タグ別アーカイブ: Education

日本雨蛙―遊歩道で―

忘れられない事、その一つに「日本雨蛙」がある。

『電荷』と同じく、専門家の学識、解釈を否定するようなことが多くて、『日本雨蛙』の「オタマジャクシ説」の否定まで、誠に申し訳なく遺憾に思いながら!

2006年6月26日。雨上りの昼頃、遊歩道上でやっと撮った。日本雨蛙の産まれ立ての姿。長く、日の出前の散歩で、小さな雨蛙を見てきた。産まれ立てでも、逃げ足は素早く近寄りがたいのだ。まして、メジャーで寸法を計るのはとても困難だ。1.5㎝に満たない寸法で、スマートな形だ。日本雨蛙は産まれ立てでも、既に雄と雌に違いが有るように思う。この写真は雄のようだ。

この写真は、「雨蛙 その謎」2006年7月20日発行文集の裏表紙にも使った。その2006年7月24日頃の、NHK朝7時のニュースで文集を『ニセ科学』の集まりで取り上げられている様子を見たと記憶している。勿論、雨蛙の専門家は「オタマジャクシ説」であり、小生の日本雨蛙は産まれて、人の目に付く時には決して尻尾は見せない等の解釈は『ニセモノ論』となるようだ。奇跡の遭遇 (2021/10/25) にも関連して。

この日の遊歩道で、幾つかの写真を撮った。その前日から梅雨の終りの相当の雨で、土が柔らくなって、深夜に「日本雨蛙」が生まれるに適している筈と、予測して写真を撮る心算で出掛けたのだ。予想が的中して、多くの産まれ立ての姿に出会えた。

上と下の写真は両方雄か。上は傍に葉草がある。遊歩道の敷石の大きさと雨蛙の寸法が比較できる。

 

これも追掛けて、やっと撮った。雌雨蛙かと思う。

この写真は側溝を見たら、十数匹の産まれ立ての雨蛙が居た。

下の写真も同じ傍のものだ。

みんな産まれ立ての雨蛙で、決して水中のオタマジャクシからの生態の『尻尾』等は人の目には付かないのだ。土から這い出した時は既に『尻尾』は無いのが『日本雨蛙』の特徴だ。

だから、ITの検索結果を見ると、オタマジャクシを田圃から採取して、育てて大きな尻尾を示す蛙を雨蛙と称する記事が多い。

専門家と言うお方の『二ホンアマガエル』と小生の認識とは『尻尾』の違いで区別できる。最近、漸くWikipedia の記事から「オタマジャクシ」の解釈が消えている。また以前ほど、オタマジャクシ説が多くはなくなったと感じる。

 

 

放射光の発生原因の不可解?

部屋の照明は白熱電球で、最近はLED照明灯具で得られる。

雷の稲妻光は天空の自然現象だ。本当は海水から蒸発した水蒸気の空間への放射熱エネルギーなのだ。『電荷』が何故光になるか、その説明が全くないのだ。科学者の解説が筆者には全くの『嘘』にしか思えないのだ。皆さんが何故『電荷』を信じるか理解できない。プラスの『電荷』とマイナスの『電荷』がどの様な反応によって『光』に変換されるかの解釈が全く示されていないにも拘らず、専門家の学説をいとも簡単に信じる事の不思議な社会現象が理解できない。殆ど考えない科学者集団の専門的複雑な権威に完敗の社会現象だ。

( +Q[C] ) *( -Q[C])    =    光『エネルギー』

上の式の『等号 :=』の数学的定義解釈の不可解。

何故、電荷が結合すると、どの様な物理的原理で『光』になると言うのですか。

『電荷』論者はどの様な解釈論を展開なさるか。『電荷』否定の私には理解できないのだ。

発光例。

白熱電球 (2013/02/28) の画像だ。エジソンの発明によって、蠟燭や燈油ランプから白熱電球の明るい照明技術の恩恵を受けてきた。こんな電燈の光放射現象についてもどれだけ論理的な物理学理論に因る解釈が示されているだろうか。電球フィラメントが2000度か3000度の高温度になると、光が放射される。『エネルギー』は熱であろうと光であろうと、どちらも同じ物理量のジュール[J]と言う実在空間量なのである。光の『エネルギー』をどの様な空間の量と認識するかが問われている筈だ。光も壁に入射すればそのある分が『熱エネルギー』に変換され光から熱に変わる『エネルギー変換現象』の経過を辿るのだ。『電子』論者は電源からどのように『エネルギー』を負荷に伝送するかを示さなければ成らない筈だ。『電子』には全くその機能を発揮するだけの論理性を担うことが出来ないのだ。

 雷の正体 (2012/11/13)で示した絵だ。送電線の鉄塔電線保持碍子に、碍子保護用具としてアークホーンが取り付けられている。雷の衝撃電圧が電線路に侵入した時、碍子の表面から火花を離す機能を発揮する。その火花をアーク放電と言う。当然発光と熱現象を伴う。

雷から光量子像へ (2021/08/27)の絵図である。雷の正体が何かを知ることは大事な自然現象の認識に欠かせない。この絵図は、その雷が空間に光の『エネルギー』の衝撃波を放射させる現象であり、その発生の瞬間の空間像の認識に役立つかとの思いで表現したものである。自然の世界は、その本質が極めて単純、純粋であるからこそ人が複雑に解釈したくなるほど理解が困難なものと思う。結局『電荷』なる虚構概念を仮想して、自然現象の『雷』を理解しようとした訳である。科学理論は人が自然現象を解釈する手段として創り上げたものである。だから物理学理論も、その原理を詳細に吟味すれば、その解釈論理には、とても曖昧で「こう解釈したら良いのではないか」程度の思惑論が多いのだ。『雷』はその観測に必ず放射光の稲妻が観測される。その光とは何かと本当に理解して『電荷』との論理性を捉えたかと言う問題なのである。

