タグ別アーカイブ: 1ターンコイル電圧

変圧器の技術と物理

はじめに
ファラディーの法則が変圧器と言う電気設備の動作原理としての基礎となっている。それは技術理論であると同時に物理学理論でもある。電圧、電流および磁束という概念によって目に見えない電気現象を解釈し理解できれば、それで変圧器に関しては立派に電気技術者となる。決して磁束がどのような矛盾を抱えているかなどを問うことがなくても。200年以上に亘る歴史を踏まえて、ファラディーの法則が変圧器の自然現象の全てを捉えた真理と思われてきた。正弦波交流電圧実効値V[v]と変圧器鉄心最大磁束値Φm[Wb]の間には V=4.44fnΦm (ただし、fは周波数、nはコイル巻数) なる関係が厳密に成り立ち、それだけを理解していれば十分である。ならば磁束という概念は磁界の世界を支配する自然の実在量であると考えても当然かもしれない。しかしながら、磁束はあくまでも変圧器の動作を解釈するために導入した技術的評価概念量でしかないのである。自然の世界に磁束は電荷と同じく存在しないのだ。ここでは鉄心中に何が起きているかを、世界に実在する『エネルギー』一つの物理量からの解釈を示す冒険の旅に出かけよう。それは常識外れの異次元の世界かもしれない。

変圧器の技術理論
磁束量が基礎となる。鉄心に巻いた二つのコイルで変圧器の基本構造が出来上がる。鉄心中に磁束φが発生し、その時の巻数nのコイルには電圧 v = n dφ/dt が誘導される。だから磁束φが変圧器動作原理の基本概念になっている。磁束φがあるから変圧器の動作理論が成り立つ。その図表現や構造も分かり易い。巻数n1と n2で巻数比a=n1/n2を使えば、1次、2次の電圧、電流の関係が簡単に決まる。①の回路図のように表現出来る。②に構造を示す。鉄心に2次コイルを巻き、その外側に1次コイルが巻かれる。電源側の1次コイルが2次コイルを巻き込む構造に構成される。鉄心中には電源電圧の時間積分値で磁束が発生し、印加電圧波形とその時間に因って磁束値が決まる。磁束が励磁電流で発生するという解釈は、変圧器の動作の基本原理を複雑化し、分かり難くする無駄な解釈である。ものの考え方を統合する習慣の機会さえ失う。ファラディーの法則は v=n dφ/dt [v]である。φ=(1/n)∫vdtと書き換えられるから、電圧の時間積分以外磁束を表現できない筈だ。励磁電流など意味が無いのだ。もし磁束を励磁電流で評価しようとすれば、同じ変圧器で、電源電圧波形を変えたとしたら、どのようにその磁束に対応する電流を表せるというのか。電圧がどのような波形であろうと、その磁束波形は電圧値と波形から決まっているのである。全く励磁電流など考える必要が無いのだ。鉄心の性能が良ければ励磁電流など流れなくて良いのだ。だから教科書の励磁電流に因って磁束が生じるという解釈が採られているとすれば、その教科書はファラディーの法則の式の意味を捉え切れていないからだと考えざるを得ない。おそらく教科書検定基準がそのような励磁電流を要求しているのだろう。教科書検定基準がそのように書くように強制していることなのかも知れない。変圧器動作原理は磁束によってその技術理論は構築されている。しかし、その磁束は現実にはこの世界に存在するものではないのだ。そのことは電気技術論でなく、変圧器の物理理論として解釈を構築しなければならない事になる。それが次の問題になる。

