タグ別アーカイブ: 電荷

物理学理論と磁束

はじめに 物理学あるいは物理学理論は、自然の深い仕組みを解き明かす特別の論理的思考能力を持った専門家集団が唱える真理と考えるだろう。それは科学技術の更にその奥に隠れている深遠な自然世界を解き明かし、科学技術の理論的拠り所としての学問分野が物理学と思うだろう。その自然世界の基本の描像は電子の周回する原子構造論と電子の流れる電線路電流、更にその電流によって定義される磁束などが電磁界の論拠としての物理学構成概念である。それが世界の物理学であろう。しかしそんなに多様な基本構成物理量が世界の根源であるとは理解できないし、信じられない。最近、磁気概念や磁束の物理的意味を解剖してみた。それは物理学でなく、電気技術の知見をひも解くことによって様々な科学技術用語の本質が明らかに成って来た。物理学が科学技術の技術概念を深く追究してこそ本当の自然世界が明らかになることを認識すべきという結論になる。電荷や磁束の空間像を示す事が、それらが自然世界に実在するかどうかを判断するに欠かせない筈だ。その空間像が物理学に問われている。世界は抽象ではなく具象世界だ。磁束について、アメリカのNASA宇宙技術開発の成果の一つと聞いているロイヤーインバータ回路の原理から具体的な例で、電圧が一義的なその発生起因であることを示し、アンペアの法則による電子流で磁束が発生するという誤解を解いて欲しい。
磁束の物理概念
マグネットは何処にでもある日常生活に密接な磁気製品でもある。物理学を教える先生方は教科書の中味である物理量などすべて明確に捉え切っている筈だと考えたい。しかし現実は、変圧器の磁束について励磁電流が発生原因であると殆どの方が考えているように思う。それは間違っている。変圧器や電磁コイルの物理現象を解きほぐせば、少なくとも励磁電流がなければ磁束が生じないということは無いのであり、磁束はそのコイル端子に印加する電圧によって一義的に決まってしまうのである。その意味を物理学では馴染みがないであろうが、インバータ回路を使って具体的に示して解説したい。それはファラディーの法則の科学技術論の理解の為でもある。磁束という物理量が、実際に実在するという解説ではないから。自然世界の本質は磁束さえ、エネルギー流に纏まるのであるから。しかし少なくとも、まず一段階としての誤解を解いて欲しいのだ。

磁束と電圧 右の具体的回路例を基に説明したい。AとBの二組のトランジスタスイッチを直流電源と組み合わせて、変圧器に繋ぐ。AのスイッチとBのスイッチを交互に半周期ごとに断続的にオンする。その時磁束は図のように階段状に変化する。その磁束は励磁電流が流れようと流れまいと関係なく、電圧値と時間だけ(即ち電圧時間積分)で決まる。この解釈は変圧器だけでなく、一般のコイルにも当てはまるのである。コイル端子に印加される電圧値と時間で磁束は決まると考えるべきである。理論の統一という事の大切さは、広く基礎概念によって無駄な思考を省き、分かり易くするということにある。図のようなスイッチングモードでは、半サイクル(T/2)の内4/7の間電圧Eが印加されることになる。その間に磁束は最大磁束の2倍 2Φm の増加をすると考えられる。ファラディーの法則は E=n(dφ/dt) および φ=∫(E/n)dt と表される。その法則から、電圧Eが時間T/2(8/14)=2T/7の間印加されて、磁束が 2Φm だけ増加するとなれば、次式が成り立つ。

2Φm=E/n×(2T/7)

従って、  E=7n(1/T)Φm [V=(J/F)^1/2^]

が得られる。このように、印加電圧とその印加時間だけで磁束は決まると考えるべきだ。その磁束発生原因として、励磁電流などの複雑な解釈概念を介入させるべきではない。この磁束は、すべてのコイルや電気回路全般に言えることである。その意味は電線内の電子流という『電流』概念の物理的解釈の論理性が問われているということである。『磁束』という物理量も『電流』と同じく、その物理量の実在性が物理学理論として検証されなければならない筈だ。その具体的な空間像が。

むすび

電流と磁気の概念矛盾について述べなければならない。それは自然世界を理解するに欠かせない思考作務である。電気論では電線内を電子が流れるという。何故電子(電荷と質量)が金属導体内を通ると、金属導体の外に磁束が発生するのか。電子は磁気を持つと定義されているのか。電子のスピンでは磁束の発生の解説にはならない筈だ。その電子と磁束の関係の疑問に答えるのが物理学である。電流という科学技術概念の正体を明らかにしてこそ物理学である。物理学は科学技術現象を詳細に検証すべき学問分野の筈だから。それは子供達に教えるという責任が有ることに通じると思う。数式で説明する事では済まない基本が有る筈だ。身に背負い切れない重力を感じながらも。

 

電気物理(電圧時間積分とエネルギー)

はじめに
物理学の中で電気現象を取り扱う科目は電気磁気学になろう。その電気磁気学の中味を確認すると、電気工学の内容と殆ど変りはない。電圧と電流がその電気回路現象の解釈の基本概念となっている。微視的な現象を論じる量子力学などは原子・分子構造やバンド理論の抽象的な理論が主体となって、少し電気磁気学と言う分野からはかけ離れてもいる。しかし、電界・磁界と言う電磁場とその中の電子の振る舞いと言う意味で見れば、電気科学技術の基本理論がそのまま基礎概念として電気物理の基本になっているように思える。専門用語には、簡単に理解できないものが多くある。π電子等と言われると、電子の『電荷』の実像さえ理解できない処に、πとは何じゃ?と狐に抓まれた気分になる。磁界と言えば『磁束』で解釈される。磁場空間に磁束が通っていると言う科学の常識概念も、教育の場ではアンペアの法則に因る電流概念との関係で理論構築されている。電流原器の定義からもアンペアの法則が電気現象の物理的真理であるかの如く威厳をもって説かれる。一方ファラディーの法則も電磁誘導現象の解釈の基本を成している。電圧と磁束と時間の関係で電気現象の理解に欠かせない法則となっている。一般に電線路周辺空間にも磁場があり、その空間にも磁束が関係していると看做すであろう。磁束はアンペアの法則の電流によって発生すると解釈すべきか、あるいはファラディーの法則に因る『電圧時間積分』で発生すると解釈するべきなのか悩ましい意味を含んでいる。『磁束』と言う空間に実在するとは理解仕兼ねる概念が、科学技術の解釈に有用なものとして長く理科教育によって基礎共通科学常識となっている。『電荷』と同じく『磁束』と言う物理概念が如何なる空間的実在性を持っているかを明確に示す事が電気物理の命題であると考える。具体像として認識できない抽象性ではこれからの科学の社会的理解が得られないと危惧せざるを得ない。電気物理はそれらの基礎概念を明確にする事から取り組まなければならない筈だ。今回は拙い電気回路現象の知り得る範囲から、電圧時間積分と言う電気工学の考え方で、『磁束』と言う意味を取上げて電気コイル周りのエネルギーを考えてみたい。電気技術ではリアクトルと言い、理論ではコイルと言う電気エネルギーの空間貯蔵回路要素の話になる。電圧時間積分と言う技術用語を初めて知ったのが、ロイヤーインバーターの不思議な電気回路現象であった。それ以降磁束はアンペアと言う電流では捉えるべきでないと確信してしまった。もう50年も前のことである。現在はその延長として『電流は流れず』と言うところに居る。とても金属導体中を流れる『負の電荷』の逆流等と言う物理概念が電流だなどと言ってすまし込んでいる訳にはいかないのだ。この記事を書く意味は、理学と言う理論に偏り過ぎた意味を科学技術と言う現実的な応用の中に隠れた真実を見直す事によって理解して欲しいとの願いからであった。教育の中に間違った真理らしき内容が多く含まれている現実を修正しなければならないと思った。ロイヤーインバーターで洗濯機用の単相誘導電動機を運転した頃の『電圧時間積分』の意味を磁束との関係で取上げようと準備しながら、その前にコイルの基本的意味を別に解説したいと考えてのことである。理学と技術の意味を考える例題として有用と思ったから。

コイルと電圧時間積分

 電気回路にコイルが含まれると、そのコイルはエネルギーを貯蔵する働きでその機能を特徴付けて解釈される。このような電気現象のエネルギーに因る捉え方が電気物理として特に考慮して欲しい点だ。コイルの中の空間にエネルギーが実在すると言う感覚的認識が必要なのだ。二分の一にインダクタンスと電流の2乗の積の式で覚える数学的な電気知識でなく、コイルの電気導体で囲まれた空間内にある『エネルギー』の空間物理量を認識して欲しい。コイルに掛る電圧とは何か?その電圧がエネルギーとどのような関係にあるかをこの記事を書きながら、考えてみたい。ただ電圧と電流で回路を解析するだけでは、それは電気技術論でしかなく、電気物理と言う自然現象の奥深さを知る自然観には程遠いと言う意味を理解して欲しい。電圧も電流も電気技術解釈用の技術概念でしかないと言うことを。然し、その電圧、電流と言う科学技術概念が如何に実用性で優れたものであるかを知る為にも、電気回路現象の真の姿を理解して初めて可能になることを知らなければならない。電線路で囲まれた空間に磁界とか、電界とか理論付をする意味を考えれば、その空間に何かがあるからそのように捉えるのだと言う意味位は察知出来よう。電線路導体で囲まれた空間に『エネルギー』が存在し、また流れているからなのである。その『エネルギー』は光速度と言う途轍もない速度で空間のエネルギー分布の欠損が生じれば補う。実験的にそのエネルギーの流れを計測など出来る筈もない。その『エネルギー』を科学技術概念の電圧と電流と言う計測量で捉えて、実用的理論に構築した意味が如何に偉大であるかを知らなければならない。しかし電線の金属導体内を電子や電荷が流れている訳ではない事は自然現象の真理として理解することと科学技術概念の意味とは異なることも知らなければならない。電圧時間積分についてコイルの端子電圧vとした時、積分 ∫vdt [Wb] は磁束の意味になる。ファラディーの法則の積分形である。このコイルに印加される電圧の時間の長さが何故磁束になるのか。コイルに掛る電圧とはどんな物理的意味を持っているのか。それらの疑問を解くには、すべてエネルギーとの関係で明らかにしなければならない問題だ。しかし、磁束もその次元は[(HJ)^1/2^](単位換算表を下に示す。)、電圧の次元も[(J/F)^1/2^]とエネルギーの単位ジュール[J]とは異なる。電気技術単位もエネルギーのある観方の解釈概念で有れば、最終的にはエネルギーとの関係を明らかにして、理解する必要があろう。その事をコイルのエネルギー貯蔵機能と言う点に的を絞って考えたい。ここで、別に電気物理(コイルの電圧)として先に纏めて置くことにした。追記。前に記した記事:LとCと空間エネルギー (2017/08/02) も参考になろう。