元々、雷撃の衝撃波形を、送電線路での保護対策の電気技術として研究される過程で、その電圧波形が基準波形として決められていた。その衝撃波形は『電圧波形』でオッシロスコープなどで観測され、その2乗に依り空間の『エネルギー波形』の伝播現象と当然の事として見做していた。

光の作用性の強さが『周波数』に依存すると言う科学的知見(プランク定数)で理解されていた。光の粒子性と波動性と言う二つの見方の統一が必要との思いから、雷撃波の空間『エネルギー』分布波との結び付き以外光の空間像は捉えきれないとの認識から、光量子空間像を提起した。その最初が、 28aYW9 プランク定数の次元と実在概念 第56年次大会 日本物理学会講演概要集 p.310. (2001)  である。『雷』が空間の熱エネルギーの飽和現象の爆発であるとの見方で、指数関数形に表現したのである。

結局、海の温度と上空の寒気団との関係から、地表の水蒸気が保有する『熱エネルギー』の水分子の膨張・収縮現象との兼ね合いで空間に『エネルギー』が滞留するのである。その『エネルギー』が保有限界を超えた時、突然の『エネルギー』放射爆発となるのだ。それが『雷』の本質である。決して『電荷』等の創作概念は無関係である。

光は、焚火の光も白熱電球の光も、稲妻の光も全て同じ自然の本質の姿、『エネルギー』の姿なのである。空間を光速度で伝播する『エネルギー』の縦波である。光は『エネルギー』である。熱も『エネルギー』である。電気回路を流れるのも『エネルギー』である。質量も『エネルギー』である。自然の本質は『エネルギー』なのである。

法則は思考停止の‥(オームの法則)

自然現象を解釈する、あるいは科学技術理論を繙くとき、その意味を理解するためのとても有効なものが『何何の法則』と言う形式の解釈論である。

その『‥の法則』と言うだけで、いちいち細かい条件や、状況を言わなくても大よその科学論の内容が伝えられる。

その御蔭で、科学論が論じ易くなっていることも確かだ。『‥法則』と言う解釈論法の有効な点だ。しかし、それはまた、その『‥の法則』と言うだけで、その内容の意味を深く考える習慣を失わせる欠点にも成り易いのも事実である。

『‥の法則』と言えば、それが過去の科学理論を支えてきて、現在まで教科書などの記述の内容を支えていれば、其れだけで科学論の常識と成って、深く考える、疑問を抱く事は無い。

全て思考停止の安穏御殿で安んじて過ごせる。

その意味を有名な『オームの法則』を例に取り上げてみよう。

法則とその回路。

1820年の『アンペア―の法則』。

1826年の『オームの法則』。

1831年の『ファラデーの法則』。

中でも、『オームの法則』は誰でも知っていて、電気回路を考える時に欠かせない、基礎的科学技術理論の『法則』と言えよう。

図は電球の点灯回路だ。『電圧』 V[V]、『電流』I[A]、『抵抗』 R[Ω]そして負荷の『消費電力 』P[W]の4つの電気技術概念量の関係で、電気現象を解釈する『法則』を考える意味を表現した回路である。

この法則の御蔭で、電気回路現象の利用は誰でも可能になって、現在の電力『エネルギー』の生活を支える基盤技術文化を構築できた訳である。

しかし、それでも『電圧』および『電流』の物理的意味をどれだけの人が分かっているだろうか。それは技術法則が、それ以上考える必要もなく完璧で、その自然の真髄を考えても経済的利益にはつながらない宿命に在るからなのかも知れない。

『電流』、『電圧』の物理的意味。その意味は空間を流れる『エネルギー』で電気回路現象を理解する必要があるのだ。

やめて欲しい教科書や巷のIT検索場の解説。特に中学生の、まだ理解できない子供達に対する押し付けの、考えない人の解説が横行している現状が悲しくも怖ろしい。

それは『電流』が『電子』の逆の流れだと言う、自然の世界を理解していない、自然世界に『電荷』など実在しないにも拘らず、『電子』と言う『真赤な嘘』の『創り概念』に因る解説である。

その責任は大学の教育者や物理学研究者の専門家にお考え頂かなければならない社会的課題でもあると思う。社会の仕組みや体制、社会制度を考える一般市民の科学的認識による未来社会への希望が生かされて、未来を構築する道に成るものと思う。その意味で少し、『電荷』による解釈の具体的な問答を提起し、皆さんからも教育に意見を反映して欲しいと思う。

〈問答〉

『電荷』概念による解釈理論。特に『電子』が『電流』の逆に流れると言う解釈理論の意味を考えて、その『電子』が論理的な科学理論となるかを確認して欲しい。

回路条件。

回路条件を右図のように仮定する。電気回路の分布静電容量を、一例としてC=1[pF/m]と仮定した。電球の電力をP=1[W]。勿論『エネルギー』の電気回路内の伝送速度は光速度である。この空間を流れる『エネルギー』の概念が重要と解釈するが、物理学理論ではほとんど意識されていないようではあります。

「問1」 電線路電圧3[V]は何によって決まるでしょうか?その『電圧』の原因が『電荷』ならその分布はどうなるでしょう。またその『電荷』の内、プラス側の『電荷』はどの様な『物(元素、イオンあるいは素粒子)』が担うのでしょうか。

「問2」 電流 I=0.33[A] となる。『電子』が流れるとすれば、その電線内の分布量[C/m]または[個/m]は幾らでしょうか。また『電子』の流速は何によって決まるのでしょうか。ただし、『電子』の電荷は1.602×10⁻¹⁹ [C]とします。