変圧器の物理現象
空間エネルギーの挙動をどう認識するかが変圧器の物理現象の要である。磁束の空間像を描けますか。電荷の空間像を描けますか。物理量は空間に実在している筈である。その科学的論理に矛盾がなければ、本当に納得して捉えているならば、素直にその姿を描ける筈である。数式でない日常用語で語れなければならない筈だ。変圧器は鉄心にコイルを巻き付けて、全く繋がっていない二つのコイルの間で『エネルギー』が伝送できる機能の電気設備である。空間に存在する『エネルギー』を先ず認識して頂くことがここから述べる旅の理屈に必要である。コンデンサに蓄えられたエネルギーの姿を。コイルの中のエネルギーの姿を。常識外れの夢の世界に、本当の意味を探す旅であるから。しかし不思議なことに、div B = 0 であることを知っていながら、即ち磁束密度ベクトルB=φ/ [Wb] の発散が0であるということを。その意味は日常用語で表現すれば、磁束を→での表現は使えないという意味なのだ。磁束の発生源が無いという意味を表現しているのだから磁束が増加する→(矢印)は使えない理屈の筈だ。これは磁場空間に対する現在の物理学理論の解釈である。何故その意味を統合して捉えないのかが不思議なのだ。この磁束概念の不明確な曖昧さがそのまま放置されていては、理科教育特に物理学の論理的な考え方を育てるという意味が観えないのだ。自然の真理と科学技術の関係を明らかにするのが理学の目的と理解する。理学では、『エネルギー』を根本に据えた議論が重要な点になる筈だ。図2として空心コイルと鉄心を示した。変圧器は二つのコイルであるが、一つのコイルと鉄心の関係を論議すればそれで変圧器の物理的な(現在の教科書の物理学的という事ではなく、本当の自然の)現象の意味は分かる筈である。空心コイルはインダクタンス値もそれほど大きくない。そのコイルの中にカットコアの鉄心を組み込むと、とたんに変圧器の機能要素となる。インダクタンス値がほぼ無限大になる。いわゆる技術的な意味での磁束飽和という状態(電源短絡状態)にならなければ、殆ど電流は流れない筈だ。それは変圧器の2次巻線側に負荷が無い無負荷状態での電源側の電圧、電流の関係の話である。いわゆる磁束飽和にならない範囲での正常動作時の、その時に鉄心がどんな物理的機能を発揮するのかがここでの論題になる。電源からコイルに掛るのは電圧である。その電圧の意味は前の記事電気物理(コイルの電圧)で述べた。その電気物理という言葉は現在の物理学教科書の技術論的な意味とは違う。ここで論じる内容は教科書の内容より深く踏み込んだものであることを理解して頂きたい。磁束概念に代わる新たな解釈を求めた論議である。その上で進める。コイルにエネルギーが入射し、端子間にエネルギーギャップがある限りは正常なコイル機能を発揮すると。空心では無理であったのが、鉄心が挿入された時そのエネルギー入射が時間的に長く継続できるということである。コイル間に分布する空間エネルギーが何らかの形で鉄心の中に入り続けると考えざるを得ない。図3.コイルのエネルギーでは、電線が巻かれた部分のある状態を表した。一つのコイルとも見做せる。電気回路は金属導体、空気あるいは誘電体および磁性体など空間を規定する材料によって、その構造が制限された空間規定の形態によって構成されたものである。そこに電圧というエネルギー空間規定源である電源が支配するエネルギー場を作る訳だ。電源の負側がエネルギー供給源となって、電線路全体のエネルギー分布を光速度の速さで規定し、支配する。電線をコイル状に巻けば、その電線のコイル空間にも電圧に支配されるエネルギーや負荷に流れるエネルギー流などの影響が表れる。交流電源の半周期ごとに変わるエネルギー分布となる。インダクタンスというコイル空間もその電源の電圧というエネルギー分布の支配に従う。図2のコイルに鉄心が挿入された回路空間も同じくそのエネルギー分布に対するエネルギーの受け入れ対応が継続する限り、電源電圧をコイル端子で保持できるのである。それは鉄心がそのコイル空間にあることによってエネルギーを吸収する機能が高まったからである。(∫vdt)^2^ [HJ] のように電圧時間積分の2乗のエネルギー量が関係しているのだ。変圧器巻線のインダクタンスは殆ど無限大とも見られる。そのインダクタンスでエネルギー量に関係する電圧時間積分の2乗を除すれば、変圧器の電圧保持エネルギー量が得られ、それはとても小さな値で賄えるのだと理解できよう。そのエネルギー量に関わる量を変圧器技術概念では磁束として捉えている訳である。

