タグ別アーカイブ: Energy flow

これが電気回路の実相だ

はじめに 電気技術概念、その代表が電圧と電流だ。その本当の意味はすべてエネルギーの姿を利用しやすい観測量として評価するものであった。エネルギーが電線導体の中を流れることはない。すべて電線で囲まれた空間を流れるのだ。基本的にはほとんど光と同じ光速度、毎秒30万キロメートルの考えられない速度で伝送されている。電気回路理論では電線路をエネルギーが流れるという解釈は一般的に採られない。それはエネルギーが空間内に実在している物理量という意識がないからであろう。エネルギーその物を計ることもできないし、目で見ることもできないから意識化が困難な事にその原因があるのだろう。太陽の光を浴びて、暑くてもそのエネルギー量を計れない。光を見ても、そのエネルギーが流れていること感覚的に捉えにくい。決して光は振動などしていないことを実験的に検証できない。光の科学測定は振動数の姿でしか測定値として捉えられないから。光の空間を伝播するエネルギー分布波など測定・観測できないから。電気回路を伝送するエネルギーも光と同じ空間分布波である。

特性インピーダンスと伝播定数。 電気回路は電線と回路要素のインダクタンス、コンデンサそして抵抗の3つでほとんど構成されているとみてよかろう。モーターもそれらの要素に等価的に分解して解釈できる。それらの要素がエネルギー(このエネルギーという意味を空間分布波として認識しなければ意味が通じない)に対して、それぞれ異なる機能を発揮するから、電気回路現象を理解するには技術的学習が必要になる。その技術習得に欠かせないのが、電圧や電流あるいは電力の概念である。しかし、電気回路の実相はもっと単純なのである。電気回路のインピーダンスや虚数軸のベクトル手法などによる専門的知識によって、単純な電気現象の実相が見えなくなるようでもある。ベクトル解析などと抽象的な解釈法を専門的共通理解の手段として学習すると、とても便利に理解しやすくなり、専門家集団内の共通コミュニケーションに欠かせないものとなる。そこには物理学理論としての電圧・電流概念が確固たる強固な物理的基盤として支えてもいる背景もあるから。しかし、電気現象も光や電波と同じエネルギーの空間伝播現象でしかないという本質を先ず捉えることが必要なのだ。そこに大事な電気回路現象の理解の要として、特性インピーダンスと伝播定数がある。街には配電線が電柱で支えられて配線されている。電気エネルギーを供給するためである。高電圧6600ボルトのピン碍子配線、変圧器を介した低電圧200・100ボルトの絶縁ケーブル配線がある。それは空間を伝送されるスマホの信号エネルギーと同じ電線導体の間の空間を伝送される電気エネルギーの伝送設備なのである。専門的技術理論が分からなくても、単に電線路空間を構成して、その空間を通してエネルギーを光速度で送っているだけなのである。その基本の単純な自然現象の利用技術が電気工学や電力技術として熟練を要する専門的な理論となっているのである。誰しもが基本となる自然現象の単純な意味を先ず理解してほしい。電線導体の中を電子が流れている等という、如何にも専門家らしい言説に惑わされないでほしい。決して電線導体の中を電子など通れないのだ。この世界に、負の電荷を持った電子など存在しないのだ。教科書が真実などと言うことではないことも知らなければならないのだ。自然は深くて単純なのだと。

電線路の実相

電気回路の真実を知りたい方のために少し解説したい。技術と自然の架け橋の要点を。

空間の電気特性 目の前の空間が持つ科学技術的解釈に誘電率と透磁率という概念がある。空間がインダクタンスとコンデンサから成り立っているという解釈である。携帯電話を使えば、電線が無くても通信ができる。空間が電波信号(これがエネルギーの空間分布波なのだ)の伝送路だからだ。図に透磁率μo[H/m]と誘電率εo[F/m]の値と空間の持つ特性インピーダンスZo[Ω]および電気信号の伝送速度の逆数で伝播定数γ[s/m]を示した。光速度coもその定数から決まる。透磁率が4πという立体空間角度に関係した値で定義されて、うまく統合されている訳は誠に不思議に思える。余りにも良くできているから不思議だ。それは空間の長さ1メートルあたりにインダクタンス[H/m]がある。同じくコンデンサのキャパシタンス[F/m]がある。空間にコイルやコンデンサがある訳はないのに、そのように解釈して初めてエネルギー伝播現象の姿を納得して理解できる。その捉え方の妙味が、とても便利であるから不思議なのである。何か禅問答のようだ。

右に裸電線を張った電気回路の意味と特性を示した。数式には自然対数のln(2D/d)を使って示した。常用対数log(2D/d)に変換するには係数2.3026を掛ける。一般的には絶縁電線が使われるが、基本的な特性は裸電線の空間構造によって決まると考える。絶縁電線は電気エネルギーの流れる伝播空間が電線表面の絶縁体部を流れるため、エネルギーの流れる速度が比誘電率の値で遅くなる。1メートルの長さをエネルギーが伝播する時間が伝播特性で、比誘電率εsのため√εs倍だけ長くなる。裸電線の場合は、空間の光の速度と同じことになる。線路の特性インピーダンスの機能はその値が同じであれば、エネルギーの流れが電源電圧のエネルギー分布に従って反射などの阻害要因がなく伝送されることを示す。その現象は特に超高周波回路に現れる。分布定数回路と実験に例がある。

むすび

空間の光エネルギーの伝播現象を科学技術概念、空間定数(透磁率、誘電率)と結びつけて、その捉え方を電気回路の伝播現象と統一的にまとめた。30数年前に、拠り所の電流概念を棄却して闇の世界の中をさまよいながら、プランク定数の次元と実在概念 日本物理学会講演概要集 第56巻第1分冊2号、p.338. (2001) の光エネルギー分布波の捉え方から、空間エネルギー分布の解釈にたどり着いた。光とは何か?-光量子像‐にまとめた。今50数年前の、分布定数実習に対する一考察 (新潟県工業教育紀要第3号、1962)の分布定数回路の実験結果が貴重な資料となり、この記事の基にもなった。新潟県教育委員会に正式採用もされていなかった中で、アルバイトのような身分の分際で研究するなど誠に御迷惑をお掛けしたと恥じている。と卑下してみても、新潟県はこの研究報告を生かす責任があろう。 

 

電流1[A]の物理的空間  (インダクタンス算定式)

電気回路の構成要素はインダクタンスと静電容量そして抵抗である。その中で電流と直接関係するのがインダクタンスである。電線路の特性は特性インピーダンスが握っているといってもよかろう。その特性インピーダンスの算定式には電線路単位長当たりのインダクタンス[H/m]が欠かせない。平行導線路のインダクタンスL[H/m]の算定は電流概念がその拠り所となっている。そのインダクタンスの算定理論における電流1[A]の物理的概念がいかなる意味を持っているかを確認したい。基本的には電流によって、その周りの空間には磁束が発生するという電気理論が前提になっている。