考察回路2例 電源は直流電圧とする。抵抗とインダクタンスの並列回路、回路(1)と直列回路、回路(2)の二つの回路例を取上げて、そのコイルLの動作機能を考えてみよう。電源電圧を直流としたのは交流電圧よりも電圧値が一定であることから、電気現象の意味を理解し易いだろうとの事で選んだ。コイルに直流電圧を掛けることは一般的には考えられない事例であろう。回路例(1)ではもろにコイルに直流電圧を掛けることになるから結果的には危険な電源短絡事故となる。一応保護ヒューズを電源に入れて配慮した。

空間の電気量 物理学では時空論と言う言葉が使われる。物理現象は空間の中に展開される電磁現象とも言えよう。光は空間世界の王者でもある。それは空間に描く時間とエネルギーの営みでもある。そんな意味で、光が描く空間長と時間の関係は『エネルギー』と言う実在物理量に因って理解できる筈だ。1990年(平成2年)の秋頃に、完成した自然単位系がある。措置と言う強制牢獄への穴に落ちる少し前のこと。自然現象を理解するに科学技術概念だけではなかなか複雑過ぎて難しい。空間とエネルギーだけで電気用語の意味をまとめた表を載せる。すべての電気量がエネルギーのジュール[J]との関係で算定できる。電気量の次元を換算するに使うに便利である。余り物理学では、空間の意味にファラッド[F]やヘンリー[H]を意識していないようであるが、時間の次元も[s=(HF)^1/2^]で関係付られる。光の速度を決めるのもこの空間の物理的関係に因る。この空間の誘電率、透磁率の物理的意味合いを明確にする課題がまだ残されている。それはどうしても哲学の領域にもなるかと思う。科学と哲学の課題でもある。空間で『エネルギー』がどのように共振現象で伝播するかの解答が。何方かの挑戦を期待したい。

回路(1)の電気現象 スイッチによって二つの場合を考える。

(a) S1:on 、S2:off の抵抗負荷。電源スイッチ S をオンする。回路解釈は直ちに一定電流i=E/R[A]になると理解する。技術論としてはそれで十分である。然し物理現象としては、負荷抵抗に供給されるエネルギーは電線内を通って供給される訳ではなく、電線路で囲まれた空間を通して供給されることを知らなければならない。厳密には突然スイッチの周りのエネルギーギャップの空間が閉じられるのだから、複雑な空間の動揺を伴った後オームの法則通りの平常状態に落ち着くのだ。電気技術で負荷電力P=E^2^/R [W]と計算される。ワット[W]=[J/s]である。電圧の単位は[V]で抵抗の単位は[Ω]である。[V]と[Ω]で、どのように単位換算されて電力が[J/s=W]となるのか。その物理的意味をどのように解釈するのか。このことに関連して、やはり別に電気抵抗体の物理として考えをまとめた。

(b)S1:off 、S2:onでSオンする。実際はスイッチSオンすると同時に、電源短絡事故となろう。コイルのインダクタンスがL[H]であれば、電流はi= E/L∫dt [A]で直線的に増加する筈だが、そこには空間的な別の意味が関わっている筈だ。コイル空間が真空であったとすれば、エネルギーの空間貯蔵に空気中と異なる意味が含まれるかも知れないと言う疑問はある。コイル内の空間にエネルギーが貯蔵されると言う意味は、その空間のエネルギー貯蔵限界があると言う点を知らなければならない。ただ空気中の磁束量の限界と言う空間破壊の解釈は聞かない。電界の空間破壊は高電界30kV/cmと良く聞くが。それも磁場と電場と言う違いはあるが、空間のエネルギー貯蔵限界に因る物理現象の意味である。コイル電流i[A]に因って、コイル内に磁束[Wb]が生じると言うのがアンペアの法則に基づく解釈である。次元を考えれば、電流[A=C/s]からどのような物理現象として、磁束[Wb]が発生すると言うのだろうか。電荷には磁束を発生する物理量的な次元の意味が在るのかを問わなければならない。電気技術論として1800年頃に発見された知見が現在の物理学概念として本当に有用なのか。電荷と磁束の間の空間に起きる次元変換の物理的見解が必要と思う。そこには『電荷』の物理的空間像が示されなければ、答は得られないと思う。なお、電圧時間積分は電流i=(∫Edt)/L の中に含まれている。磁束φ=Li と同じ式ではある。

回路(2)の電気現象 R-Lの直列回路で、やはりLの機能を考えてみよう。既に、電気物理(コイルの電圧)としてまとめたので大よその意味は分かろう。コイルのスイッチS’:off で電圧を掛ければ、指数関数的に電流i がE/Rの値まで増加し、コイル電圧はエネルギー貯蔵した状態で零となる。

『問』 その状態でスイッチ S’ をオンとしてコイル端子を閉じるとする。その後の電流はオンしたスイッチ部を通るか、コイルL内を通るか。

『答』 尋ねたいのは、コイル端子を閉じたときコイルの貯蔵エネルギーは電流 i に因るのか、それとは別にコイル内の空間に貯蔵されたものと考えるのか、どちらで理解するかを答えて欲しいのだ。電流 i が電源に繋がった導線部 S’ を流れずに、わざわざコイル内を流れるとは考え難かろう。然しコイル内にはエネルギーが貯蔵されていると解釈しなければならない。そのコイルのエネルギーは電流に因るのか、コイル内の空間に貯蔵されたものと考えるのかを問うのである。ただ時間と共にそのコイルエネルギーも空間に放射あるいは抵抗で熱化されて無くなる。

回路の電流 回路(1)と回路(2)の電流値の様子を考えてみよう。

電流値 電圧が 100V 、抵抗値10Ω、 インダクタンス10[mH]として図に示した。回路(1)の(b)の場合で、コイルに電圧を印加した時、電源投入後何[ms]で電源短絡となるかは分からない。? 記号で示した。その状態をコイル内の磁束が飽和した為と技術的には考える。物理的には、コイル内の貯蔵エネルギーの受け入れが出来ない限度を超えたからである。また、回路(2)では、スイッチS’ を投入した瞬時にコイル端子は回路から切り離された状態になり、抵抗のみの回路となる。その時コイルのエネルギーはそのまま分離されてコイル内に留まり、時間と共に消えることになる。

むすび 記事の内容を見ると、電気物理と言いながら数式が全く無いことに気付いた。電気現象はその技術概念電圧と電流が解析の要となっている。然し、その電圧とは?電流とは?と殆ど疑問に思われてはいないようであった。30年前に『電荷』概念の空間像を描けないと疑問に思って、何か世間の囃したての中に揉まれながら、人生意気に感じて頑張っている内に、とうとう浦島退屈論の仕儀となってしまった。やっと御蔭さまで、電圧と電流の物理的空間像が描ける境地に辿り着いたようだ。電圧の2乗が次元[J/F]、 電流の2乗が次元[J/H]でその空間の空間エネルギーを捉えたものであると。電気回路の空間構造のコンデンサ機能の[F] とコイル機能の[H]とでその空間のエネルギー貯蔵量を捉えることが出来ると安堵の境地。やっと技術概念の物理的意味が理解できた。電圧-その意味と正体ー (2016/05/15)ではまだ疑問との格闘にあったようだ。然しその記事の文末に導体近傍のエネルギー分布を確信した記事が記してある。その実験的検証が在ったことで、ここまで来れたと感謝する。

電磁気学の要-Axial energy flow-

1.はじめに
電気磁気学は自然科学の基礎知識として、その習得が科学技術・理科教育で求められる。力学と相まって物理的学習内容の基本となっている。その教育に基づく共通理解が社会的科学認識の基となるから極めて重要な分野である。社会的な科学常識は、お互いに科学論を展開するに、その共通理解の重要な基になる。『電荷』や『磁束』はその電気磁気学の要の基礎概念として、誰もが共通に理解していると思っているだろう。しかし、その中で『電荷』はじめ『磁束』さえもその実像は突き詰めると極めて曖昧な概念であると考えなければならなくなった。だからそのような基礎概念に論拠を置いた科学論は本質的に矛盾を含むものに見えて来る。現在の理科教育の教科書の内容では真の自然現象理解に極めて不十分な内容であることを認識しなければならない事態になったと考える。その意味を「磁気とは何か」と言う視点で考察し、その曖昧な意味を掘り下げて、電気磁気学理論の持つ不完全さを解説したい。軸性エネルギー流-Axial energy flow-を理解することが電気磁気学の眞髄に到達する要点であることを示したい。この事の持つ意味は、今までの科学常識に因って成り立ってきた専門家の意識改革を迫る極めて重大な社会的問題でもある。