「問3」 特に重要な問題が『電子』はどの様な機能によって、ランプに消費する『エネルギー』を伝送するか。という事である。『電子』の運動エネルギーかそれとも他の機能で負荷に届けるのかの『電子』論に対する『エネルギー』伝送の根本的疑問である。届けた後の帰りの『電子』の保有『エネルギー』はどの様になるか。それが『エネルギー保存則』の意味を考えて、欠かせない基本である。電源から負荷に『エネルギー』を伝送するのが電気回路の役割であるから。過去の記事電子は流れずがある。

「問4」 上の『電子』の分布の場合に、その流れが『電圧』の電荷分布に影響を及ぼすことはないのでしょうか。

以上、物理学理論の根源概念『電荷』が電灯点灯回路に果たすだろう機能を仮想して、その意味を考えてみた。その場合の疑問を『問答』にした。全く専門的学説に疎い者の解釈ですが、基本的な疑問を取り上げました。余りにも幼稚な疑問であるとは思いますが、大学理学部の教育関係者や理論物理学の専門家の視点で解釈を頂ければ有り難いです。

 

 

小部屋の照度とエネルギー

(2022/04/20)。何処かで学生さんや大学の先生方に話がしたい。儚い望みかと噛み締めながら。話の内容は途方もない、科学常識理論から外れた事に成るかも知れないが。

その訳は、余りにも科学論の理論物理学や数学的記述の基礎理論解説論が専門家と言う業界の絵空事理論に成っているようで、何とかできないかと考えてしまう。余り誰もそのような意識を持っていないようだから尚更だ。解決すべき問題はただ一つ『エネルギー』の空間に実在する自然世界の基礎認識を持って欲しいだけなんだ。ここでは、少し変わった視点で、光の明るさの照度という照明の意味に絡めて、『エネルギー』を考えてみたい。日常生活に根差した科学論としての『エネルギー』の話を。

小部屋に電球40Wを点灯した。ワット[W]は電力、仕事率という1秒間当たりの『エネルギー』の消費量を評価する技術概念量だ。電灯線から電気の『エネルギー』を取り込んで、電球で光への『エネルギー』の変換をする科学技術的方法だ。科学技術としての照明学会などの部屋の明るさを評価する独特の技術概念がある。その単位が、照度はルクス[lx]で、光の量・光束はルーメン[lm]が使われる。その量的評価にも、大事な『エネルギー』量の意味は関係付けられていない。というより分からない、あるいは評価できない宿命にある。光の明るさは人が感覚的に認識する生物学的検知機能によって決まるからである。目の視感度曲線によって光の量・『エネルギー』の量に比例した強さでは感じ取れない人の感性に因っているからだ。紫外線が幾ら強くても明るさとしてはほとんど感じず、見えない。同じく「赤外線」も見えない。

この小部屋の照度で何を言いたいかというと、電球が放射する光の『エネルギー』が何処に消えるかを尋ねたいのだ。さて中学生に聞いたらどのように答えるか?大学の物理学教室の先生はどの様にお答えなさるか。電球が放射する『エネルギー』量は時間積分で無限に部屋の中に増加する訳だが、決して明るさが時間と共に明るくなることにはならず、ある一定の値の明るさに落ち着く。照明論では球形光束計という光束測定の技術で決まった定義付けで評価する量の問題ではある。無限反射の級数計算で評価する。その光束量も、光と言う空間に実在する『エネルギー』の流れ・光速度流の意識で理解して欲しいのだ。前に、布団乾しー温度の理科基礎(仮称)ー (2016/04/14) で太陽光線の意味を述べた。光は熱にも質量にも変換されると言う解釈である。小部屋の照度は放射された光の『エネルギー』が消えてなくなる訳をどの様に考えるかという、日常生活感覚論ともいえる問題の筈だ。無限の壁の面での『エネルギー』の縦波の入反射現象の解釈問題でしかない。

科学技術理論と科学基礎概念・理論の間の不協和・断裂問題。それは学校基礎教育問題である。

現在みんなが、科学技術がこのインターネットの情報化を構築し、医学のコロナウイルスの脅威から人を救うなど、その恩恵によって、理解の限界を超えた世界に生きている。しかし、その科学技術と科学基礎理論との間にポッカリと空いた断裂の暗闇が、望ましい「科学リテラシー」の基での市民による未来社会構築を進めるべき道に空恐ろしい断崖絶壁を創り上げてしっまった。何故この様な「嘘」の科学基礎理論が理論物理学者によって、正しく修正されずに来てしまったのか?どこに『電子』や『電荷』の必要があるのか?役にも立たない嘘概念で理論物理学が世界を混乱させている。太陽からの贈り物の『光』が古代の地球の巨樹を繁茂させ、植物の光の同化作用で『ブドウ糖』の『炭素』が創られ、それによって巨大な底知れぬ巨大な動物が繁茂し、燃料と言う地下資源化を引き起こして、現在の地球が有る。太陽からの『エネルギー』が基に成っている筈だ。大きな屋敷のお庭を見れば、そこには巨樹の化石化した庭石の柱状節理の姿も見える。みんな光の『エネルギー』を意識せずには科学理論は何処か大きな矛盾を抱えた怪しさの道に迷い込む筈だ。今がその時にある。