インダクタンスの算定回路空間。

磁束鎖交数φa=LI[Wb] をインダクタンスL[H]と電流I[A]の積で定義する。電流の比例定数がインダクタンスL[H]である。

次元は電流が[(J/H)^1/2^=A]であるから、磁束量あるいは磁束鎖交数の単位[Wb]は次元で、[Wb=H(J/H)^1/2^=(HJ)^1//2^]となる。

さて、インダクタンスL[H]の算定は電流I[A]が流れている導線周りに発生する磁束量の計算によってなされる。図は平行導線路の場合で、導線aとbの往復線路である。まず、算定法では導線1本について計算される(文末の文献 p.93    5.3 インダクタンス 参照)。a導線の電流I[A]によってa導線の周りに発生する磁束を計算する。図1.に電線路単位長当たりのa導線の自己インダクタンスが示されている。その第1項の2分の1は導線内部電流による磁束計算量である。しかし実際は導線内部に電流など流れていない訳であるから、少なくともその項は無意味と考える。第2項は導線半径rと線路離隔距離Dによる自然対数である。その計算結果の訳は次の示す。

a導線からxの位置に、その電流I[A]によって生じる磁束は、その磁界Hx=I/2πx[A/m]にその空間の透磁率μo=4π×10^-7^[H/m]を掛けて、磁束密度Bx=μo×Hx[Wb/㎡]と算定される。電線表面rからDまで、単位長さ1[m]当たりの面積1×dx[㎡]で積分すると、 2I∫(1/x)dx 10^-7^[Wb/m] =2I×10^-7^ln(d/r) =LI [(HJ)^1/2^/m=Wb/m]と、自然対数式となる。

上の算定に関する質疑。

  1. b導体の電流は考慮しない。それは何故か?コイルの場合の鎖交磁束は全体の一周電流分で考える。
  2. 磁束は図のΦaのように導体aを周回していると考えるのか?コイルの場合は、コイルの外側には磁束はない筈だから。
  3. もし導体を磁束が周回していると考えるなら、物理学理論では、磁界Hx[A/m]の場には(1/2)μoHx^2^[J/㎥]のエネルギー密度がある筈。理論的には、そのエネルギーが導線の周り全体にある筈だ。しかし、そのエネルギー量はほとんど計算には意味を持たないことになっている。更に、そこに磁束の電流との鎖交数という意味にも特別論理性があるようには見えない。円周の長さ2πx[m]を計算の基に考慮しているが、実際の計算にはrからDまでの積分として周回の意味は特にないようだ。
  4. 電線内部磁束鎖交数による 2分の1は必要ないと考える。

以上の質疑があるが、算定式の第2項は実際の利用で、有効性を示す。さらに、平行2線式電線路の単位長当たりの自己インダクタンスL[H/m]は何故か導線1本当たりで計算する。その訳を次のように解釈した。以下の解釈は削除させていただきました。上の質疑1.のb導体の電流分を平行2線式電線路で考慮しない理由の解釈に、削除した記事が間違っていたかと考えた。

むすび

インダクタンス算定式(電線路単位長さ当たり)

L=0.4605log(2D/d) [mH/km]=0.4605×10^-6^log(2D/d)[H/m]

と得られる。ただし、d=2r であり、自然対数と常用対数の間に ln x =2.3026log x の関係がある。

このインダクタンス値ともう一つの静電容量算定式により、電線路の特性インピーダンスおよび伝播定数が決まる。その特性値により、高周波分布定数回路から、同軸ケーブル(この場合は少し考慮必要)および三相送電線路の特性まですべて統一的に決まる。

電流1[A]の空間の意味をインダクタンス算定式に関する観点から考察した。厳密な意味ではその電流概念の論理性が保証されているとは言い難い面がある。しかし技術的な算定式ではとてもよく実際の応用で適合している。科学技術と自然現象との関係の捉え方には慎重な解釈が必要と考える。

(参考文献) 電気学会大学講座 送電工学(改訂版) 電気学会 15版(昭和49年)

電力 p[J/s] の意味と解析法(1)意味

はじめに

瞬時電力という用語を今までも常用してきた。電力制御の技術理論も確立していると思う。電圧と電流の瞬時値も制御可能であり、電流の偏差値の微細制御さえ可能である※(1)。当然その積としての瞬時電力も制御可能である。電力工学で制御が可能であるにも拘らず、瞬時電力の意味が理解できないとはどういうことかと理解されないかも知れない。筆者自身も自分が何を理解できないと考えるのかを理解するのに困惑した。禅問答のようである。電力の単位[J/s]のエネルギーの時間微分という概念の物理的意味が明確ではない。時間軸上に電圧も電流もその波形が当たり前のように描ける。従ってその積である電力も何の違和感もなく、その波形を描くことができる。そこに科学技術とその基礎になる自然現象の本質との間に横たわる人には気付きにくい不思議な関係があると考える。電流波形が描けるとしても、その物理的意味をどれほど理解しているかという課題が残されているのだ。だから電力の瞬時値の意味が分からないのも当然と言える。それは『エネルギー』の意味が明確でないからであろう。

電力 p[J/s] の物理的意味。

電線路のある点の電力 p[W] はその点の電圧と電流の積で捉える。単位ワット[W] はエネルギージュール[J] の時間 [s] での微分値となっている。エネルギーの時間微分値とはどの様な物理概念と理解すればよいか。瞬時電力 p が電圧 v[V] と電流 i[A] の瞬時値の積であると定義されても、物理的に単位 [V] と [A] の積が [J/s] となるという感覚的に納得できる理解、安堵に至らない。精神的に安心した状態に至らない。要するに腑に落ちないのである。自分の脳の弱さを棚に上げて、[VA]=[W]=[J/s]となる理屈が理解できないと言って悩んだ。それは[V][A]そのものの物理的概念が心で納得していないからであろう。そこに不思議の原点があった。せめて、[V=(J/F)^1/2^][A=(J/H)^1/2]と[VA=(J/F)^1/2^(J/H)^1/2^=J/(HF)^1/2^=J/s]の単位、次元の換算を頼りに考えた。そこから、[J/s]の理解の旅が始まった。

エネルギー[J]の意味を知ること。

電気回路で伝送されるものがエネルギーの空間分布波であるという自然現象の実相を知ること。電圧・電流はそのエネルギー流を評価する科学技術概念であり、自然現象を理解する物理概念と捉えるには少なからず考えなければならないものがある。電気回路のエネルギー流とはどの様なものか。具体例として、負荷容量1[kW]の電気負荷を考える。電源は100ボルトの正弦波交流電圧とする。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