2.原子構造と周回電子像の持つ意味
原子核の外殻を周回する電子に原子の周期特性で捉える役割を担わせた原子像があらゆる科学論の基盤として社会の科学常識となっている。この根源的科学常識を疑い、批判することに成らざるを得ない『電荷』概念否定の道を通って来た。その道の長い思索を通して辿りついた到達点は、あらゆる自然現象が『エネルギー』の空間に展開する姿として認識する事であったと理解した。その意味で、改めて現在の原子構造論の電子周回論はその中味を深く突き詰めなければならないと成った。

(2-1)原子像への疑念 『電荷』否定の論理の行き着く先に待っていたのが原子像への疑念であった。その疑念の具体的な点を挙げれば、次のようなことになろう。図1.で示した原子像は曖昧なまま、どのような規則で表現すれば論理的かさえ理解できないままの一つの参考にとの表現図で示した。

  • 何故電子が周回運動しなければならないか。
  • その電子の周回運動の軌道(立体角4π球面か平面か)と回転速度の方向性を何が決めるか。
  • 電子は粒子とか波動とか極めて曖昧な空間認識像で捉えられ、論理的明確さが観えないのはなぜか。
  • 実在するという電子像の、その質量と電荷の空間像が何故示されないのか。
  • 原子という空間構造体をまとめる『構成力』は何か。

原子と言う極めて極微な空間構造体が世界の構成元素として実在していることは、そのこと自体が不思議で有っても、疑いはない。その中味を解剖して明らかに示す事はおそらく無理な話であろう。だから曖昧さは残って当然と考える。1911年以降にようやく原子の構造の論議が始まったのだろう。J.J.Thomson の陰極線発見(1898)が電子として認知されたことが原子の周回電子像の基になったのであろう。その後の量子理論が決定的に電子に電磁気現象すべての舞台で、主役の役割を担わせたこととなったと思う。単純な電気回路のオームの法則さえ導体電線の中を電子が流れる解釈が決定的な電気回路常識となって、現在の科学論の基礎となっている。量子力学での電子には必ず質量が付きまとった素粒子となっている。運動エネルギーでの解釈に質量が必要だから。然し量子力学で伝導帯を自由電子として電気エネルギーの伝送の役割を担っても、電気回路になれば電子が金属導体中を流れるが、電荷だけしか必要としないから質量の意味はどこかに消え失せてしまう。電子とは質量と電荷の混合粒子と思うが、電気回路では電子流はアンペアと言う電荷の時間微分しか意味を成さない事になっている。電気回路では電気エネルギーの伝送速度は光速度に近い筈だが、電子では決してその光速度でエネルギーを伝送する役割の責任は果たせない筈だ。それでも質問が有っても難しい量子力学を勉強してから考えなさいと説明逃れがIT等の質問に多く見られる。電気回路の現象が光速度でのエネルギー伝送として説明できない事は、電磁気現象を本当に理解していることにはならないのだ。そんな単純な日常生活に関係した電気回路の意味から考えても、原子構造論の周回電子論はとても信用出来ないのだ。

(2-2)共有結合に論理性はない 高等学校の1、2年生の時に化学を習った。原子結合で共有結合と言う負の電子同士が誠に魔法のような理屈で互いに結合の担い手となることを教えられた。クーロンの法則の同じ電荷間に働く排力が、何故共有結合ではその訳が説明されずに、無視されるのかと言う疑問が消えない。何故負電荷同士の電子が結合の役割を果たし得るのか。まさか電子質量間に働く万有引力でもあるまい。基本的には電気磁気現象が原子構造体を構成する理論であると考えれば、原子間の結合を担う『力』とは何かと言う疑問になる。また、その基となる原子その物を構成する力は何かとなる。核の結合そのものも『力』が必要な筈だ。陽子と中性子の結合論には中間子論があるが、その意味を理解するだけの能力はないし、電磁気現象としての解釈では理解困難な様に思う。原子間、分子間あるいは原子等の構造体を構成するにはどんな『力』が必要なのか。

  力としてpdfで挿入した。初めて試してみたので見難いかもしれない。中に(3)式として『質量力』などと言う力を入れた。何も特別な意味ではなく、万有引力と言う意味を質量間に働く力と言う意味で表現しただけでしかない。丁度二つの電荷が空間に有れば、電場が生じ電界ベクトルと電荷間に働く力と言う空間像と同じ意味で捉えだけである。たとえば地球と言う質量が有れば、その周りには重力場と言うベクトル空間が有ると看做すだけである。ただそれは、自然現象として空間を解釈する万有引力と言う理論が『眞』であるかどうかは別問題であろう。 電荷間の力の解釈と同じ意味で(3)式は万有引力の一つのベクトル表現法でしかない。(2)式の磁荷mは物理学理論でも実在しないと成っている。(1)式の『電荷』q[C]も否定すれば、一体どんな力を世界の結合の力として捉えれば良いかとなる。もちろん(3)式の質量力などは論外であろう。 そこに「磁気とは何か」と言う事を尋ねなければならない問題が浮上する。

3.磁気とは何か それは「磁気の本質」を問うことになる。電気磁気現象の要が『磁気とは何か』に明確な認識を持つことである。2つほど問題を提起したい。

  • コンパスは何故磁界の方向を指すのか。
  • マグネットを向かい合わせると、そのギャップlの長さに因って何故磁気力が変わるのか。その物理的原因は何か。

電気磁気学では、磁束量φ[Wb]が磁界解釈の基礎概念となっている。ファラディーの法則として、電気理論の根幹を成す重要な概念でもある。アンペアーの法則として、電線導体電流との関係でも重要な磁束で、欠かせない基礎概念であるとの意識にある。インターネット検索でも専門的な解説がある。電子スピンなどと関連付けて解説される。然しその解説に因っても少しも理解できないのは筆者だけだろうか。マグネットから空間に磁束Φが放射(?)されている図で表現される。磁荷は存在しないが磁束が存在するとは、その磁束は何が創りだすのかとなる。変圧器のファラディーの法則から、そろそろ磁束が励磁電流によって発生するなどと言う間違った解釈はやめても良い筈だ。磁束はファラディーの法則の式の積分形で『電圧時間積分』で決まることを知らなければならない。然しだからと言って、それで磁束が自然界に実在する物理量だと決めつける訳にはいかない。磁束も電流と同じく、科学技術概念としての人が創りだした便利な解釈用の概念でしかないのだから。それでは本当は磁束とは何をそのように概念化して利用しているのかと言うことになる。そこが重要な点であり電気磁気学の要となるのだ。答えは空間のエネルギー流でしかない。それは軸性エネルギー流-Axial energy flow-である。巷の解説では、電子スピンと言うが電子がマグネットの表面でスピンをしてその電子から空間に磁束が伸びていると言う意味であろうか。その磁束とは空間にどのような実体を成すものと認識しているのか。コンパスが磁界の方向を向くと言う現象も、やはり力が働いたから向きが決まる訳である。この軸性エネルギー流と言う概念は物理学理論ではなかなか受け入れ難いものであろう。それはもともと物理学には空間にエネルギーが実在すると言う認識が無いように見受けられるから。物理学理論では質量が無いとエネルギーが論じられないように思う。電気コイルの磁気エネルギーと言う時、そのエネルギーは空間の何処に存在していると解釈するのだろうか。コンデンサのエネルギーと言う時、そのエネルギーはどこにどのようなものとして存在していると解釈するのだろうか。電荷はエネルギーには成れない筈だ。磁束もエネルギーではない筈だ。マグネット間のギャップ l が小さくなれば、磁石の引き合う力は強くなる。何故強くなるのかの意味を説明しなければならない筈だ。磁束が太くでもなると言うのだろうか。それでも説明には成っていない。物理学理論でも、電気技術論でもマグネットの表面の磁束密度は一様と仮定すると言う条件を設定するのが一般的である。そこが間違いである。マグネットギャップを変化させると、ギャップ内の磁気模様が全く変わってしまうのである。ギャップを狭めて行くと磁場の強い処はマグネット周辺に移動し、中心部分には磁場は無くなるのだ。磁場一様等と言う条件は成り立たない事を知らなければならない。磁場とは磁束などと言う線束が有る場ではないのだ。ハッキリ言えば磁束など無いのだ。ただエネルギーがマグネット軸に対して回転して流れている現象なのだ。それを軸性エネルギー流と名付けた。要するに空間に質量など無関係に、『エネルギー』が実在している認識がなければならないのだ。光の空間エネルギー分布流と同じ意味である。光のエネルギーを振動数で解釈している限りは、電気磁気学の眞髄には到達できない。

4.磁界の空間像 磁界とは『軸性エネルギー流』である。図に表せば次のようになる。図のマグネット棒と磁界の関係。それはマグネット近傍空間には左ねじの尖端をN極として、ネジを回して進む時の回転方向にエネルギーが流れていることを示す。この回転エネルギーが地球の表面にも流れている訳で、地磁気が具体例としての考える論題としてよかろう。地球の磁気は北極がマグネットのS極で、南極がマグネットのN極である。地球表面を自転の向きに即ち東西南北の東向きにエネルギーが流れていることを知らなければならない。地球の自転が何によって起きているかは、そのエネルギー流が何故在るかを理解することが出来れば分かった事になるのだろう。その自転の物理的意味について解釈を下す事は科学論か哲学か悩ましいこと言えよう。兎に角、このマグネット近傍空間のエネルギー回転流が磁場と言う概念が持つ空間の意味である。光が空間を光速度で伝播する空間エネルギー密度分布波と捉えることと繋がる意味でもある。この質量に関係ないエネルギーの実在性を空間に認識することが電気磁気学の要となるのである。