光の空間像認識

(2022/04/16)。自然科学という意味は、自然が示す諸現象をどの様に解釈し、その真相をどう理解するかを考究する学問分野を指すと思う。普通は、共通な科学的手法によって認識する、伝統的解釈法によって得られた結果の体系を指そう。それがその時代の「科学パラダイム」と言うものに成ろう。科学的と言えば、科学的手法での実験結果が誰でも共通に検証可能である内容であってこそ認められる。その意味で「光」という自然世界に満ち溢れる物理量をどの様に科学論として捉えるかは、とても難しい。それは空間を伝播する光の『エネルギー [J] 』の空間像を決して測定できないからだ。その空間を『光速度』で伝播する光の『エネルギー』の分布密度など実験的に測定などできないだろう。だから科学的に光の空間像を理解することも難しいことなのかも知れない。それは夫々の人の自然に対する感覚的な認識に負うより外に無いかも知れない。『津波』現象の物理的認識も、専門家の解釈では『エネルギー [J] 』(水の運動エネルギーではない)の海洋伝播現象という認識が無いようだから、理解に到達できないかも知れない。物理学教育で、『エネルギー』の空間に実在する自然世界の根本的真理を認識し、取り上げていないからだろう。空間の『エネルギー』の実在を認識していない事は大きな教育上の欠陥である。それは光の空間像を認識する事が一つの具体的な解決法に成ろう。この記事の前提として、光の速度を取り上げた。

光の実験的測定法。筆者は光を物理的計測法で測定したことも無い。大学の物理実験で『ニュートンリング』の学生実験リポートに結果を報告した程度だ。だから、このブログの内容も、物理学会で発表した内容も全て、「こうなのではないか?」という感覚的認識に基づいたものでしかない。そんな内容を物理学理論として認知されるには、従来の科学的手法の限界を超えた、別次元の解釈でなければ意味はないのかも知れない。そこには、自然科学にもたらした数学の功罪 (2020/08/04)の記事も一つの視点となるかも知れない。

別次元解釈。それは空間に実在する『エネルギー』を認識するかどうかになる筈だ。物理学理論が『電子』論で解釈する手法である限り、自然の真相を捉える感覚には到達できないだろうと言う確信にある。その具体的論証の対象が「光」であろう。

光はエネルギーの縦波である。

電磁波も『エネルギー』の光速度伝播現象である。それが『静電界は磁界を伴う』の単純な実験結果なのである。『電界』も『磁界』も空間に実在する『エネルギー』の科学的手法での解釈概念でしかないのだ。自然世界を構成する根源要素は全て『エネルギー』なのである。素粒子と言う物もその構成原は『エネルギー』である。だから質量も、E=mc² [J] 、m=E/c² の様に『エネルギー』E[J] が局所的に集合して質量m[kg]となるという意味で解釈する。

光には物理的な性質で、「粒子性」と「波動性」の二つが備わっていると言われている。その意味をどの様に統合して解釈するかが大事な考究の視点である筈だ。その統合解釈には『エネルギー』の空間像以外ない筈だ。電磁波も光と同じ波動である。

一粒の光量子 (2021/08/12)にその空間像を示した。この空間を伝播する『エネルギー』の測定が困難であるから、物理概念、物理量と単位 [J] を取り扱い難いのだろう。単位系で、MKSJ となり難い意味でもあろう。

単位系 MKSA と MKSJ

科学技術の世界では経済活動との関係で商業取引が公正でなければならない。計量が世界で統一された測量基準に則らなければならない。その測量基準の基本量が [MKSA] 等である。そこには電流値のアンペア [A] が組み込まれている。不思議に思っていたが、『エネルギー』という空間を流れる物理量の単位ジュール [J] が入っていない。

何故かと考えた。電流[A]は電気回路現象の解釈の基本概念として、19世紀初めのアンペアの法則で最初に認識された物理学の基本量になったと思う。しかし、その電流の現在の物理学での認識は『電子』の逆流として一般的に解釈されている。その『電子』とは負の『電荷』の粒子という認識にあるようだ。その『電荷』概念が何時頃から物理学の解釈基礎概念として定着したかが良く分からない。計量法の基準がどの様に決まって来たかを少し調べた。

1874年。英国科学振興協会(BAAS) でボルト[V]とオーム[Ω]の二つが実用単位に導入された。

1881年。国際電気会議 で上に加えて、アンペア(A)クーロン(C)、ファラッド(F)、ヘンリー(H)、ワット(W)ジュール(J)も加えられたとある。ここで殆どが取り上げられた事に成る。

1893年。シカゴの国際電気会議。電力のワット(W)と熱量のジュール(J)が

W=AV=10⁷abW  J=VAs=10⁷ abJ

と定義された。abの意味理解できず? cgs単位系での関係かもしれない。

cgs系からMKS系へ。

1901年。MKS単位系で、 W=kg m²/s³  J=kgm²/s² と統合。

1948年。 国際電気会議(CGPM)、

1950年。 国際電気標準会議(IEC)

で MKSA が採択された。

1960年。国際単位系(SI)もそれを引き継いだ。

電流アンペア [A] が選ばれたのは、1948年のCGPMで採用され、簡便だから2019年のSI基本単位の再定義まで使われた。とある。

結局、1881年に『電流』アンペア[A] と『電荷』クーロン[C]が採用されたようだ。当時はキューリー夫妻の元素の放射性現象で漸く原子の謎に研究が向き出したころである。原子構造は勿論、『電子』も不明の頃である。第二次大戦後に、MKSA単位系がさいたくされて、今日まで [A] が電流計で測定可能という事で使われている訳であろう。

エネルギー [J] の世界。

『エネルギー』が物理学理論で、空間に分布した物理量だと認識されていない。東洋哲学の一つの至言「色即是空」がある。この意味を『エネルギー』との関係として自然世界に観照してみる。

自然世界は目の前に溢れる生命の天然模様を見せている。その姿に触れて人は心ときめかす。森羅万象の『色』である。『電流』という概念も電流計で認識できる。しかし、それは自然とは違う。寧ろ電流計で測定できる技術量の『電流』が見えることが、『色』と人が勘違いする原因となる。

mc² =E [J]  (式)