上に抵抗負荷の場合を例に、瞬時電力という意味を電圧と電流の積という観点と異なる電源からのエネルギ流-として考えた。結果としては、電圧と電流の積の電力で解釈して矛盾はないという意味になった。ただ、電圧の意味と電力の関係の物理的意味で、具体的な理解ができた。電気回路には線路ロスがあり、それを線路抵抗などで解釈するのが一般的であるが、エネルギー伝送の観点からは少し異なると考える。線路損失は電流によるジュール損というより、空間から放射されるエネルギーの損失と捉えるべきで、電圧位相遅れは伝播定数γにのみ因ると考える。電線路導体を電子が流れる訳でないとなれば、空間のエネルギー流からそのように考えざるを得ない。

瞬時電力p

電源電圧を基準に、負荷端の電圧が線路長l[m] では、γl[s]だけ位相の時間が遅れた電圧となる。負荷電力はその端子電圧の2乗に比例する。電線路の単位長さ 1[m] 当たりの空間に分布するエネルギー量はγp[J/m]となる。

電力 p=dE/dt [(J/m)/(s/m)]=γp[J/m]/γ[s/m] [W=J/s]

という意味で、電力を捉える。空間的広さあるいは時間経過に通過するエネルギー量で捉えないと、エネルギーの意味を捉えきれない。

むすび

時間軸上に描きながら、その瞬時電力という用語の物理的意味が理解できなかった。電線路空間にエネルギーが実在するにも拘らず、エネルギー量の時間微分という概念量の捉え方が理解できなかった。上の解釈で、伝播定数γ[s/m]による空間のエネルギー流として納得できた。しかし、何を考えても専門家の皆さんの考え方を否定するあるいは無視するような結論が多く自分に困惑頻り。本当に『流れに竿挿せば流される。流れに逆らえば窮屈だ。』の名言の通り。

参考文献※

ここに挙げた文献は電力工学の分野での過去の研究の成果といえるものだ。特に(1)はスイッチングによる微細電流制御の回路解析を論じた内容だ。しかし、その電流を物理的には実在しないと棄却した。己の専門分野を切り捨てるような、研究のはみ出しの世界を歩いた。『静電界は磁界を伴う』と『電荷』を切り捨てた。ようやく『エネルギー』によって電気現象を解釈できるところに到達できたと思う。文献(2)、(3)は電気回路解析の手法として、インピーダンスでなく、アドミッタンスが有効と考えるに至ったその原点をなす資料である。中でも(2)は特殊な空間モデルを描いて、瞬時虚電力の概念を電磁気学の微分演算子で纏めたものである。次の記事(2)回路解析で、負荷力率との関係をアドミッタンスによって考える参考にする。

(1) 金澤他:電圧型PWM変換器を用いた瞬時無効電力補償装置の動作解析と設計法 電気学会論文誌B、論文61-B 39 (1986.4.)

(2)金澤:561  瞬時ベクトル空間モデルと空間瞬時アドミッタンス 昭和61年電気学会全国大会 (1986.4)

(3)金澤:空間瞬時ベクトル解析法と交直変換器への適用 電気学会 電力技術研究会 資料番号 PE-86-39 (1986.08.04)

空間定数とエネルギー伝播現象

空間とエネルギ-伝播現象の関係を図にまとめてみました。

 

 

 

 

 

 

 

 

 

 

 

 

 

エネルギー伝播特性 光を含めすべてのエネルギーの伝播現象がその空間定数、透磁率μ[H/m]、誘電率ε[F/m]によって決まると考えてまとめた。細かな点では違いもあるかも知れないが,エネルギー流という物理的実体の流れを総合的に捉えれば、その伝播現象の基本的姿は図のようになろう。特に電気回路の具体的現象を考えると、回路が電線路導体で囲まれた空間内を流れるエネルギー流の現象と見えてくる。長距離送電線路の伝送方程式では、回路定数による分布定数回路としての捉え方が基本となっている。その中に特性インピーダンスZ=√(L/C)[Ω]と伝搬定数γ=ω√(LC) [rad/m] がある。この中で、伝搬定数にはω[rad/s] という角周波数が含まれている。それは定数に入れるべきでないと考え、伝播定数としてγ[s/m]の速度の逆数を定数にした。電気回路のエネルギー伝送現象を考えるにはこの伝播定数の方が分かりやすいと思う。それはエネルギー伝送現象について光エネルギーと速度と時空で、電力p[J/s]の意味と解析法の記事で明らかにした。この電気回路定数との関係を述べた。

むすび 科学技術はその広範な分野に分かれて、それぞれ独自な理論を構築しているように思える。そのため各分野を統合して考察する機会が失われているように思う。未来の科学には生活感覚から観る市民の理解できる易しい解釈・解説が求められる。そこに全体を統合した捉え方をするには、ますます科学全体に共通した矛盾の無い少数の基礎概念の提示が求められるはずだ。その市民科学への寄り添いに科学者の努力と責任が求められよう。そんな意味を込めて、真空空間の空間定数による光エネルギー伝播特性を基準にした、すべてに共通した捉え方の一端を提示した。光と電気エネルギーは同じ空間エネルギー分布波の伝播現象だという意味を。スマホの通信も電気回路も同じエネルギーの伝播現象であることを。

 

『エネルギー』それが世界の根源

エネルギー

それは目の前の空間に実在する。

それは身の回りを囲んでいる。

しかし、決して見ることはできない。

現代科学技術でも捉えられない。

風もエネルギーの流れだ。光もエネルギーの流れだ。

しかし。そのエネルギーを人は決して観測できない。

原子もエネルギーによって構成されている。

しかしそのエネルギーを捉えることはできない。

電気もエネルギーの流れだ。

そのエネルギーを見ることもできない。

『電荷』否定の旅に出て、今思う。

見えない世界に深入りしたのか。

旅の終わりに観えるもの。

それは、見えないもの それが大事。                  (2019/09/05)

『静電界は磁界を伴う』を基点として、当てもない「電荷」否定の旅に出て、辿り着いた世界に観えるもの。それは物理量でありながら、物理量として観測できない。これぞジレンマと言うのか。

光エネルギーと速度と時空

光の速度は何故決まる?