5.ギャップに因る磁気力の変化およびコンパスの指示の訳  (3.磁気とは何かの答)マグネットの引き合う力は不思議だ。検索すれば、その力の原理を知りたいと質問がある。然し、その解答は的確な説明とは言い難い、何か誤魔化しで逃げているようにしか思えない。残念であるが、本当は分かりませんとでも答えて欲しいのだ。解答者も教科書の解説を習得したからと言って電気磁気現象の眞髄を分かっているとは言えないのだから。決して磁束(自然世界に実在する物理量ではない)と言う科学技術概念では、マグネット間の空間にある『エネルギー』の姿は理解できないのだから、ギャップの長さで磁気力が変化する意味は分からないだろう。教科書に無い意味磁界・磁気概念の本質の記事の意味を知らなければならない。次にコンパスが磁界の方向を指す訳は何か?それも同じような原理の力の問題である。磁束がコンパスの中を通って空間の磁場の磁界と繋がるから、その方向を向く。と解釈して良いのだが、磁束が実際に実在する物理量でないと言うことを認識すれば、その解釈ではやはり正しいとは言えないだろう。試験問題でコンパスがどの方向を向くかという問題なら、磁束の考え方で正しい答えは得られる。知識としてはそれだ宜しいのだ。自然現象を理解するという意味には、この例のように答えられればそれでよいという考え方と、もっと自然世界の本質・真髄を知るべきだという考え方と多様な意見がある筈だ。それは一人ひとりの生き方の問題となるのだろう。磁気が軸性エネルギー流の目に見えない現象だと言うことを知ることに因って初めて、広い電気磁気現象の意味が矛盾なく理解でき、心から安心した納得に至れるのだと思う。それが安堵と言うものかも知れない。地磁気とコンパス(2012/09/13) が一つの解答となろう。

6. 磁気原子像と原子結合 『電荷』否定に因る原子像はどんな姿か。今年は原子周期表の記念の年らしい。8の周期性で特性が決まる原子を周期律表でまとめられた意味は驚嘆に値する知見と言えよう。その周期性から原子構造が周回電子像で解釈される結果に現在の原子構造が共通理解の基を成して来たと思う。周期性は他の原子との結合特性から認識出来るものでもあろう。原子が結合するのは原子の表面が互いに他の原子との安定した接合面を持つ事が出来るからであろう。もし周回電子が原子結合の任務を担うとすれば、その電子は立体角4πの原子表面をどのような道筋で回転運動をしながら、となりの原子と安定した接触面を保てると考えるのだろうか。その空間運動状況を原子結合に結びつけるには、原子核が周回電子の運動を可能にする何次元ものスピン運動をするか、魔術師か忍者の雲隠れ抽象空間を想定できるようでなければ、電子の運動と結合面の空間像を頭に描くことは無理じゃなかろうか。こんな論議は決して科学論の場では誰もが取り上げたくない事だろう。それは教科書の指導内容と異なる反社会的のことで、教育体制に混乱を生むから。科学論は現在の教科書の指導内容の枠からはみ出さないようにしなければならないとの意識が無意識的に思考の根幹を支えているのだろう。まさかこんな基礎の科学概念が否定される筈はないと誰もが教科書の指導内容や科学常識を信じているから。

(6-1)ダイヤモンド結合 炭素は結合手が4で、宝石のダイヤモンド共有結合や有機分子のベンゼン核など結合の代表的な論題となる元素であろう。炭素同士の強固な結合が抽象的な原子表面上の軌道周回運動電子によって生まれると言う曖昧な論理を何故信じなければならないのか。また炭素原子表面は空間的に4面体(直方体)か球面を4等分した接合面と看做すべきだろう。従って、有名なベンゼン核の亀の甲羅の平面的な六角形の構造が何故出来るかにも論理性が観えない。原子結合面は空間的な立体面から出来ている筈だから、結合手が2本と1本でのベンゼン核表記法は有り得ない。まずい記事ながら、参考に炭素結合の秘め事を挙げて置く。

(6-2)マグネット原子構造 軸性エネルギー流と言う空間のエネルギー像は『電荷』に代わる電磁結合の統一的理論構築の未来像になると考える。結合エネルギー:不思議の砦 (2018/12/02) で示したマグネット結合の図を再掲したい。マグネット同士を接合すると、接合部でのエネルギー流は隠れるように思える。砂鉄に因ってある程度は確認出来よう。このマグネット同士のN、S間での結合が原子結合の結合手になるとの解釈論を2009年に発表した。その時の図を示したい。

『電荷』否定は陽子、中性子などの素粒子の電荷概念の否定だから、当然原子核内もエネルギー粒子と捉えなければならなくなる。その核のエネルギー粒子の影響がそのまま原子表面に現れると言う考え方を取る。その結果の原子結合は当然の帰結として、図のようなマグネット結合になる。

7. むすび 2009年日本物理学会秋季大会で、“電荷棄却の電子スピン像と原子模型”の標題で関連の発表をした(日本物理学会講演概要集 第64巻2号1分冊 p.18. )。それは丁度10年程前の解釈である。今振り返っても、その内容は現在の認識と殆ど変らないようだ。10年間の思索を通して、よりこのマグネット結合原子構造の解釈に強い確信を得ている。電気回路の電磁エネルギー伝播現象即ち電気磁気学の実像を光速度伝播特性として理解出来たからだ。『電荷』や『磁束』が科学技術解釈概念だと言う意味は、それらは自然世界に実在する物理量ではないと言うことであって、物理学と言う自然世界の真理を探究する学問で使う用語・概念としては適切でない事になる。

論文: 25pWD-13 “磁力密度 f=rot(S/v)” 日本物理学会講演概要集第63巻1号2分冊 p.310.(2008) 。これは磁気がエネルギー回転流であることを論じた論文である。このいわゆる電磁力と言う力については、長岡工業高等専門学校で、既に履歴書が『以下余白』として消されたままの1年8カ月後(?)の昭和62年3月末に、『静電界は磁界を伴う』の電気学会発表の準備中の深夜の睡眠途中で閃いた思い付きであった。その後、「電磁エネルギーの発生・伝播・反射および吸収に関する考察」電気学会 電磁界理論研究会資料、EMT-87-106.(1987) に(29)式として記した。それは静電界と言うコンデンサ極板間に電圧に応じて、コンパスの指す磁界方向が変化すると言う電磁界現象が存在する事実の理論的解釈論として示さなければならなかったのである。コンデンサ内も電磁エネルギーの流れによってその現象・状況が決まると言う実験結果に基づく発見事実である。ここに科学基礎概念に対する意識革命の必要性が隠されている。

(付記) 関連記事。電気回路理論と電気磁気学の関係(2017/12/06) 。電磁力の本質(2017/10/17) 。

 

 

熱の物理

熱の概念
熱とは何か。熱はエネルギーの或る状態と解釈するだろう。それはどんなエネルギーか。日常の環境評価では温度と言う指標で熱の多さを捉えると言ってよかろう。例えば気体では、気体の熱エネルギー量を温度・気温として捉える。気体の熱エネルギーとは、物理学では気体分子運動エネルギー(気体分子運動論)として認識・解釈していると思う。この気体分子運動論が曲者に思える。その訳はエネルギーが質量に関係なくそれ自身で空間に実在しているものだから。光はエネルギーの伝播現象であり、質量はその光のエネルギーを論じるに必要ない筈だ。光が質量の運動エネルギーとは考えないだろう。その光の空間に実在するエネルギー像を物理学で認識していない処に問題の根源がある。

物理学理論(気体分子運動論)を斬る それでは、その気体分子運動エネルギーとはどのようなものを考えているのだろうか。気体にエネルギーが加えられると気体分子がエネルギーを吸収することになる筈だが、おそらく気体分子質量の速度の増加としてエネルギーを吸収すると物理学理論では解釈しているのだろう。何故気体分子が速度の増加を来たす事になるのか。気体を加熱したからと言って、分子の速度が上がる理由が見えない。調理用の圧力釜がある。加熱すれば、圧力釜内の水が蒸発し気体となる。加熱に因り圧力が上昇し水分子の圧力上昇としてボイルの法則の通り圧力エネルギーとして加熱エネルギーが蓄えられる。何も水分子が運動などする必要もない。蒸気機関でのピストンの仕事は水分子の運動エネルギーなど無関係で、水蒸気の圧力がその役割を果たしているだけである。水蒸気の圧力とは水分子が加熱によって体積膨張しようと内部圧力に変換されるから圧力上昇するのである。それが単純なボイルの法則による解釈である。水分子の運動速度など無関係だ。物理学理論でエネルギーと言うと、質量の運動エネルギーと位置エネルギーしか対象にしていないのではないかと誤解しそうになる。圧力エネルギーと言う概念が余り考えられていないようだ。ボイル・シャルルの法則も気体分子運動論としてボルツマン定数に因る解釈に終結している。圧力も膨張でなく分子運動速度に因る衝突力として捉えるようだ。気体の体積、水蒸気分子の体積膨張と言う現象は考慮されていないように思う。気体の発光現象も、気体に加えられたエネルギーが分子や原子に貯蔵され、その貯蔵限界を超えたエネルギーが放出されることと解釈できよう。原子の外殻電子の運動エネルギーが増減する解釈は意味がなく、間違っている。そもそも電子が回転していると考える必要など無い。電荷など無い筈だから。エネルギーと圧力の関係で一つ取り上げておきたい。海底1万メートルの水は静止状態でも途轍もない高圧に在る。その水圧も水の空間に蓄えられたエネルギーの筈である。さて、水圧だけではなく、海底の地殻深くになれば更に圧力が増していると考えられよう。その空間のエネルギーは特別の意味を持ち、日常生活での物理現象として関わることも無い異次元の世界の話であるが、圧力エネルギーであることには変わりがない。ただ、その圧力エネルギーと言う解釈が地球の中心核まで続くと解釈すべきかどうかを判断するべき根拠は不明だ。何も地殻が運動エネルギーの空間貯蔵帯とは考え難いという事からも、気体も同じように気体分子の運動エネルギーとして解釈すべきと言う論理性が見えないということである。当然気体の圧力分布に因り気体は流れて風を引き起すが、それは気体分子運動論でのエネルギーとは異なろう。温度の解釈には風は余り関係なかろう。