で、質量m[kg]は見える『色』の自然である。しかしその質量は、その根源は質量ではない。光の『エネルギー』が局所化した姿である。例えば、水素のその構成の基も光の『エネルギー』である。

だから原子はすべて、『エネルギー』に究極で分解してしまう。だから質量mと『エネルギー』Eは(式)のように等価となる。

『エネルギー』になった時、それは『色』の有ると思う状態から『空』の何もない状態になる。

「色即是空」はその意味と解釈する。東洋哲学の自然観だ。

空間に実在する『エネルギー』を科学的手法で測定できない。だから物理学理論で、科学的物理量と認識できない事に成っている。

しかし、[MKSJ] の[J]を認識しない度量衡は人の自然観を誤りに導く。それは教育における『学問の自由』の意義に繋がる。

クーロンの法則の眞相

大変だ。クーロンの法則と言えば無意識に『電荷』に関する法則と思う。それは、『電荷』の単位が「クーロン[C]」であり、フランス人のクーロン (Charles Augustine De Coulomb  1736-1806)の業績を讃えて採用した『電荷』の単位と思い、その関係からの意識によって。

実は、『電圧』の概念がどの様に構築されたか気になって、『電圧概念の起源』として検索して確認した。ボルタの電池の発明の頃の関係としてどの様に測定と概念が採られたか?を調べた。その検索結果の中に、電気の歴史年表と言う記事に出会った。

その記事に、「クーロンは磁石には2つの異なった極があり、同じ極は反発しあい、異なる極は引合う。力は距離の2乗に反比例する。」があった。

その当時は未だ『電荷』の意味がそれ程はっきりと意識されていなかったのではないかと思った。『電荷』に対して『磁気』なら磁石で感覚的にも分かり易い経験的意味で意識できたと思った。

おそらく、20世紀に入ってから、『電荷』の単位「クーロン [C] 」から、誤って磁気に関する法則を『電荷』に関するものと物理学教科書などで解説した事が始まりであった結果ではないかと思った。

クーロンの法則を斬る (2013/01/06)の旧い記事であるが、その中で・・斬る 等と記したが、それはあくまでも『電荷』に対する意味に対してであった。

『電荷』など決して、自然世界に実在する物理量ではない。改めてあらゆる自然世界観を基礎から作り直さなければならない所に立って居る筈だ。物理学理論の根幹から作り直す時代に居るのだ。原子構造の認識も『電荷』では矛盾論のままだから。

電気回路空間とエネルギー伝送特性

(2022/02/14)。今日のダッシュボードに記事、特性インピーダンスから見る空間の電気特性 (2013/11/29) が一つだけ挙がっていた。丁度述べようとする内容に関係するものだ。

電気回路が、漸くどの様に『エネルギー』を伝送するかの物理的特性が掴めてきた。もう曖昧で不明確な科学技術概念に因る電気回路現象を無理して、自然界に実在しない『電荷』などで取り繕った解釈法を採らなくて良いところに到達した。ただ、『電子』によって電気回路の『エネルギー』の伝送現象が論理的に解説できれば、『電子』の価値もあるのだが決してそれは不可能の筈だから。運動エネルギーや位置エネルギーあるいは熱エネルギーを『電子』に背負わせての伝送などお伽噺にも成らないし。物理学理論で『エネルギー』を忘れてはそれは自然世界から目を離した科学技術理論だ。

前の記事、エネルギーと電流(2022/02/13)で述べた内容をもう一度まとめる。

前の記事より、回路のスイッチSでの短絡位置を変えた。意識的に、回路空間が『エネルギー』伝送特性を決めるという意味を強調したかった。電線路抵抗でそこを流れる『電流』によって決まると言う『オームの法則』では、電気現象の物理的特性を本当の意味で理解できないのだ。その違いを示したかったから再び取り上げた。電線導体内など『電流』は流れていない。勿論『電子』などこの自然世界に存在しない。電気回路現象はその電線で囲まれた空間を流れ、伝送される『エネルギー』によると言う眞實が理解されなければならない。電線路空間の特性は、その線路定数C[F/m] L[H/m]によって決まってしまう。特性インピーダンスZo がその伝送特性の基本を決める。それに対して負荷が幾らかで伝送電力が決まる。負荷抵抗Rを

R= αZo    α=R/Zo

と捉える。αは単なる係数である。

要するに、二本の電気配線で構成される空間がどの様なものかで、伝送特性が決まるのだ。電源電圧と言う技術概念量はとても優れた特性解釈概念量である。それが何を表現したかが分からなければならない。検索情報などには、丁度水の水圧のような意味だ等と出ている。そんな頓珍漢な意味を述べる程厳密に納得しようとすれば曖昧模糊とした解釈論が飛び出す事に成った。『電流』は回路を回り流れて、閉じた還流概念であるから、水圧で元に戻る意味など表現しようが無いにも拘らず、そんな解説まで飛び出す。恐ろしい、全く論理性等微塵もない珍科学論だ。バンド理論の『正孔』も同じようなものかも知れない。新たな目新しい構築概念で、人の意識に混乱を積み重ね、結局総合的に矛盾の重層構造を創り上げてしまった。そんな科学理論全体を統合して論理性を論考するなど、全く経済的利益にも成らない事は誰もしない。専門業界に嫌われるだけだ。だから科学理論は矛盾の病に侵されてしまった。1987年4月(今から35年前)に『静電界は磁界を伴う』と言う電気磁気学理論の根本的矛盾を問う実験結果を発表した。誰もが実験してみれば現在の物理学理論で理解できない事実に気付く筈だ。しかし矛盾が理論の社会的仕組みを破壊するようなことは許したくない意識が科学者の最優先事項となる。アンペアの法則の矛盾など気付きもしない。