光は空間のエネルギー分布密度波の縦波である。その速度が何故、秒速30万キロメートルなのか?それも『疑問』の宝物。空間には空間定数という真空透磁率と真空誘電率の二つが定義されている。

単位系・JHFM自然系 も光と空間定数の関係から導き出したものである。光速度 c[m/s] は

c=(μo εo)^-1/2^ [m/s]

と真空透磁率μo[H/m]と真空誘電率εo[F/m]の空間定数との関係で捉えられる。そこに時間の次元秒[s]とヘンリー[H]とファラッド[F]の関係が生まれる。[(HF)^1/2^] = [s] と関係付けられる。その訳が理解できた。

人はモノの速度を目で追うことで感覚的に理解する。それが視覚感覚の機能でもあるのだろう。同じ現象でも、1[m] を通過する時間何[s]という捉え方はしない。しない訳ではない。100mの競争で10秒切るかどうかが注目される。それでも1mの距離の通過時間を気にかけることは普段はない。

エネルギーの伝播実験 光速度を超える信号伝送手段はないから、伝送速度を計ることは困難なため無理ではあるが。(次の実験で、電源スイッチを投入した時刻を負荷端で瞬時に知ることは無理であるから。)

エネルギー伝播 電気回路のエネルギー伝播現象を考えてみよう。電気回路の伝送路は基本的にインダクタンスと静電容量の分布定数回路になっている。その様子を図に示した。実際には2本の電線が張ってあるだけで、外見的にはそこにインダクタンスやコンデンサがつながっている訳ではない。図では単位長さ当たりL[H/m](一区間に上下二つのLが有るが、等価的には一つのLと考えてほしい)とC[F/m]の分布定数回路となっている。実験的にエネルギー伝送現象を確認するには、実際にある値の LやCを変化させた分布回路として、原理的には可能であろう。負荷終端には電線路の特性インピーダンスと等価な抵抗負荷とする。負荷で到来波のエネルギーを消費し、反射波を防ぐための条件である。電源は十分大きなエネルギー量を貯蔵したコンデンサとする。スイッチSをオンする。瞬時にエネルギーは伝送路に流れ込む。そのエネルギー波が負荷に到達する、その波形を電圧vで観測する。恐らくその波形は雷の衝撃波形に似たものになろう。負荷端のエネルギーは電圧vの2乗で波形を理解できる。その電源からのエネルギー伝送現象は回路定数を大きくすれば、エネルギー伝送時間は長くかかる。定数が小さければ伝送速度は速くなる。その意味は誰もが理解できよう。電線路の静電容量やインダクタンスが大きければ、エネルギーが静電容量に貯蔵される余裕が大きく、インダクタンスが大きければ、そこを通過するのを阻止する反発が強くなる。だから分布定数が大きい程エネルギーの伝送に長い時間がかかることになる。即ち回路定数によって、エネルギーの伝播速度、光エネルギーの速度が変化する訳である。この辺の現象は電力系統の管理技術者には当たり前の感覚的認識になっていることであろう。電気エネルギーはエネルギーの空間分布波としてみれば、光のエネルギー分布波と同じ訳で、光の真空空間の伝播速度即ち光速度がその空間定数で決まるのが当たり前と理解できよう。空間の長さ1m当たりの静電容量とインダクタンスがその空間を通過する光エネルギーの「時間」を規定する訳である。だから、JHFM自然単位系で、時間の秒[s]が空間定数の[√(HF)]になる訳である。ここには速度という見方と逆の、1mを通過する時間は幾らかという [s/m]の見方になっている。それも速度と意味は同じである。

エネルギー[J(ジュール)]とJHFM単位系

不思議の極み 空間定数の「真空透磁率」を誰が何時決めたかが分からない。μo=4π×10^-7^ [H/m] はあらゆる計量単位の基準として定められた筈だ。誠に不思議な数値である。4πは球の全立体角 ステラジアン [㏛]と解釈する。すべての実用計量単位MKSAがこの空間定数の真空透磁率μo[H/m] が基準になった事によって決まる。そこに選ばれた単位が電気回路のコイルが持つ電気的空間構造の特性機能の評価量を表す意味のインダクタンスの単位ヘンリー[H]である。この定数を決めた時点で、真空空間が持つ空間のエネルギーに対する誘導性という物理的定数だという認識の下で決めたのだろうか。空間が誘導性のインダクタンスの機能を備えていると認識して確定したのだろうか。この基準を決めたことに因って、空間にはもう一つの真空誘電率εoという定数が確定されたと考える。その単位もやはり電気回路の静電容量という機能要素の物理的評価量の単位ファラッド[F] で示される。それがεo[F/m] である。この意味もまことに不思議な単位である。決めた時点で、空間が電気回路の静電容量の次元を持っていると認識して決定したのだろうか。それなら誠にその確定については慧眼の至りと驚かざるを得ない。しかし、それらの空間定数が何処で、どのような機関又は人に決められたかが分からない。しかしその空間定数があった事のお陰で、現在幸運であったと確信して使っている、自然単位系JHFMを闇の中で、1990年春に見つけた。

その夏7月に何の説明もなしに、大学職員が大勢で我が家に御出でになられて、玄関で白紙に拇印を押させてお帰りになられた。後でそれは筆者に対する分限免職の承認と見做す捺印のようだった。その拇印も誠に不鮮明であったようで、後には他の機会の、たぶん庶務課での茶碗から採取の鮮明なものに変わっていたようだ。誠に国家公務員の人事行政の意味も知らない筆者の無知のために、多くの皆さまに御迷惑をお掛けし、それが原因で招いた当時の過ぎてしまいましたが、失礼をお詫びいたします。と言っても今でも全く理解不可のまま、無知の上塗りでぼーっと日々が過ぎ、流され続けております。

真空誘電率 εo=(1/36π)×10^-9^[F/m] とこれまた誠に気持ち良い数値である。そこに自然空間における光のエネルギーの伝播速度が決め手となっていることが、これまた自然の美を意識せざるを得ない。

光速度をc[m/s]とすれば、

c^2^μoεo=1

である。不思議は美しさでもあるのか。

科学論と電荷

はじめに どうしても思考が初めに戻ってしまう。1985年から2年間初めて電気磁気学・電気理論の授業をすることになった。基に既にあった「磁束は電圧時間積分によって決まる」の認識が「アンペアの法則」の電流による磁束発生理論への疑念を抱えての出発であった。振り返れば、命を守る地獄の中で纏めた『静電界は磁界を伴う』の1987年4月2日電気学会全国大会での発表となった。その時の所属はいったいどこにあるのか、今でも理解できない(4月発表の数日後自宅に、既に去った筈の高専校長から職員会議への出席要請の手紙が届いた。さらに次の年1988年の1月中頃どこからか自宅に、長岡工業高等専門学校の健康保険証が送られてきた。その時は既に、電磁界の物理的概念と地磁気の解釈 春の昭和63年電気学会全国大会 32. p.35-36 の発表予定で投稿していた。しかも全く所属分野の意識もなく、全学共通ぐらいの気分でいたかも。など混乱と理解に苦しむ疑問のまま今日までそのままである)。『静電界は磁界を伴う』の発表内容は結局『電荷概念否定』になる。その原点となった考えの状況を纏めておきたい。なかなか科学論だけの話ではないところが誠に不可思議である。しかも今になれば、その当時の政治的意味合いも含んだ長岡技術科学大学の邪魔者排除対象者として選ばれ、政府・文部省の「中曽根臨時教育審議会」に関係していたことであることが分かる。さすがに常識に疎い無知の筆者にしてみれば、このような意味不明で回りから嘲られたような仕打ちが続いたことは。精神的にも限界を超えていた。みんな政治意識に無頓着だった筆者の無知と相談しようもない孤立無援の中にいたことに関係していることだ。1988年10月、電気学会電磁理論研究会での、「瞬時電磁界理論の実験的検証とその意義」EMT-88-145.(1988.10.) の発表を機に大学から離れた。この研究会資料は世界の科学常識を問う実験データの写真集でもある。