熱エネルギー 熱が物に蓄えられる時、物の質量の運動エネルギーの増加となるのではない。物の結晶格子等の空間に貯蔵されるエネルギーそのものの増加が熱の増加と言うことである。熱エネルギーは電気エネルギーや光エネルギーと同じく、空間に実在するエネルギーなのである。質量構造体の内部空間に貯蔵されて温度が高くなるのである。温度が高いということは、計測温度計にその物体から放射されるエネルギーが多いということであり、温度計に入射する熱エネルギーが多い準位で、温度計の出入りのエネルギーが平衡するのである。熱も電気も光もみんな同じエネルギーなのである。それは空間を占め、そこに独立した実在の空間エネルギー密度なのである。基本的に、熱とは光であれ電気であれ物に蓄えられたそのエネルギー量によって周辺空間に放射、伝導するエネルギー量が影響され、その量を計量する人の感覚や温度測定器の表示量として捉えるエネルギーの評価なのである。物のエネルギー量とその物の入射と放射のエネルギー平衡特性が比熱などの評価係数となっているのだろう。物の原子・分子の結合構造(勿論エネルギー還流のマグネット結合構造)でそれらの係数も決まると観て良かろう。

質量とエネルギー等価則

熱エネルギーとは 今常温でMo[kg]の鉄の塊がある。その鉄を加熱した。高温の鉄の塊からは熱と光が放射される。その熱い鉄の塊の重量を計ることを考えると仮定する。鉄の質量は計りに掛けると、加熱によって加えたエネルギー分だけ等価的に質量が増加する筈と考える。それが『質量・エネルギー等価則」の意味である。エネルギーは質量に等価である。しかしここまでエネルギーを実在物理量と捉える考え方は現代物理学の中に受け入れられるかどうかは分からない。高温の鉄の塊から熱放射・光放射が続く。その放射エネルギーは鉄の持つ熱エネルギーと等価な質量の一部をエネルギーとして放射するのである。『エネルギー』も質量と同じく物理的実在量なのである。と言っても、鉄の重量を計って、熱エネルギーに相当する質量・重量の増加した結果が観測など出来ることは無理であろう。熱エネルギーの増加分をほぼ光速度の2乗で除した分など計測に掛る筈はないだろうから。実験的に検証する科学的論証は無理であろう。それでも、原理的に熱エネルギーが質量と等価であるという意味は熱く加熱されたエネルギー分だけ質量が増加しているということである。同じ様に電気コイルに貯蔵される電磁エネルギーが有れば、そのコイル内に溜ったエネルギー分の質量換算量だけ質量が増加したコイルとなる。一般的な現代物理学理論で、エネルギーが質量とは無関係に実在するという認識がどの程度理解され、受け入れられるかははなはだ心許ない。化学理論でも同じく、原子構造で電子が外殻を周回運動しているとの捉え方をしている限りは受け入れ難い考え方であろうと思う。

 

電池における電子の役割を問う

はじめに 半導体のpn junction (pn接合部)のエネルギーギャップの意味を考えてみた。電池の意味との関連を考えた。電池の原理を問う (2014/11/27) があった。

電池電圧とエネルギー 電池はエネルギーの貯蔵庫であり、エネルギーの供給源である。人の思考における常識が如何に自己に立ちふさがる障壁となるか。すべてが『エレクトロニクス』の支配する世界に居る。その語源でもある『エレクトロン(電子)』の存在の意義を問うことになる。人は高いことを低いより有利と考えがちであろう。電圧が高ければ高い程、それは影響力が強いと考えるだろう。電圧が高いという表現は良くないのであるが、技術用語としては電位が高いとなろう。科学技術用語の持つ常識に『電圧』が有り、プラス極とマイナス極でその電圧の高い方と低い方を区別している。電池はエネルギーの供給源であることは誰もが知っていよう。しかし、誰もがその『エネルギー』とは何かを知っているかと問えば、さて答えられるであろうか。答えられなくても、決して気にしなくてもよい。『電子』に因って解説している人は殆ど『エネルギー』の意味を考えていない人が殆どであるから。ましてや化学方程式に因って解説する場合は、殆どその方程式の変換過程の中でその空間に実在する『エネルギー』を意識することは無い筈である。乾電池も蓄電池も+端子から電流が流れて、負荷にエネルギーを供給すると考える。しかし電流と言うものが電池のエネルギーを負荷に運ぶことなど出来っこない。電気理論では、電池のマイナス端子から電子が導線の中を流れて、負荷を通り電池の+端子に戻ると解釈している。電子の逆流が電流であると電気理論の常識が世界の共通認識になっている。それではその電子が電池からエネルギーを負荷に運ぶか?と解説者に問えば、答えないであろう。『電子』あるいは『電荷』に『エネルギー』をどのような意味で結び付けて解釈しているかが明確ではなかろう。2年程前に電圧ーその意味と正体ー (2016/05/15) に纏めてあった。

電池のエネルギー供給端子は-極である 直流の電気回路はプラスとマイナスの2本の導線でエネルギー供給回路が構成される。電池からのエネルギーは-極から送り出される。プラス側の導線は殆どマイナス側のエネルギー供給を支える脇役と考えて良い。負荷にエネルギー供給時、プラス側導線を通して電池へエネルギーは戻らない。電池のプラス端子はエネルギー供給に直接関わらない。電池の負側端子からエネルギーは放出され、負側導線近傍空間を通して主に負荷までエネルギーが伝送される。勿論導線の金属内などエネルギーは通らない。電池は-極がエネルギー放出源である。そのエネルギー(電気や熱あるいは光)を陰極線や電子と考えてきたのである。

エネルギーを運べない電子(科学的願望との乖離) 原子核の周りを回転する電子で世界の構成源を捉える原子像が世界標準である。電子が回転すると解釈する科学的根拠はどこにあるのだろうか。『電荷』否定が結局とんでもない現実にぶつかってしまった。科学理論の根源さえ信用出来ない自己を観る。そんな意味を卑近な日常生活の電池の意味に探し求めて見ようと考えた。簡便な科学的解釈を示すに『電子概念』がとても便利であろう。電池のマイナス極から電子が外部回路を通りプラス極に戻ればすべてが説明出来たことに成る。その不思議な論理が科学論理の正当性を世界標準として認められるのだから。 『エネルギー』を置き忘れていませんか? 電池はエネルギーの供給源です。電子論であれば、電子がそのエネルギーをどのように負荷に届けるかの問に答えてこそ科学論と言えるのではないか。そこに電子の実像が問われることに成るのです。電子の特性:質量me=9.1083 ×10^-28^ [g]、 電荷e=1.60206 ×10^-19^ [C] と質量と電荷の混合素粒子。この桁数の算定基準の厳密らしさと混合空間像の認識不可能の不思議に包まれている電子。電子が背負い籠に『エネルギー』を入れて負荷まで届けるのですか。帰りは『エネルギー』分だけ身軽に成ってプラス極に帰るのですか。 『エネルギー保存則』とはどんな意味なんですか。 『エネルギー』が観えますか?そこで、エネルギーに対して電子に求めると無理に仮定した時の科学的願望を絵図にしたみた。

電子の責務と珍道中 電池はエネルギーの貯蔵庫である。そのエネルギーを負荷で利用する訳だ。どのようにそのエネルギーを電池から負荷に届けるかを科学論として完成しなければならない。高度の量子力学は電子に重い責務を課しているように思える。太陽光発電で電子にどんな物理的機能を果たして欲しいと望んでいるのだろうか。電子がエネルギーを担うべき責務を無造作に要求しているようである。電子の身に成ってその心情を汲んで少し考えてみた。電池も太陽発電パネルも電源としては同じものである。ただ太陽発電パネルは負荷の前にエネルギー貯蔵庫に繋がっている。負荷の影響は直接受けない。さて電池のエネルギー貯蔵庫からどのように負荷に必要なエネルギーを供給するかを考えるべきだろう。検索で電池の原理を尋ねると電池のマイナス極から化学方程式の反応によって、電子が外部導線を通って陽極に廻り込み、その電池内で電荷を遣り取りして解説が終わっている。電子は何の為に負荷を通ったのか。 『子供の使いじゃあるまいし、ただ通り過ぎるだけじゃ理屈も通らぬ!!』 何故電子が通り過ぎるだけで電池からエネルギーが負荷に届けられると考えるのだろうか?電子は何故マイナス端子から導線を通ってプラス端子に行くことが出来るのだろうか?電子の移動はどんな理論で可能だったか?電界と電荷の関係は無視されても理屈が通るのか。上の図は電子に御足労願う訳だから、その科学認識に寄り添って何とか電子の責務とエネルギー運搬の道筋を考えて描いた図である。電子の(行き道)は、重い責務に喘ぎながら。負荷にエネルギーを届けた(帰り道)は、身軽に成って鼻唄まじり。そんな電子に期待された仕事の責務が想像できる。電子も行きと帰りで異なる姿に。しかし、量子力学には背負い籠でエネルギーを運ぶ意味はない。むしろ質量に頼った運動エネルギーの増加で電子がエネルギーを身に纏う意味に似ている。その場合は電子の帰り道は速度の遅い電子の姿を描くことに成るのか。当然理屈の通らぬ無理な道理ではあるが。もう一つ、化学方程式で『電荷』の辻褄を合せようとしても『負荷御殿の主から必要なエネルギー量が発注される』のである。エネルギーの発注に合わせたエネルギーの発送をしなければ電源・送配電線路・負荷間の辻褄が合わなくなる。勝手に化学方程式に従って、電子を送り出す訳にはいかないのである。負荷の要求をどのように電池側で処理するかが極めて重要な瞬時電力の話に成るのだ。電子に自動的にそんな責務まで負わせては酷と言うものだろう。