それらの意味を考えて、上の図は電線路空間がスイッチの位置で変わり、回路特性も変わるという意味を単純な電気回路を通して、理論の具体的思考問題例として示したものだ。

伝送特性を一応式にまとめた。

コイルの貯蔵エネルギーE[J]は『電流』によって発生するものでなく、電線路空間を通してコイル導体間の隙間から『エネルギー』が流れ込むのだ。その『エネルギー』はコイルに印加される電圧Vl「V]の時間積分に関係したものとして流れ込む。

E=(∫Vl dt)²/L [J]

電圧の時間積分の2乗が漸く『エネルギー』の次元[JH]に繋がる。次元で、『エネルギー』の単位[J]が現れなければ、それは自然現象を利用した技術用の解釈概念だと見做して間違いない。自然空間に実在し、展開する現象は必ず『エネルギー』をその本質として保持して現れる。どの様に科学技術が進展しても、その『エネルギー』の空間像を捉えることは不可能であろう。光の空間像(『エネルギー』の分布空間像)を見る事は出来ないから。コイルの内部空間に貯蔵された『エネルギー』を科学技術計測法で測定する事は不可能である。その技術的に計測する手法として技術概念、『電圧』や『電流』を創り出した事に人の優れた智慧が生かされたのである。

この回路でのコイルに印加される電圧は抵抗との関係で、指数関数での表式となる。その時間積分で算定される。計算をお願いしたい。

電気回路現象で、観測不可能な自然の実在物理量『エネルギー』は電線で構成された空間の形状によってその伝播状況は変化する。その自然現象を数学的に厳密に捉えて、理解しようとしてもそれは無理であろう。指数関数式(ε^-αt^)でも、過渡現象は無限時間でも収束(零にならない)しない矛盾が残る。

瞬時電力の具象解剖

(2022/02/01) 電力とは何か?

誰もが生活に欠かせない、ライフラインである事を知っている。それが電力である。これほど日常生活で無意識に利用しながら、その物理的意味を理解していないものも無いだろう。そのように書く自分も、長く電気回路現象を考えて来たにも拘らず、本当に深く理解してなかった。如月に入り、今年のカレンダーを一枚剝がした。何となく気持ちも穏やかでない中で、瞬時電力とはどの様な物理的意味で捉えれば良いかと考え直した。

概して、学術理論は、物理学理論は抽象的な数学式などの解釈手法で論じられるものが多い。決して電気現象を論じる時、『電荷』とは何か、『電流』とは何か等の本当の基礎的な概念については全く考えることをしない。決まった科学論の常識の上での話になる。その科学的常識に習熟していない一般の市民はその話に採りつくことが出来ない事に成り易い。

抽象論と具象論。誰もが理解し易い話は、目の前にある空間にその具体的像を提示することが求められる筈だ。光の振動数がどんな特性を示すか等との話は全く学術の解釈法に慣れなければ理解できない話になろう。漸く電力の空間での像が示せるかと言う処まで辿り着いた。だから具象解剖論とも言えよう。その意味で電力の解釈を示したい。電気回路現象には『電子』など何の役にも立たない過去に人が創り上げた空想的仮想概念である事をはじめに指摘しておく。

『オームの法則』と電力。

電気技術の基礎理論は⦅オームの法則⦆である。そこには『電圧』と『電流』と言う基礎技術概念で電気回路現象を解釈する基本が示されている。上の図は2005年に描いたものだ。2010年に  電流は流れず で電気回路は『エネルギー』の現象である事を述べた時も使った。この回路をオームの法則では

瞬時電力

の様な回路図で表現し、解釈する。『電圧』V[V] 、『電流』I[A]そして負荷抵抗 R[Ω]の3つの技術概念で回路動作を解釈できる。とても優れた、完全な電気理論と成っている。直流回路であるが、その電力も瞬時電力として、電圧と電流の積で評価できる。これが科学技術の自然現象を利用するための理論体系の重要な基礎を成している。

科学技術概念と自然現象。

電気理論が完璧であるから、『電圧』、『電流』がどの様な物理的意味かを問う事をしない、疑問にも思わない。その科学技術用の理論体系を構築するには、理屈が成り立たなければならない。論理的である為に、『電荷』とか『電子』などの理論の基礎とすべき物理概念を創造し、定義した。それらは物理学理論の分野から特に組み込まれた概念のように思える。電気回路論や電力技術分野で組み込んだものでは無いと思う。しかし、どう考えても自然世界に『電荷』や『電子』が存在するとは信じられない。今、電気回路現象のその真相が分かった時、やはり電源から負荷まで何が伝送され、供給されるのかと言えば、それは他でもない『エネルギー』でしかないのだと分かった。電力の単位ワット[W]は書き換えれば毎秒当たりの『エネルギー』量ジュール[J]を評価する単位である。その『エネルギー』の単位ジュール[J]で計量するものは物理量として意味を成さないと考えるのか?物理学の回路解析に『エネルギー』と言う概念が認識されていないから。電気料金を支払って使っている電気量『ジュール[J]』を電気回路の現象に考慮しないで理論が成り立つ筈は無かろう。長い科学技術の歴史の中で、理論物理学の中でその『エネルギー』と言う自然世界の根幹を成す『実在物理量』が無視されてきた事への驚きを禁じ得ない。