図4.鉄心と軸性エネルギー流  図にはコイルの切断面の図とその平面図を描いた。鉄心を取り巻くコイル導体の間の空間はエネルギー流に満たされている。そのエネルギーが鉄心の中に流れ込むと考えざるを得ない。ここからの鉄心内のエネルギー貯蔵機能についての解釈は科学論と言える検証できる世界の話からかけ離れた別世界の話になる。鉄心の中のエネルギーの流れる様子など観測出来る訳が無い。導線の銅Cuと鉄心の鉄Feの同じ金属でありながらのその特性の差が何故生まれるかの物理的原理も分からない。しかし、マグネットに観られる力の意味を心のエネルギー感覚(磁気の軸性エネルギー流感覚)に照らし合わせたとき、そこにはエネルギーの回転流即ち軸性エネルギー流しか共感出来ないので、その軸性エネルギー流を鉄心のエネルギー貯蔵機能の原因として考えた。全く証明も出来ないお話で、科学論とは成らないかもしれない?それは原子の共有結合論否定の話と同じことであるが。この軸性エネルギー流は鉄心内の磁極即ちNとSという意味も消えてしまうことになりそうだ。その意味は隣同士の磁区間でのエネルギー流は流れが逆転するかと想像されるから。それはマグネットを近付けると、そのギャップ空間の砂鉄模様がマグネット周辺部に移動して、マグネット中心部は磁気空間という状況が無くなることを確認しているからである。同一マグネットを多数接合したとき接合部の砂鉄模様がどのようになるかの実験をしてみたい。科研の申請をするまでもなく出来る基礎研究だ。教室で授業をするには、本当に多くの分からない原理がある筈だが、教科書通りにその教育手法を伝達するだけでは、子供達も楽しくないだろう。

1ターンコイル電圧eu[v]  ファラディーの法則も物理現象として見れば、それは遠隔作用の法則である。変圧器巻線コイルに誘起する電圧の原因の磁束は鉄心中にあるから、鉄心から離れたコイルに作用するという遠隔作用である。アンペアの法則も電線電流と空間磁気の関係だから遠隔作用の法則である。変圧器の1次と2次巻線の間で伝送される電気エネルギーも磁束による解釈であれば、遠隔作用の法則である。しかし、空間にエネルギーが実在するとの概念を基本に据えれば、変圧器のエネルギー伝送も近接作用で捉えられる。コイル巻線の周りには同じようなエネルギー分布空間が存在し、そのコイル1ターン当たりのエネルギー分布量が1ターンコイル電圧eu[v]になるとする。巻線の1次、2次に関係なく、1ターンコイル電圧が同じであれば、その電線路の算術和として各巻線の端子には巻数に応じた電圧が現れる。n1×eu=v1 n2×eu=v2として。これは空間エネルギー分布による近接作用の考え方である。以前実験した変圧器の奇想天外診断の話の続きとしての結論でもある。

(遠隔作用と近接作用について) 物理法則では力が遠隔作用力である場合が多い。代表例が万有引力の法則である。それは質量の間に直接接触する物がなく離れた質点間に生じるという力である。それに対して近接作用力とは、具体的な例を挙げれば、水の流れで二つの流れが合流する時その流れの接触する水同士が力を及ぼし合い、どのような流れになるかを考えればそれが一つの例となろう。エネルギー流を考えれば、それは近接作用になる。風も空気の近接作用となろう。太陽系も全体はエネルギーの回転流として統一されて考えられるべきとは思うが。そのような解釈は質量に関わらない空間エネルギーの実在性を余り認識していない物理学理論には無いかもしれない。

むすび
空間エネルギーは実在しているが、その物理量を測定できない。そこに物理学理論の実験的検証を前提とした理論構築に限界があるのではないかと思う。電気技術理論の中の矛盾をどのように読み解くかに掛り、それは哲学ともなろう。ここで特に指摘したかった点は、変圧器の磁束が少なくとも励磁電流で発生するという考え方だけはやめて欲しい点である。この点は昔のことであるが、長岡工業高等専門学校で助教授の申請に研究・教育業績として3点の論点を書いた。その一つが、ロイヤーインバータによる研究成果としての点で、変圧器磁束が励磁電流で発生するという解釈は間違っていると指摘した。それは教科書検定基準を否定したことになったのかもしれない。