電子にエネルギー伝送責務は無理な注文である 電子は不要である。電池からのエネルギー(熱エネルギー即ち電気エネルギー)そのものが負荷の要求に応じて電線路空間内を伝送されるのである。電子不要の科学論。

エネルギーから電子殻を問う

はじめに 電子殻(ダッシュボードに掲示された)という用語を初めて知った。その電子殻についてどう考えるかと問われているのかと思った。『電荷』概念の意味が分からず、30年以上にも亘って教科書の科学理論に疑問を感じてきた。むかし(1982)『静電界は磁界を伴う』という電気磁気学理論の科学常識に反する内容を電気学会全国大会で発表した。今となれば、それが技術屋の感覚的挑戦であったが,間違いなく的を獲ていたと驚くばかりだ。静電界という電場がむしろ磁場とも看做すべきエネルギーの流れであったという発見だから。たった一つのその実験結果の意味が如何なるものであるかを科学理論の根幹に照らし合わせながら考察を積み重ねてきた。物理学の根本である電子殻に因る原子像さえ否定しなければならない羽目に陥ってしまった。もう一度、先人が創り上げた科学理論ではあるが、その根幹を成す電子の概念および機能をエネルギーとの関係で、考えを整理して置かなければならないと思った。結果的に図らずも伝統的科学理論を否定するような仕儀になってしまった事誠に申し訳のないと思ってもいる。『電荷』の自然世界での実在を否定するという事がどれ程大きな社会的混乱を教育に与えるかは想像に難くないから。手元にあった 科学革命の構造 トーマス・クーン 中山 茂訳 みすず書房 (1987 第19刷) を開いて読めば、余りにも溝が深すぎると・・。電子とは『エネルギー』の一つの姿でないかと思いながら。

原子構造 原子の周りを電子が何故回転していると分かるのだろうか。最近も新しい113番目の原子の発見が話題になっていた。それ程厳密な科学研究の証拠が示されている中で、電子が原子核の周りをまわっている意味が理解できないと言ってみても意に介されないとは思うが、エネルギー感覚から述べておかなければならないと思う。

電子の責務 電子に対してどのような科学的責務が課せられているか。電子が獲得したものでなく、人間が付与した役割である。自然界が『電荷』と質量を持った電子に取り囲まれた原子核の原子構造体から成り立っていると理解されていると思う。その原子にもいろいろの特性がある。シリコン、酸素、窒素、炭素あるいはネオン等とそれぞれ際立った特徴を持っている。それらがすべて電子殻の電子によって構成されている。みんな同じ電子殻構造の話で統一されるものと思う。筆者の拙い高校生程度の知識に因る電子像を先ずまとめてみたい。

電子統一情報 ウイキペディアから拾った。とても理解できない専門的な電子像の規定であると思う。空間に占める大きさまで分かっているようだ。この9ケタ、10ケタの数値が堂々とまかり通る電子像に近寄りがたい科学理論の畏れ多さを感じる。

電子に付与された任務・責務(期待される電子像) 昔教育の審議会で期待される人間像という考え方が論議されたことがあった。電子像を的確に捉えようとしても期待される任務・責務が超人的な機能でなければならないかの如くに思われ、科学理論の世界が巨大な構造体で入り口から怖気づいてしまう。電子も観方によって哀れとさえも思える。過重労働の期待で瀕死の状態にならなければ良いがと陰ながら心配である。筆者のお粗末な電子像の認識をまとめてみた。

さて、上に挙げた電子像が普段頭に描く姿に思える。原子同士が隣り合わせれば、先ず原子の外周を取り囲んでいる電子同士が相手との情報交換の遣り取りを任され、相手原子を認識する責務が課されている。手を繋いで良いと判断するのも電子で、原子同士を繋ぐ役目も電子の仕事だ。化学結合とか共有結合とかイオン結合とか、とても判別し難いような複雑さの判断も電子自身に任されている。「オラ―そんなのやだ―」などと言って、「東京さ逃げる―」てな訳にはいかないのだ。それが電子の科学的宿命だ。何しろ過大な期待が掛けられているのだから。期待を掛けるお偉方はどこに居るのか姿も見えないが。兎に角電子は大変な重責に怯え続けているようで、何とか少しでも開放してやれないものかと思う。

4番目の任務 原子エネルギーの収支取締役という、日々雑兵の激務に追われる中で、特段のお役目を頂戴してしまった。原子に降り注ぐ『光』がある時、先ず外堀の電子にすべての的確な対応が義務付けられている。電子はどのようにその光との関係を処理すれば良いか、与えられた責務を忠実に執り行おうと考えた。決して外堀から母屋の御主人・核主(お昼寝中かもしれない)様に影響が及ばないように処理しなければならないのだ。最初に挙げた1番目の任務との関係では、足を踏み入れてはいけない禁制帯とかがあり、そこは飛び越えなければならない事になっている。現代物理学の大きな学問領域を成す量子力学では、光と電子の責務との関係がとても詳細に分かっていて、その関係が自然科学を理解する根本原理になっているようだ。しかし、その材料などの量的評価に因って科学技術が進歩したかといえば、それは理論と実際は余り関係ないようだ。光エネルギーをどのように電子が苦労をして責任を果たそうとしているかを拙い科学認識で掘り起こして考察してみたい。すべての電子はどれも同じ電子統一情報に因って細密に規定されているようだ。光エネルギーを処理するに当って、もしうまく禁制帯を飛び越えて伝導帯の位に跳躍出来たとする。その時光エネルギーをどのように、統一電子情報との関係を厳守したままで、処理出来るのかに悩んでしまった。エネルギーというものは電子の情報という質量、電荷および空間寸法には全く影響を与えないで済むものなのか。高等数学式で考える能力が無いので、日常言葉でしか解釈できずにいる。さて、もしもの仮定での話ではあるが、電子が雲のような掴みどころのない波動(その実体が何を指すかを理解できないのだが)であるとしたら、それも質量と電荷を波動の中に備えているのだろうか。その波動もやはり原子核の周りを周回運動していると考えるべきなのだろうか。そこでその波動が光を外部から受けたときは光エネルギーをどのように電子波動の中に取り込むことになるのだろうか。兎に角、陰に隠れた主の核主様に影響が及ばないようにしなければならないとなれば、電子雲の全てが総がかりで対応しなければならないように思える。連射砲のように降り注ぐ光を禁制帯を飛び越えながら処理する技は如何なる理論で可能なのかが理解し難いのだが、その理論まで電子に負わせるのは期待する電子像の範囲を超えてしまうだろうと気掛かりだ。

電子とエネルギー 電子がエネルギーを保有するという意味はどのような物理的現象で捉えるのか。電子にはいろいろな状況があるように思われる。自由電子と電子殻内の電子とでは必ず違う筈と思うが、その訳・状況がハッキリと認識されているのか、説明できるのかそこが良く理解できない。電子には速度の違う状態があると理論では唱えられているように思える。教科書によれば、導線内を流れる電子を自由電子と唱えているように思う。その自由電子でもそれぞれにはエネルギーに違いがあるのか、無いのか。その伝導帯の自由電子には速度の違いがあるのだろうか。酸素の電子が電子殻から解放されて自由電子に成る議論は無いから、原子核の束縛から解放されて自由電子に成る場合は、金属導体や半導体原子だけに当てはまる電子とエネルギーの関係なのだろう。電気回路の導線には電子が充満して流れるように解説されている。超伝導等のように、極低温のエネルギー環境の低い場合は、電子殻の電子は特別の能力を賦与されて、自由に原子核の束縛から解放される自由電子となる資格(特殊任務)がある電子なのだろうか。その自由電子のエネルギー状態はどのようなエネルギーレベルと捉えるのだろうか。原子の環境がエネルギーが高い場合が自由電子の生まれる条件かと思えば、極低温での超伝導の自由電子とはエネルギーが多いのかあるいは『無』なのか良く意味が理解できない。

原子の司令官は誰か 周期律表という科学分析の宝がある。原子の個性と特徴で分類されている。原子の特性を発揮する司令官は誰か。原子の本基は原子核が握っている筈だ。司令官という機能の物理学的基幹は如何に在るか。外堀を守る電子じゃ役不足であろう。

原子構造体と役割分担? 原子構造が原子核と電子殻から構成されているとの解釈に因る意味とその電子機能について考えてきた。殆どの教科書の解説は原子外殻の電子が担っているように説明されている。原子の質量は殆ど中心の核が占めている。一体核は原子の特性に因る外部事象との関係機能としてどんな役割を担っていると考えれば良いのか。核は分裂の時だけ意味を持つような、日頃は原子の中心に隠れた存在であるように見受けられる。電子殻の電子だけが仕事をするような原子で周期律表の顔が立つのだろうか。

電子殻電子が原子の特性を表せるか 元素にはそれぞれ異なる特性がある。その中で幾つかの原子を取上げて、原子の特性がその電子殻の電子でどのように解釈すればその電子殻を論理的に適正に評価出来るのかに思いを寄せてみた。