「瞬時電力」という意味。

その物理的意味を考えてみよう。筆者も感覚的に「瞬時」と言う用語はとても厳密性のある概念を表現すると思って、良く使った。『瞬時実電力』や『瞬時虚電力』あるいは瞬時電磁界などと使って来た。しかし、『瞬時電力』と言う用語の使い方は初めから矛盾を含んでいたことに気付いた。電圧と電流も瞬時値がある。その積も当然瞬時値になる筈と思う。しかし電力の単位の意味は1秒間当たりの値である。1秒間は理論的に時間の瞬時ではない。光なら30万キロメートル先まで届く時間だ。電気現象も光の伝送速度に近い変化の回路動作だ。『電流』だって「電荷」概念で解釈すれば、その単位アンペア[A]も『電荷』との関係で、[C/s]の様に1秒間当たりの値だ。それらの積が瞬時値になる訳は論理的に無理だ。然し実用的には「瞬時電力」と言っても電気技術論としては許されよう。然し乍ら、論理性を身上とすべき理論物理学では、そのような意味は使えないだろうと思う。確かに物理学では『電力』など意識しないから『エネルギー』と同様理論には無用の電気量なのかも知れない。

『電力』とは何か?

ここから電気物理学は始めなければならない筈だ。地球温暖化の社会的問題にもなる『エネルギー』を意識しない理論物理学では社会的責任も果たせない。「瞬時電力」は『電圧』と『電流』の積と言う捉え方では、その『エネルギー』の瞬時的状況を理解するのは無理である。せめて空間に流れる『エネルギー』の分布量を理解することで、その実態がわかろう。『電圧』も『電流』もその概念の奥には『エネルギー』を評価する技術概念であったことが隠されていたのだ。その意味は自然単位系の[JHFM]での解釈が必要になる。時空は[H] [F]で、そこには『エネルギー』だけが展開する自然世界がある。その『エネルギー』とは光であり、見える光も見えない電磁波もある。

「瞬時電力」は伝送エネルギー分布として。

オームの法則の回路を『エネルギー』伝送現象として観る。

漸く電気回路現象が『エネルギー』の伝送回路として理解できた。余りにも有り触れた電気回路だから、その現象を科学論文とするには拍子抜けするような気もする。到達した結果は誰もが分かり易いと思う。中学生でも『電圧』とは何ですか?等と質問したくなる科学技術概念の理論はそれなりに難しい意味なのだった。ただ『エネルギー』が流れている事を感覚的に捉えられるかである。特別に難しい数式もいらない。電線路の導体で挟まれた空間を、電圧の負側の電線導体近傍の空間を導線に沿って、ほぼ光速度に近い速度で、『エネルギー』が流れているだけなのだ。その『エネルギー』の分布量が幾らになるかは、電源の所謂「電圧」と言う技術概念がとても良く示しているのだ。

 

『電圧』は電源が持つ『エネルギー』供給能力を捉えた技術概念だ。電線路を張れば、その張り方で電気回路の空間構造が決まる。空間構造は電気解析で、分布定数回路として取り扱われる。電源電圧が直流であろうと交流であろうと、その回路特性はただ空間構造で決まる。科学技術解釈で『静電容量』と言うコンデンサの意味を使っている。それは正しく電線路の空間の、電気の『エネルギー』をどれ程保有できるかの特性値に成っている。電源に電気回路空間を繋げば、自動的にその電源の能力にあった『エネルギー』が電線路空間に流出し光速度の速さで、全体に規定の『エネルギー』分布空間を生むのである。電線路の単位長さ当たり、1m当たりの『エネルギー』分布量をδ[J/m]で捉えれば分かり易かろう。その意味なら「瞬時電力」と言った場合の物理的意味が分かると思う。光速度で流れる『エネルギー』だから、1m当たりの値など数μジュールでも大きな電力量となる筈だ。

無負荷時。『エネルギーギャップ』と『エネルギー』分布密度。

『エネルギー』分布密度δv[J/m]は電線路の空間構造に対して、電源が規定する『電圧』に対応して自動的に決まる。無負荷時なら、静的定常分布密度で電線路空間が『エネルギー』の値となる。この『エネルギー』の分布密度量は、電気技術量『電圧』の意味を表すものとして『エネルギーギャップ』と言う表現を使って来た。半導体接合面や電池の陰極電極表面空間に対してその『エネルギーギャップ』と言う用語を使わせて貰った。『エネルギー』は空間で片側に偏る性質があると認識しての使い方である。ロゴウスキー電極への印加電圧に対して、負電極側に高い密度の『エネルギー』分布を示して流れる。

負荷時。

負荷抵抗値は単位オーム[Ω]で決まる。純抵抗負荷なら『エネルギー』を一方的に消費する機能要素だ。しかしそれも抵抗内部は微細構造体であり、『エネルギー』を線路空間から吸収し、内部空間に貯蔵しそして高エネルギー密度空間と、温度上昇を来し、遂には外部空間に『熱エネルギー』、『光エネルギー』として放射する。負荷が掛かれば、電線路の特性値 C[F/m]から抵抗体内の構造空間に『エネルギー』が自然に流れ込む。抵抗体も内部は空間構造であるから、その機能はR=√(Lr/Cr)[(H/F)^1/2^] の様な次元で捉えられる。だから線路特性、特性インピーダンスZoとの比較値で解釈して良い。R=αZo と置いて良い。α=1.であれば負荷と電線路が整合した状態である。電圧による供給エネルギーがそのまま負荷に流れ込み、δv=δI [J/m]である。一般には、1<αである。その時のα値は

α=R/Zo=δv/δI

の関係がある。

新電気回路解析法。

自然世界の実在物理量『エネルギー』を認識した、電気回路解析法の新しい物理学理論への扉でもある。電気回路現象には『電荷』も『電子』も無縁の長物概念である事を認識することから教育は始めるべきだ。

(参考): エネルギー[J(ジュール)]とJHFM単位系(2010/12/18)

日本物理学会に参加させて頂き、最初の発表内容でもある、2p-D-11  物理概念とその次元 (1998).