“ミズリー号甲板上での無条件降伏調印式(1945/09/02)  1945年9月1日(海軍解散最終日)に父は『任海軍上等兵曹 舞鶴鎮守府』辞令。9月2日の調印式のため、日本政府代表団はゴムボートにて艦船への往復をした。父はボートクルーの任務に就く。1939年12月1日家族は舞鶴鎮守府へ戸籍転籍された。戸籍上に帰還の痕跡がない。公務員資格は?筆者存在の可否が根源にあったか?”今戦後74年が経過しようとしている、戦争の悲劇の意識が薄れ、政治意識の希薄さが危険な道につながる選挙にも無関心な世相の日本にある。政治はその選挙への無関心に対して、政治意識の重要性を教育に反映する対策も故意に回避しているように思える。今も所属機関もなく、研究発表もできない事態にある身として、思えば戦後処理にすべてがつながっていると。

「電荷への疑念」 電流は電子の流れとの解釈が科学論の基にあった。電子は電荷と質量の合成素粒子と理解していた。しかしアンペアの法則では質量は無視され電荷のみで論理が成り立つ。電子という時の科学論では質量を意識していないように思う。電流概念は電荷の時間微分でアンペア[A]であろう。その電荷が空間で運動すると何故周りの空間に磁界が発生することになるのか。その疑問が電気磁気学の授業をするに連れ強くなっていった。1986年10月1日ある方に『電荷』は存在しないのでは?と疑問を投げたと記憶している。その方は実験で証明する必要があろう。と仰った。確かにその通りと納得して、すぐに実験に取り掛かった。今でも何故高電界中の磁界検出が『電荷否定』の検証になると考えたか、その意識のつながりを明確に覚えていない。何の躊躇もなく翌日から高電圧内の磁界を検出すればよいと取り掛かった。オリエンテーリング用のコンパスをロゴウスキー電極の中に置き直流電圧を高めていった。しかし見事に失敗であった。火花放電が起き、コンパスの表面が黒く焼けた。これで終わりかと自室(ある人の部屋の間借り)に閉じ籠り、歩き回った。閃いた!!油入りのコンパスは地磁気には反応するが、電界の空間エネルギー流には反応しないのだ。それは空間エネルギー流をホール素子で検出する意味と同じ無意味なことと。それからが電界の空間のエネルギー流の何かをとらえられないかと考えて、マグネットの吊り下げ検出器を作った。クーロン力という解釈の指摘を排除するために、等方性の円平マグネットを使った。10月30日ごろと記憶している。その日の長岡市は、朝から雷が鳴りひどく荒れた天候であった。その時思った。天の神が自然の秘密を暴くのを怒っているのだと。それだけきっと磁界が検出できると予感していた。試作マグネットを電極間に近づけて設定。徐々に電圧を上げた。平板マグネットの矢印の方向が変化した。静電界は電荷による電界の空間と電気磁気学では解釈されている。しかし、その空間に磁気コンパスを動かす力が存在するとすれば、その訳を説明しなければならない筈だ。そもそも『電荷』とは何か、その空間像を認識しているか。アンペアの法則及びその電流、その法則による磁界の発生。ビオ・サバールの法則、フレミングの法則などその根源的物理概念は『電荷』である。それほど万能な『電荷』とは何者か。『電荷』が動くとその周辺空間の物理的状況に何が起こるか?それが『電荷』の空間像を考えた起点である。『電荷』は磁気特性を含有するか?

「電荷像と磁気」 電荷への疑念を膨らませた図がある。

電子の磁界発生原理は? 何も特別のことを考えた訳でもない。電子が電荷の具体的代表例だから、それが運動すると静止の時とどのような変化が生じるか。ただそれだけである。電流が磁界を発生させる原因だと物理学で理論構築されている。電流の基は電子だという。それなら電子が静止しているか、運動しているかで回りにどのような物理現象の差が起きるかという疑問でしかない。何も数式など要らない。『電荷』という物理的概念を探るだけである。まず、電荷は空間にどこまでその物理的存在を主張するのか。理論的にはどこまでも無限に意味を持つような解釈にあるように思われる。電界が電荷の周りに在るなら、それは空間エネルギー(1/2)εE^2[J/m^3]が存在する意味である。そのエネルギーは電荷とは異なる物理的実体ととらえるのか。そこに物理学としての論理性があるのか.あるいは電荷内の空間で完結するのか。そんな如何にも学術的科学論あるいはその手法からかけ離れた思考である。巷の科学論とでもいえよう。専門的学術論からかけ離れた素人的疑問は誠に科学論としてはお粗末で、始末に負えないと顰蹙を買いそうだ。電子の寸法もわからないから、実際は空間像を想像することすら無理なのであるが。

結び 『電荷概念はエネルギー流の認識の妨げになっている。』

『電荷否定』の科学論が伝統的科学論の世界で通用する見込みもないと危惧しながらも、ただその実験結果がだだ事でない科学革命の萌芽を含んでいるとの確信になった。その確信が全ての危険な先行きを無視して突き進む情念になった。社会に対する怒りを生み、遣る瀬無い身を恨んだ。そこに情報・テレビなどの操りの罠に引き込まれても行った。飛行機と花火にも踊らされた。陰で操る闇の日本社会。その中でも、現在ようやく物理学理論として『電荷』の概念が曖昧のままでは済まない意識が生まれつつあるか?と考える。科学論の革命が迫っていると。昭和57年度からの工業高等学校の文部省改定を前にして、もう工業高等学校では研究の余地はなくなると喜んで長岡技術科学大学での生活を想定した。しかし、結局望まれない人材として厄介者となってしまった。今思う。研究しか能のない世間知らずが役立たずで誠に困ったものと。しかしお世話になった川上学長も技術に対して理学への不信を抱いていたのではないかと思う。技術から、物理学理論の矛盾点にメスを入れ自然科学としての未来への進むべき道が見えてきたと筆者は思うようになった。『静電界は磁界を伴う』には相当御心配されたとも思う。また、今でも斎藤 進六 学長の創造性の「創」という文字は大きな傷を伴うという意味だとのお話が印象深く気持ちの上で拠り所となってきた。電気系の皆さんにもお世話になっただけで役に立てなかった。新潟県教育委員会が筆者を正式採用をしていなかった事務手続きはについては、今でも行政機関としての意味を理解できない。そこから「割愛」などできないと思う。