炭素C この原子の結合の代表例がダイヤモンドの宝石であろう。ダイヤモンドの結合空間構造は炭素原子の表面を4等分した立体角π毎に結合面を持つものであろう。決して平面結合ではない。もし電子殻で4価の電子で炭素原子を解釈するなら、その電子にはエネルギー差はなく、同一の電子殻内に存在する筈だ。そこで、その電子が隣の炭素と結合する時、電子は原子表面を周回運動していると考えるのだろうか。結合する時には運動は停止するのだろうか。電気磁気学理論によれば、クーロンの法則で同一電荷は反発することに成っている。今でも電気の教科書がクーロンの法則を基本理論に据えているなら、どのような論理性で負の電子同士が結合の責務を担い得ると解釈できるのか。しかもダイヤモンドという特別に結合の強い状態を電子が担うという科学論理は余りにも矛盾と欺瞞で構築されているとしか思えない。共有結合とは一体どんな電子の魔術結合力を利用しているのか。電子が周回運動しながらとなれば、とても電子に因る結合論に論理性があるとは見えない。科学は平易な基本に分かり易い忠実な解釈がなされなければならない筈だ。

炭素C (2) 炭素といえば、電気回路では抵抗体のカーボン被膜抵抗などがある。さて、炭素の特性で電気エネルギーの熱変換機能が日常の電気技術の基本に成っている。こんな考察は誰もしないだろう。何も得るものがなく、反発を買うだけであるから。しかし電気技術に携わった事がある者として、少し専門家としての解釈を示しておこうと思う。ここでの話は矛盾の中の教科書の解釈理論からの内容であり、『電流は流れず』という筆者の論理の視点とは異なる。事実は、電線路導体内を電子が流れている訳ではない。しかし教科書に依れば、電子が流れていることに成っているので、その電子が抵抗負荷内を通過する時どのような電子の機能で炭素原子の外殻周回電子にエネルギー的働きをすることが出来るのかという疑問を提起しようということである。炭素抵抗は負荷としては熱を発散している。触れてみれば熱いから分かる。その電気エネルギーを熱に変換する機能は炭素原子の電子殻電子のどのような与えられた責務として働いた結果の現象なのだろうか。こんな基本の基の字のような初歩的な愚問が現代科学理論に欠かせない入門の課題なのである。高度科学理論が取上げられても、足元の理論の根拠が矛盾なく説かれなければ、砂上の楼閣にも見えてしまう。

酸素原子O 酸素は生命の維持に欠かせない。呼吸の問題。 等とまた愚問を取上げれば科学には相応しくないと常識の世界では非難される。常識という科学理論がおかしいとの思いに掛けての科学論であれば止むを得なかろう。酸素が燃焼を司る元素であることは間違いない真理である。酸素を燃焼機能原子として知ることは自然科学の基礎知識として重要であろう。そのことと酸素原子の電子殻電子の科学論理との関係はまた別の基礎科学論である。自然の真理を説き明かすに欠かせない科学的思索・考察でもあろう。原子構造論の基本が電子殻の電子概念に委ねられていることだあれば、その論理性を質しておかなければならなかろう。酸素原子の外殻電子殻の電子数は6個であろう。その電子が何故燃焼の機能を発揮すると考えるのか。電荷と質量を持った電子が周回運動をしていると考えているようだ。燃焼に電子の何が機能するのだろうか。電荷か質量か運動か?電荷も質量も速度にも燃焼エネルギーを発生する機能が観えない。酸素原子の特性は熱エネルギーを放射する自然現象を司る機能である。無から熱エネルギーは生じない。何かを熱エネルギーに変換するのである。それが何であるかは分からない。原子構造そのものの解釈の問題に通じている課題であるから。

ネオン原子Ne 不活性ガスとして捉えられているようだ。外殻電子殻が8個の電子で充満され、化学反応機能が無く安定した元素と看做されているようだ。気体分子結合(Ne2)もしないとの解説がある。同時にネオンサインとして、夜の街の広告照明灯に活躍している。酸素と違って、熱でなく発光現象である。このネオン原子も8個の電子が同等のエネルギーを持って、電子殻内を周回運動していると解釈しているのだろう。どんな軌道で平衡を保ちながら運動できるのか空間的描像を描き難く、理解の域を超えてるが答える能力も無いので我慢も止むをえない。さてネオンサインの発光現象では不活性原子の電子が電気エネルギー(高電圧のエネルギー供給空間)に反応して、どのような光エネルギー放射変換機能を発揮すると解釈するのだろうか。本当のところは電子が存在して関わる現象ではないのであるが、電子殻で理論が構築される限りは、その発光現象の訳が示されなければならないと思う。ネオンサインに量子力学は場違いな話で笑われそうだが、ネオン原子の電子が高電界中を飛んでくる電気の電子と衝突し、禁制帯を飛び越えて高エネルギー電子に成り、再び原子に戻るから発光機能を発揮できのだろうか。電子殻電子の原子構造論から判断すれば、そんな特殊任務付与解釈にしか辿りつけない。内心は無理なこじ付けと思いながら。

リチュウム原子Li とても興味を覚える記事「リチュウムは躁病と欝病を治すだけでなく、それにかかりやすい人を病気から守る働きもする。さらに、リチュウムはほかのさまざまな精神病や情緒不安定、とくに鬱病に効果のあることが知られてきている。」(発見と創造 科学のすすめ W.I.B.ビヴァリッジ著/松永俊男・鞠子英雄 共訳 培風館 p.60.  昭和58年初版)を見た。最近は携帯電話の電池にも使われ、核反応の三重水素とも関係が深いとある。3価で、反応性の高い原子のようだ。電子殻の電子の機能と考えるには理解に戸惑ってしまう。原子とは不思議だ。

むすび どんなに原子とその特性を電子殻構造論から理解しようと思っても、納得できない現実に突き当たる。『電荷』あるいは電子概念に基づく電磁気現象解釈は一見理に適っているように思えても、細かく考えてみると全体としての統合性で辻褄の合わない点や矛盾が見つかる。結局『電荷』に基づく基礎的論拠は物理学理論にそぐわないとしか思えない。『エネルギー』の千変万化する自然の現象に思いを寄せれば、『電子』もその一つの姿に思える。

半導体とバンド理論を尋ねて

追記(2018/05/16) 反省を込めて追記。既に前に同じような記事を投稿していた。半導体とバンド理論の解剖 (2014/01/25) である。さらに太陽電池の解剖 (2014/02/06)にも有る。辿れば、その前年のトランジスタの熱勘定 (2013/01/30)から始まっていたようだ。そこで、電気エネルギーと熱エネルギーが同じものであると考えていたようだ。現在は、『電荷』概念では自然現象の本質を理解することは無理であるとの認識にある。このトランジスタの熱勘定で論じた意味が極めて大切なことを示唆していたと思う。荒っぽくて、反感を買うようの記事が多くて誠にお恥ずかしい。2013年には「量子力学」とは何か?電子科学論の無責任など。

半導体の電子とは? 電力技術における電子の意味を尋ねて30年以上過ぎた。結論は『電荷』も自然界には実在しないと確信するに至った。それならば当然電子も『電荷』などとは関係ないことになる。電気回路の金属導体中を電子が通り、電流になると解釈されている。ただし、筆者は電流は流れず等と言ってきた。だから以下の記事も科学論として認知されるようなものではないかも知れないが、市民や電気の初学者が疑問に思うことに対する『問答』としての価値は十分にあるものと思う。言わば統合的な理屈の自然科学論として見て欲しい。専門的な領域を超えた論理として。さて、現代物理学理論の根幹を成すものに量子力学がある。その代表的な適用が半導体である。半導体の電子のエネルギーレベルとその動作領域の抽象的認識概念が理論構築の原点になっているように思う。フェルミ準位がその要のエネルギー基準値として存在することになっているように思える。そのフェルミ準位は半導体の物性特性に因って、そのエネルギーレベル(電子のエネルギー量)が何ジュール[J]、あるいは何[eV]と決まった値があるのだろうか。

エネルギーバンドとフェルミ準位 電気工学、電気物理と同じ電気エネルギーを取り扱うのに、その専門分野ごとに理論的解釈法や概念がまったく異なる。ただ、原子構造については原子核とその周りを回る電子から構成されているという解釈は自然科学論の基本原則として世界の共通認識になっている。原子構造が科学論の原点にある。『電荷』否定はその科学論から除外されてしまう。永年電力技術で感覚的に身に付けたエネルギーの実在性が染み付いた論理構成の習慣が『電荷』概念の曖昧性に拒否感を抱くようになってしまった。電気物理での半導体の電気現象解釈理論はバンド理論で、正しく原子構造論の電子のエネルギー論を論じているように思う。それは『電荷』概念に基づいて理論構築されている。半導体結晶は基本的にダイヤモンド結合の構造と解釈されている。電子による共有結合が基本になっているように思う。原子核の周りをどのような速度で電子が周回運動をしているかは分からないが、それぞれの電子が回転し互いの隣り合う原子同士の間では、核の周りは複雑な電子回転に伴う『負電荷』の空間場になっているように思われる。単純な電気理論から考えると、負の『電荷』の空間場で、隣り合う原子同士の間でダイヤモンド結晶になる訳が理解できないのだ。電子が回転しながら隣の原子同士が結合する姿が現実世界の空間概念で描けないから理解できない始末にいる。そんな理解能力の無い者が現代物理学理論のバンド理論の意味を考えるなど誠に恥ずかしい極みではある。しかし、初めてバンド理論を学ぶ若い方々も同じような疑問を抱くのではないかと思うので、少し考えを述べてみたい。電気材料を導体、半導体および絶縁体と三つに分けてバンド理論の基礎が説かれる。全てに価電子帯と伝導帯がある。半導体と絶縁体にはその帯の間に禁制帯と言うバンドギャップが存在する。それらのバンドの『帯』と言う幅で表現される意味は電子の持つエネルギーの量の大きさに関係したように見受けられる。電子が回転運動していることに因る運動エネルギーの量の大きさを意味しているのかと思う。電子には質量があるから、その御蔭で運動エネルギーの解釈だ可能である。水素原子は原子構造が単純だから、電子のエネルギー量は基礎物理学では良く算定されて議論されているが、シリコン原子の電子になれば、その運動エネルギーは算定は可能なのだろうか。どの程度の回転速度になるのだろうか。その算定が出来て初めて、新しい半導体の技術開発にバンド理論の意義が生きて来る訳と考える。決して理論が理論の為の理論であってはならない筈だ。『電荷』の実在性はその理論構成に具体的に生かされてこそと思う。リン(P)やヒ素(As)の不純物が添加されると実際の電子のエネルギー量はどの程度のジュール[J]になるのだろうか。

