科学論の目的だ。降雨現象には電子は不向きだ。その違いの訳が説明できるか?という設問となる。この上層空気がより冷気が強ければ、遂には氷となり雪になる。地上と上空の温度差が急激に大きくなれば、熱エネルギーが空間のチリなどに蓄積され、その熱放射、熱爆発の「雷」となる-雷は熱爆発 (2014/05/23) -。

思考回路。

ペルチエ効果の意味を考えてみよう。図(3)はダイオードに電圧を逆方向に掛けた。これでは回路は on 出来ないから、off である。図(4)はn型とp型の間に銅板を挟んだ。この構造はペルチエ素子の構造と同じだ。原理から考えれば、やはり吸熱と放熱現象が起きる筈だ。銅板を挟むとダイオードのoff機能は消えてonするという意味になる。この構造でもペルチエ効果が表れる訳を説明できなければならない。さてどう解釈するか?

電子と熱電効果の原理。

電源は決して電子を回路内を循環させる訳ではない。現在も、電子が主役の量子力学が半導体動作原理の解釈理論となっている。もし、電子が電気回路の機能を担うとすれば、電子が電流の逆向きに流れると解釈する限り、無理して『電荷』がその役割を担うと考えざるを得ない筈だ。電子の『質量』では無かろう。しかし、『電荷』が電気回路内を循環する具体的役割を、誰をも納得させるだけの論理性で示し得ないだろう。電子が『エネルギー』の伝送に役割を果たし得るか?電子が『エネルギー』を電源の負側からどのような状態で電気回路に運び出すのか?The electron did not exist in the world. (2020/05/15) 。にも述べた。電子の電荷と質量の空間像が定義できなければ、電子の熱エネルギーに対する機能も述べられない筈だ。電源は、電圧をその規定する値にするため、その繋がる回路の回路定数に対する『エネルギー』の放出源なのである。放出電子の数を調整する機能など電源には無い。電源は電子など制御対象にできないし、無用である。

電源と熱エネルギー。

電源は負側の電極電線路近傍空間を通して『エネルギー』を放出する。この電気エネルギーと熱エネルギーに違いがある訳ではないのだ。熱エネルギーは輻射熱として放出される。所謂赤外線と言う分類の光と見做せよう。可視光線に比べて、何か速度が鈍いような長波長成分と言う物のように感覚的に感じる。しかし電力波と比べれば波長は光に近い筈だが、衣服等に吸収された熱量値しての状況は何か粘性の強いエネルギーに思える。その熱が高密度に貯蔵されれば、遂にはより作用性の強い放射光となる。熱電現象は電気エネルギーと熱エネルギーの間の相互作用の変換現象と解釈する。とは言っても電気エネルギーと熱エネルギーは基本的に空間に実在する同じ『エネルギー』であることに変わりはなく、電池から電線路を通して負荷抵抗の空間構造に閉じ込められれば熱と言う人の解釈になる。

半導体の不思議。

トランジスタのスイッチング機能は技術の結晶に思える。しかしそのコレクタ側はダイオードの逆極性導通としか見えない。そこは吸熱特性を呈する。ダイオード電圧 (2020/08/26)。

 

 

導体と空間とエネルギー

(2020/11/07)エネルギーギャップ。
電磁気現象は『エネルギー』の動態を捉えて、その世界が観えるようだ。決して『電子』ではその真相は観えないだろう。
空間に在る『エネルギー』の姿を決めるのは、その空間構造を規定する金属導体と観ることも出来よう。その見方を纏めてみた。
電圧とエネルギーギャップ。


エネルギーギャップ。

少しづつ電気現象における『エネルギー』の姿が観えてきた。それらを繋げて行くと、すべての現象が金属導体とその近傍に関わる『エネルギー』の姿である。近接した導体が有れば、その間の空間にエネルギーが分布する。その分布の姿は、必ず不均一である。と解釈する。その様子を上の図に示した。コンデンサもコイルもその導体の間に不均一に『エネルギー』が分布する。その不均一分布を『エネルギーギャップ』と唱えたい。それはダイオードのp型と n型間に存在する不均一エネルギー分布との解釈と同じとみる。ダイオードはその『エネルギーギャップ』によって導通「オフ」状態となっている。n型側に『エネルギー』を加えれば、ダイオード「オン」となる。そのように基本的に空間構造体内に『エネルギー』が存在する姿は不均一である。その『エネルギーギャップ』が電気回路の回路定数、特に容量C[F/m]との関係で端子電圧V[V]となる。

『エネルギー』と光と空間定数。上の捉え方が誘電率εo[F/m]および透磁率μo[H/m]と光伝播現象との関係の哲学的考察につながるだろう。