戦後処理問題:舞鶴鎮守府の軍籍問題を知ったのは平成7年頃であった。

電子とエネルギーと質量

『エネルギー』を窮めよう。エネルギーと繋がりのない世界は無いから。全宇宙、この世界で『エネルギー』の構成要素となる素粒子は決して存在しないから。

mc^2^から物理学を問う (2019/04/25) で述べたかった質量の意味。独楽の心 (2019/01/05) や熱の物理 (2019/02/07) にも繋がる。

時代はエレクトロニクス全盛期。
電子(Electron)と光子(Photon)が科学理論の根幹を担っている。物質の元素は原子である。原子理論は電子あっての基に成り立つ。そんな時代のど真ん中で、独り妄想にふける。端無くも電流は流れず (2010/12/25) にはじまる多くの顰蹙の種なるお騒がせを招き申し訳なく思いつつも已む無き事情に流されながらここまで遣って参りました。古くを辿って、再び電池の回路(電池のエネルギー)に戻る。電池は何を貯めているのかと不図の病が頭を支配する。電池の重さの意味に耐えきれず、その質量を計らんと無理を承知で心の感性に乗せて観んと思い付く。不図の病、それは電池からエネルギーが負荷ランプに供給され、エネルギーが光と熱に変換されて消費される。電池は少しも熱くはないが、電池の何が負荷で熱に変わるのか。ここの『エネルギー』と言う意味・物理量が現代物理学理論で捉えられ、説明されているのか。それは決して高等数学の式では説明できない自然の易しさの中に隠されている真理と言うもので御座いましょう。電池の中味がどのような化学物質ででき、構成されているかは分からなくても、自然の心を捉えるには特別難しいものではない筈なんだ。『エネルギー』が何たるものであるかを感じ取れれば宜しいのだ。それは電池の中に確実に溜って実在しているものなんだ。重量が計れなくても、化学物質の質量増加分として蓄えられているものなんだ。『質量』とは何かとまた顰蹙(ヒンシュク)の《問答》にもなる話だから、誠に御迷惑かも知れない。化学物質を顕微鏡で覗いても見えるものでも、質量増分を計れるものでもないから科学論証も出来ない話であるので、ご迷惑か混乱の基となるかも知れないが。筆者は原子質量が『エネルギー』の局所集合体としての、電子も陽子も無視した「Axial energy flow」結合構造と看做す物としての科学常識離れの認識に在る。マグネット近傍空間のEnergy flow は全く熱に関わりのない『エネルギー』であることも心に乗せて。それが電池の『エネルギー』と『質量』の等価性の原理の基である。E=mc^2^[J] の物理的意味である。ここから電池が電子を導線の中に流し出して、回路を還流したら、どのように電池に蓄えた『エネルギー』を負荷ランプに供給することになるかの《問答》が始るのだ。特別数式など無くても日常用語で説明できる筈だ。それが『電子』の意味を問うことになろう。

電子の実相を尋ねて。
最近の電子論、エネルギーから電子殻を問う (2018/05/21) や電池における電子の役割を問う (2018/05/24) で論じてきた。電気回路の問題では、必ず電流が含まれる。その電流概念で、正の電荷が流れるとは言えない為、電子が電流の流れと逆向きに流れていると解説される。この解説が検索情報の標準的なものとなっている。誰もその解説に疑念を表明することも無い。だからそれは世間の科学常識として子供達に教えられることになる。多分学習塾でも同じ説明がなされているのだろう。ここで再び、電流は電子の逆流か?と言う事を考えて置きたい。考えるにはその電子の逆流と言う回路状況を具体的に図に表現して見るのが良い。まず電子が電線路にどのように分布している状況かを示さなければならない。大事なことは、解説する人が先ず自分がどのように考えているかを空間的に図に表現することが必要だ。筆者もその意味で、皆さんが電子の逆流だと解釈する意味を、電気回路の電線に書き表してみた。電子が電流の方向と逆向きと言うことは、電線路全体に均一に分布していることと考えてよかろう。その分布電子が同一の速度で均等分布の流れとなっていると考える。それが図のようになる。この図の表現内容が間違っていると言うなら、それの間違いを指摘して欲しい。どのような電子の密度で分布するか。それは電子の速度が何によって決まるかにも因る訳で、その訳が明確に示されなければ分布も決まらないと思う。 『電子電荷』の速度を決める力学原理は何だっけ?電気回路の現象も特別難しい訳ではない筈なのである。解説する原理や論理性が明確であれば、それは日常用語で十分説明できる筈なのである。クーロンの法則に従うのか従わないのかを解説者自身が立ち位置を明確にして述べれば分かる筈である。上の図を見て、教科書を執筆されている専門の方々が、怪しいと思うか思わないか。そこに抱く意識に問題の解決の糸口が有る筈だ。ネット上の解説が正しいか間違っているかを。まず電子が電線路導体を流れると言うことは、図のように『負』の電荷だけの分布で良いのか?『正』の電荷の分布は無いのか?電池とは電子の回路循環機能だけなのか。電池の『エネルギー』はどのように負荷に供給されるのか?解説の中には、電子が移動すると、逆に電子の抜けた殻の穴が『正』の電荷の意味を担って、電流の方向に流れると考えれば良い。等の解説をする方も居られる。その方も自分の思う電気回路図を描いて、その全体の図で御説明されればよいと思う。兎に角、上の図では電気回路は『負』の電子だけで『正』の電荷の出る幕がないことになる。今までの説明には数式は使わないできた。どこか数式がないと説明にならない処が有っただろうか。科学の心を伝えるには数式など無くても良いのだ。政府の津波対策の防災情報で、海岸線の津波波形の図が余りにも滑稽過ぎて、誰があんな波を津波と考えるかも水の心が理解できていない科学論が招く怪しさなんだ。科学とは自然の心を心で受け止めて、心で伝えることだろう。解説者が自分の心に偽りのない意味を伝えてこそ科学論になる筈だ。偽善科学はやめましょう。

 