 

リアクトル負荷の電気回路現象

送配電線路は電気エネルギーを必要とする需要家に、その『エネルギー』を供給する電気設備だ。需要家は高炉、製造工場、高速鉄道(リニア新幹線が未来の悔恨とならないか気掛かりだ。技術開発に懸命なご努力をなさる方々には済まないのですが。需要電力が原子力発電一機分に近いため、温暖化と生活環境破壊の原因となる虞がある。トンネル風圧がリニアの利点を消し去るから。新技術開発の社会的合意の問題が取り残されていないだろうか。)あるいは高層ビルの照明・電熱など多岐にわたる負荷が対象になる。

負荷の形態はその『エネルギー』の受給によって、電線路の回路現象にその影響が現れる。半導体回路などが増え、そのスイッチング特性によっても様々な悪影響が現れる。

電動機などもその『エネルギー』の消費にリアクトルの特性、『エネルギー』の貯蔵・放出が関わり、電気回路特性に僅かな影響を及ぼしている。それは実際にはベクトル解析手法の中での電気理論として分かってはいる。

電気回路現象の特性を理解するには、『電圧』『電流』による解釈ではその物理現象としての真相を理解することはできない。それらの概念は電線路をほぼ光速度で伝送する『エネルギー』を電気技術評価量として評価した概念であるから。電気現象の物理現象としての理解はその『エネルギー』がどの様に電気回路内で振舞うかを捉えなければ不可能である。負荷にリアクトルの誘導性が含まれる場合が、その電気回路内の物理現象を理解するにとても良い例題となる。それはリアクトルの『エネルギー』貯蔵が電源電圧の位相との関係で、回路内への『エネルギー』供給源としての働きが丁度電源と似た機能を発揮するからである。その意味を理解すれば、『電子』が回路を流れる等と言う間違った物理学理論は消し去られる筈だ。『電子』が負荷にどのように『エネルギー』を供給するかの論理的解釈が示されれば、考え様も有るかも知れないが、それは無理である。要するに物理学理論の欠陥は『エネルギー』の空間像で認識できていない点である。

誘導性負荷時の電圧。初めに電源と電線路電圧の物理的現象を述べておこう。

負荷が誘導性の場合は、その負荷には幾分かの電線路側に戻す『エネルギー』の原因となる e(ωt) [J]を保有している。電源はその端子電圧 vs(ωt)[V]のみしか制御できない。電線路内全体の電圧など全く監視・制御できない。ただその『エネルギー』供給端の電圧を制御するだけで、自動的にその端子の回路定数 C[F/m] が電線路に必要な『エネルギー』の分布量を電源側に放出させるのである。電線路全体で、電源の制御電圧値に対して欠損あるいは余剰が生じれば、自動的にその差分を補うべく、電源から『エネルギー』が供給されて、電線路全体が規定の電圧に保持されるように修正されるのである。更に負荷が誘導性の場合は、負荷も電源と同じような『エネルギー』の電線路内への放出機能を持つ。

『エネルギー』の光速度伝播現象。電線路はその構造によって回路定数が決まる。しかし、『エネルギー』伝播空間媒体が空気であれば、その伝送速度は光速度 co=(μoεo)^-1/2^[m/s]になる。絶縁媒体なら速度は落ちる。『エネルギー』は電線路導体内など流れないから。この『エネルギー』の伝送速度が電源電圧制御指令に従いながら、電線路内の電圧分布を基本的に支配する。

線路内電圧vx(ωt)が電源からの距離xとすれば、同一時刻tであっても、その位置の『エネルギー』分布は電圧波形の遅れとして、厳密には電源より⊿t = x/co [s] だけ位相が遅れる。しかし、光速度はその遅れを考慮する必要が無い程の瞬時伝播の速さである。それでも『エネルギー』の伝播が現象の基本になっている。さらに、そこにリアクトル負荷の『エネルギー』の回生現象が加われば、複雑な位相の状況を呈する。以上の現象を基本的に認識しながら、電気回路現象を電気理論の電圧、電流で解釈する場合も、常に『エネルギー』の意味を意識する事が大事だ。

vx(ωt) = √(δx/C) [V]

のように表される、電線路の『エネルギー』分布密度が電圧値の電気技術概念なのだ。

純リアクトル負荷の回路現象。

厳密には、電圧値は負荷まで同じ電圧値ではない。電源より必ず位相が遅れる。その訳は光速度による『エネルギー』分布の伝播遅れが必然的に起こるから。

(2021/12/19)。ここまで来て、何故電力が『エネルギー』の流れ δi[J/m]でなく電圧分δv[J/m]との積に因るかに疑念が沸いた。それが  電力 その禅問答 (2021/12/14)になった。

その疑念の前に、考察の回路があった。

右図はリアクトルのエネルギー e(ωt)[J]が端子電圧の時間積分で決まることを示す。本来、電線路空間を通して、伝送される『エネルギー』は電圧の規模・大きさの2乗の意味で、その物理量が認識される筈だ。それを自然の本源と技術概念で指摘した。その事を理解すると右図に示す電力 p(ωt)=de(ωt)/dt で解釈すれば、電圧値 vr(ωt)の2乗δv(ωt)/C [V]によるとの解釈が可能かもしれない。そこに電線路電圧規模が『エネルギー』伝送機能の意味に因るとの合理的な解決の糸口が有るかも知れない。

自然の真相と科学技術の間にかける橋の美しくあって欲しい。電線路伝送の『エネルギー』の捉え方の未だ結論に到達して居ないが、ここでひとまず休憩とする。