力の概念と電気物理

視点一つが世界を変える。

不図疑問が湧く。今までの認識に疑問が種となって、新たな世界が驚きの中に膨らむ。今回は『力』である。電気と言う目に見えない現象故に、その世界描写は数学的な表記によってとても抽象的に描かれる。多くの法則によって体系化された学術理論の世界である。科学理論の世界は長い歴史の重みを背負って、何百年の時に亘って専門家の追究の試練に曝されて生き残って来た学術理論である。その根幹を成している概念は『電荷』である。それはクーロンの法則と言う偉大な科学技術論を論ずる基幹法則として誰もが一度は聞いたことのある法則であろう。『電荷』間に働く『力』の意味を解釈する法則である。科学理論は社会的に認知された、学術機関の専門家が推奨する権威ある理論で、広く学校教育での標準教科書として取り上げられたものである。そんな理論の根幹の「電荷」を否定することは、社会的大きな混乱を引き起こすかもしれない畏れ多さを抱える事でもある。自分一人の科学技術感覚からの『電荷』否定の挑戦であった。クーロンの法則を斬る (2013/01/06) の記事から6年が過ぎた。今回その法則に関して、力学理論の『力』の概念から改めて『電荷』否定の論証視点が浮かび上がった。気付けば当たり前のことと思う様な『電荷』に潜む矛盾点である。

力学論の力の概念

運動力学の『力』とはどのようなものか。そんな疑問を抱くことに意味があるのかと思うかも知れない。力が働くという意味で感覚的に感じるのは力を掛ける対象に、力に逆らう反作用のような抵抗がそこにはある。それが慣性体としての質量の意味だと思う。運動力学で力が掛ると、その対象は力によって加速度運動に成る。もし力の対象が質量体で無かったなら、その対象はどのような運動に成るのだろうか。図の力の概念に示したように、質量M[kg]が力に逆らって速度の変化を受けないような作用があるから力を掛ける側に、対象に作用するという意味が生じるのだ。もし対象に質量がなかったら、加速度と言う概念は存在しない。加速度の存在しない『力』の概念は力にはなり得ない。

電荷と力

図1.電荷と電界と力

さて、電気物理学では『電荷』がすべての電気現象の理論的論拠となっている。電場に『電荷』が有れば、その『電荷』はその点の電界強度によって『力』を受けると成っている。(1)式のように、空間にある電荷集合体+Q[C]が有れば、その周りの空間は立体空間全体に電界強度E[V/m]で定義付けられると成っている。その空間に、他の『電荷』が存在するとその電界Eによって力を受ける。電荷が-q[C]とすれば、(2)、(3)式の力を『電荷』が受けると言う。(3)式が有名なクーロンの法則の式である。なお (r/r)は座標ベクトルrの方向を示す単位ベクトルの意味である。荷電粒子が電磁場で力を受けて運動する現象は実際にあるから、確かに間違いとは言えない。しかし、上に示したように、『力』の概念で述べたことも間違いではない。質量がなければ、『力』は掛からない。『電荷』に慣性は無いから、それは『力』の対象にはならない筈だ。もし力が掛れば慣性のない『電荷』は直ちに無限速度で飛んで消えて、運動論の対象にはならない。前にも、荷電粒子加速と電磁力 (2015/01/31)で問題にした。今回不図した思い付きで、『力』の概念について気付いたことが質量の慣性と言う意味であった。クーロンの法則を斬る (2013/01/06)で『電荷』とその上の(3)式の否定を論じた。今回はっきりと納得できたのが質量の慣性と言うものによって初めて『力』が意味を持つという事であった。それなら実際に電磁場と言う空間での荷電粒子加速現象はどのような意味なのかという自然世界の認識の課題である。実際の電磁場での粒子加速運動論には必ず質量を必要とするから、電子にも陽電子にもすべての粒子には必ず質量が付帯している。そこで一応運動力学論としての辻褄が合わせられている訳である。しかし電気回路の電流論に成ると、電流の単位アンペア[A]=[C/s]には決して質量は必要ないから、『電荷』だけで論じられることになる。この『電荷』と『力』の問題は、世界で実施されている荷電粒子加速実験の理論的根拠の問題でもあろうかと考える。

電荷と電磁場

もう一度電荷とその電界の意味を取上げて考えて置きたい。『電荷』の意味を考える時、とても不思議に思うことがある。或るプラスの正電荷の集合体が空間にあると設定されて解説される。クーロンの法則に直接関係する電磁場の論考に於いて、どのような原理で同一の符号の『電荷』が集合し得ると考えるのか。同一符号の『電荷』は離隔距離の2乗に反比例して強力に接近は拒否される筈である。子供達に教える教育の場で、クーロンの法則が取上げられて、説明される時には同一『電荷』の集合は排除されると教える筈である。しかし、図2.のようにいとも簡単に『電荷』の集合体で理論の解説が成される。これも科学論の不思議と言わなければならない。その時の集合電荷の離隔距離はおそらくゼロの意識で論理展開しているのだろう。ゼロの2乗分の1は無限大の排斥力となる。この事は教育者側の科学論の論理性の問題としても無視できない矛盾論の筈であろう。それはさて置き、問題は電荷周りの電磁場の意味である。図2.電荷とエネルギー のように空間の誘電率がεo[F/m]とすると、その空間のエネルギーをどのように理論的に解釈しているかという問題である。係数が(1/2)の問題はさて置くとして、一応wr=(1/2)εE^2^ [J/㎥]のような電界のエネルギーが空間にあると解釈する筈である。『電荷』からの空間距離rの関数として、『電荷』周りにはエネルギーが分布していると解釈してよかろう。しかし、物理学理論で空間の解釈をする時はこのようにエネルギーを認識している筈であるが、荷電粒子加速などの場合には、この空間エネルギーをどのように解釈しているのかはハッキリしていないようだ。このエネルギーの問題は理論物理学における『電荷』の概念の捉え方に関わる問題であるから。と言うのは、このエネルギーが空間に存在していると解釈するかどうかが最初に問わなければならない問題なのである。そのエネルギーは電界がある限り、空間の無限遠までも希薄になっても存在することになるからである。空間に存在すると解釈するなら、そのエネルギーを理論物理学ではどんな物理量と考えるのか。即ち『電荷』の一部なのか、『電荷』と無関係のエネルギーなのかと言うことを問う問答なのである。この解釈・考え方は至極幼稚な素人的素朴な疑問なのである。しかしこのような考え方が、理科教育・自然科学論に求められて居る易しさの科学論の姿勢であると考える。高度な数学的理論展開では、市民が理解し、納得する自然科学論にはならないから。本当の自然科学論は日常用語で解説できなければそれは正しいとは言えないのだ。何故このように『電荷』とその周辺空間のエネルギーの問題を論じるかは、高度な理論を展開されている専門の方々こそお分かりの筈であるから。ついでにもう一つ図2-1.電荷と力とエネルギーとして、単位電荷が空間に分布していたとする。この場合は、『電荷』間には複雑な力が掛ることに成り、その空間のエネルギー分布も正と負の電荷によって、種類の違うエネルギーが存在すると解釈するべきなのかなど理論的に決まりの付け難い問題が残るようだ。本来エネルギーには『正』と『負』は無く、ただ『エネルギー』が存在するかどうかの問題であるから。そういう意味で、物理学理論の易しい解釈を求めての論考である。易しい理論的解説は難しい数学や数式は必要がない筈だ。『電荷』が『エネルギー』を持っているか、いないかを答える事ぐらい難しい事ではなかろう。結局『電荷』とは何かを問うことである。電気磁気学、電気回路論あるいは電気工学のそれぞれの解釈の場で、『電荷』が如何なる実在量かの描像を示す事が求められていることと思う。それは次の謎解きの話になろう。

理論と電磁現象の間の謎解き

波形観測に欠かせない電気製品にオッシロスコープがある。電子銃からの電子ビームを平板電極間に通すと、その電極の電圧信号に従って、電子ビームの方向を制御できる。蛍光面にその制御されたビームの軌跡が波形を描く。その原理が電子電荷の空間電界による制御と解釈される。これが科学技術の電磁現象解釈原理となる。技術としてはその原理を理解することが必要であり、それだけで十分立派な電気技術者の仲間に入れる。教育もその意味で技術理論の習得への期待が国家の教育方針とされてきた。それはそれで良かった。『電荷』と言う概念を考え出して作り上げた意味はその為に有効であった。ところが、その科学技術用の理論を深く突き詰めると、とても曖昧で、論理性に絶えない矛盾が潜んでいることに気付く筈だ。科学技術教育ならそれでも良かった。しかし、自然現象を説き明かす物理学理論となれば、その矛盾を抱えて頬被(ホウカブリ)したままやり過ごす事はできない筈だ。ではそれはどんな矛盾で、何故理論が論理的で無いと言うかを説明しなければならないかも知れない。聡明な皆さんは既にお分かりの筈であろうが。その曖昧さを取り除くには、『電荷』が理論に絶えない概念であることを理解しなければならない。 f=q[v×B]+qE [N] の式で解釈するローレンツ力の力が掛る対象は電荷q[C]である。その式は質量が無い式だ。荷電粒子にこっそり質量が有ると条件付けられてはいるが、それは運動論を展開するには質量がなければ無理だからである。しかしあくまでも力の掛る対象は原理の式には『電荷』しかない。『電荷』には慣性がないから力が掛る対象にはなり得ないのである。しかし現実は、この式で解釈する通りの荷電粒子と認識する『電荷』のビームが制御される。この論理的不都合を解決する解釈法が一つあるのだ。それが『軸性エネルギー流』だ。電磁場空間内の空間電磁エネルギーの分布を理解する道である。『静電界は磁界を伴う』と言う奇妙な表現内容に鍵がある。電界と言う電場空間は、むしろ磁場空間なのである。磁場空間は磁束がある訳ではなく、軸性エネルギー流の場である。言ってみれば、『電子』も軸性エネルギー流子なのである。エネルギー流空間に電子と言う軸性エネルギー流子が通過すれば、エネルギー流同士の間の近接作用力が働くことになる。過去に載せた関連記事の図を挙げて置く。電子スピンとは?-その空間像-(2011/02/09)

 

 

 

 

 

 

 

素粒子-その実相-(2012/07/31)

 

 

 

 

 

エネルギー流と結合(2018/10/10)

 

 

むすび

問題の解決は『電荷』とは何かに答えることである。それはまた『電子』とは何かに答える事でもある。そこに未来の道が観えて来る筈だ。空間に実在するということは、その空間像を描くことでしか解決できない。抽象的な数式には姿が観えない。軸性エネルギー流は磁場と言う空間の物理的姿を示した空間像である。身近にあるマグネットのNSの磁極近傍の空間に在るエネルギーの流れの様子を示したものが軸性エネルギー流であり、それは磁極の表面空間を流れている回転エネルギー流である。その空間に実在するエネルギーを見ることはできない。それを計測することも、観測することも出来ない。その観えないものを『電子』などと捉えて、科学理論を構築して来たのである。『電荷』概念の矛盾に気づくなら、空間のエネルギーが(心にあるいは感覚的に)観えて来る筈だ。そのエネルギーに関する空間論は観測できないから科学論に成り得ないかもしれないが、そこに至らない限りは自然に心を添えないと言うことであろう。『エネルギー』を認識すれば、自然世界の本質が観えて来る筈だ。以上でクーロン力の矛盾についての論説は終わる。次の記事で、アンペアーの法則の回路電流における電子流の矛盾について述べたい。

励磁電流とは?

励磁電流否定の記事 変圧器の技術と物理 を投稿して。

(2019/04/16)追記。何処でも磁気や磁束は励磁電流で論じられる。元々電線の中に電子など流れていないにも拘らず、磁束まで電流との関係で定義される。ファラディーの法則の式を見れば、磁束と電圧の関係しかない。電流に因って磁束が発生するという意味など、その式には無いのだ。自然科学が科学技術理論で固められ、物理学としての自然哲学が欠落している処に理論の矛盾が放置されて来たと考える。変圧器を例に、巻線の1ターンコイル電圧 eu [v] = v/n [v] (nは巻数)を基準にして考えることを提案した。磁束や励磁電流という技術概念についても、長い技術的評価手法となっている伝統的な磁化特性を取り上げ、その意味の電圧時間積分との関係での解釈を図に示す。コイルの電圧という意味はコイル巻線導体近傍の空間に分布したエネルギー量の技術評価概念なのである。複雑な概念量を統一して捉えることが自然科学論としての未来の姿でなければならない。それを可能にするのは『エネルギー』しかない。励磁電流という曖昧な技術量を見極めて、磁束とは何かを考えて欲しい。なお、磁化特性は鉄心材料によって、図の①や②のように異なる。変圧器などでは特性が良く①に近く、インダクタンスはL[H]無限大とも見られよう。インダクタンスはその電気器具のエネルギー貯蔵機能を評価する空間特性の評価概念である。(2019/05/08)上の図を訂正した。磁束φと磁束鎖交数ψ=nφで、コイル巻数nの関係を訂正した。

気掛かりで、励磁電流とは?とITで検索してみた。1970,000件も記事が有り、様々な解説記事が検索される。変圧器をはじめ発電機あるいは電動機などすべての磁束の発生原理として、アンペアの法則の磁界発生原理で解説されている。変圧器の技術と物理で、せめて磁束発生原因の励磁電流という間違いはやめるべきだと指摘した。50年も前(正確には生命の危機を脱した、昭和46年秋に研究補助を頂いて、ロイヤーインバータでの単相誘導電動機の周波数制御運転をして、産業教育振興中央会の「産業教育に関する特別研究成果 別冊」に載せて頂いた頃)に筆者は既に励磁電流を否定していた。変圧器突入電流という電源投入時の現象も投入位相で電圧零時であれば、設計磁束の2倍程の ∫vdt [Wb=(HJ)^1/2^] の磁束量になるからと『電圧時間積分』で解釈すべきである。