太陽光発電理論と電子 量子力学の理論として大まかに理解している事は、原子や分子にエネルギーを与えると、原子の外殻周回電子がそのエネルギーを受け取って、電子の質量の運動エネルギーの増加を来たし、遠心力と釣り合う様な電子軌道の膨らみを来たすと理解している。光などのエネルギーが電子の運動エネルギーとして吸収される訳をどのように理解すれば良いかも分からないので困惑している。更に何らかの原因で逆に電子の軌道が下のレベルに落ちると光としてエネルギー放射を来たすらしい。勝手な解釈と言われれば、致し方ないが電子の運動エネルギーと光との変換過程が理解できない。量子力学の基本理論を理解している訳ではないが、太陽光発電での半導体は太陽の光を吸収して、電気エネルギーに変換する発電機能設備である。発電パネル内で、電子が光エネルギーを吸収してエネルギーの高い状態で伝導帯に入る。その伝導帯では電子が自由電子となり、原子の束縛から解放されると解釈して良いのだろうと思う。伝導帯の電子はどの程度のエネルギー増加になっているのかを知りたい。発電パネルから次は電気回路を通して負荷に電子はエネルギーを運ぶのかと理論のつながりを考えるのだが、電気回路内の電子による電流概念となると、どうも電子はエネルギーを担う役割は想定されないことになっているようだ。一体半導体内で光エネルギーを受け取ったかと理解するが、回路理論になるとそのエネルギーを担う電子と言う概念は無いようであるため、どこか論理的な繋がりが無いようで理解に苦しんでしまう。もう一度述べる。量子力学における半導体のバンド理論では原子の周回電子のエネルギーの増減を論理構成の基本に据えている。伝導帯の電子は増分エネルギーを電子質量の運動エネルギーとして余分に担ってエネルギー供給機能を果たす役割が期待されているようだ。そこでの電子は速度の増加としての特別の電子になるのであろうか。次に半導体理論によって理論付された電子に関係して、その太陽発電パネルをエネルギー源として捉える電気回路理論では、折角のバンド理論で担ったエネルギーの増加分を電流の根拠である電子には求めていないのである。当然のことであるが、電気回路論では電子に質量に関わる概念は意味を持たないから、電子における『電荷』と電界との間の電気磁気学理論に基づく論理しか考察対象には成らない。だから原子構造論における電子エネルギーに関する運動エネルギーは全く無意味に成る。総合的に全体を見渡した時、半導体パネルで受け取った太陽光エネルギーは電気回路のエネルギー伝送にどのような機能で関わり、負荷に太陽光エネルギーを供給することになると考えるのだろうか。『エネルギー』を基本に考えると、太陽光線も電気回路を伝送する電気エネルギーも負荷に供給されるものも、みんな同じ『エネルギー』でしかないのである。電子の『電荷』は理論的に『エネルギー』を持ち得ないのである。

過去の関連・関係記事 今迄に取上げた考察記事は半導体、電荷およびエネルギー論については次のようなものがある。

哲学と科学

哲学と科学の違いは?と検索に多くの記事が出ている。それだけ違いが分かりずらい主題でもある。だからみんなはっきりと理解したいと思うのだろう。しかし、解説記事を見ても殆ど満足する人はいないのじゃなかろうか。科学とは何かと簡単には答えられないだろう。更に哲学は人の精神活動に関わる上に歴史の社会状況を踏まえた深い考察が根底に無ければならず、科学以上にとても広い分野を網羅するものであろう。最近頓に思う事がある。それは今まで考える事が自然科学についてだと思っていたが、どうも科学に対する科学界の一般の問題意識と全くかけ離れた処を自分は彷徨っているようだと思う様になった。それは科学論なのかあるいは哲学なのかと分からなくなってしまった。解らなくなったところで、その分からない中味を分析して、哲学と科学について考えてみようと思った。何の社会的評価も特別の専門的評価(博士など)も受けていない者が論じることに賛同は得られないかも知れないが。

哲学は科学も包含 哲学は科学の基盤を整える。博士・博士号はPh.D. でDoctor of Philosophy の略であるように、哲学の無い科学は無いのであろう。最近は極めて狭い専門分野で博士号を取得できる体制に成っているようで、何とも言えない状況だ。自然科学に対して自然哲学と哲学に自然を被せた使い方もある。自然哲学と言う表現でどのような意味を持たせるのかは分からない。哲学と科学を対比させながら、その違いを明らかにするのはとても難しい予感がする。それには少なくとも科学とは何かがハッキリと捉まえられていなければならない筈だ。そこの処で困難な壁に突き当たる。その科学とは何かを考えることが既に哲学に成るように思うから。『電荷』が実在し、しかもそれには『正』と『負』の違いがある事を誰が観測し、証明したのか。正と負の『電荷』をどのような空間像と認識するのか。自然科学の根本原則まで問わなければならなくなる。科学論の根本を解剖する論証は哲学であろう。放電管の放電現象を観測しても、陰極線は観測されるが、陽極線(正極線)が観測されたという報告は無いのじゃないか。それなのになぜ『正電荷』が存在すると成っているのか。誰が『正電荷』の存在を確認し、証明したのか。今でも電気回路の『電流』に関しては『負電荷』の電子のみしか解釈に関わっていない。しかも電子は『電荷』と『質量』の両方で構成された複合素粒子概念で解釈されている。このように科学論の根本原理になる程曖昧性が色濃く成る。

科学と哲学の違い 科学論の根本・原理を科学論の論理性を持って解剖する分析法は哲学になると考える。科学と哲学を論じるには、科学の本質を暴きだす作務がなければならなかろう。そこには科学の本質をよく知り、それを洞察する眼力が欲しい。それは東洋哲学の特徴的な『削ぎ落とし』の思考になるのではなかろうか。『不立文字』への覚悟。捉え難い『エネルギー』の何たるかを問う必要があろう。

『瞬時電力』の物理的意味

はじめに 電気技術概念に『瞬時電力』がある。電気エネルギーが現代生活を支える基盤となっている。しかしエネルギー消費量が増加すれば、海水温度の上昇を来たし、地球温暖化による自然災害の増加と言うリスクも伴う状況を来たして居る。先日も新潟地方を襲った暴風雨によって電柱4本がなぎ倒され、突然の停電の被害が発生した。海水温度の上昇が空気中の水蒸気含有率を挙げ、寒気とのせめぎ合いによる上層部の急激な水蒸気体積収縮により低気圧を作り出す。日本の木造住宅の安全性が脅かされる事態を迎えている。竜巻と低気圧暴風雨が伝統的な生活様式の安全性を脅かす事態になっている。食糧生産のハウスも対応できない事態を来たしている。『エネルギー』の物理的意味が正しく認識されていないようで気掛かりである。3月5日西日本では雷の異常発生が観測された。雷の原因は水蒸気の熱エネルギーである。『電荷』などでは決してない。#末尾注#に雷について関連記事。初期の記事、電流は流れず (2010/12/22) にも論じた事である。水と温度の関係は『エネルギー』の何たるかを問う問題でもある。電気技術には『瞬時電力』の他新しい『瞬時虚電力』などと言う用語もある。電気技術の『瞬時電力』の意味を少し深めて置きたいと思った。

瞬時電力とは? 電気現象を論じるに『瞬時電力』と言う用語が使われる。一般にはあまり馴染みがないであろう。電気製品の消費電力も余り気にはしないだろうから。600Wとか500Wと言う数値はその電気製品の1秒間の消費エネルギーが600J(ジュール)、500J(ジュール)であることを示している。その消費したエネルギー量に対して電気料金を払っている。少し電気回路を考える技術者なら電圧と電流の実効値の積との関係で平均の消費電力量で十分理解できる事である。今更改めて、『瞬時電力』でもなかろうと思うかもしれない。しかし無効電力などとの関係を考える時になると、時間的なある瞬時の値がどんな意味を持つのかが分かっているのかと自分に問うてみた。簡単な回路で考えた。

図1.瞬時電力とは何か? 100V、50Hzの電源に10Ωの負荷抵抗。難しい理論は分からないが、基礎的なオームの法則の範囲なら深くも考えられる。電圧v(t)、電流i(t)および瞬時電力p(t)はグラフに描いてその瞬時値を認識出来る。不図気になったのは瞬時電力p(t)の座標の[kW]である。この負荷の電力は電流実効値10AであるからP=1[kW]である。この1000[W]と言う電力は1[s]間の間に負荷に供給されるエネルギーが1000[J]であると言う意味である。瞬時と言う時には時間の長さは含まれていない筈だ。ある時刻の意味である。1[μs]でも瞬時と言う時刻ではない。ワット[W]と言う単位はエネルギーの時間微分の意味である。50Hzの交流電源電圧は1[s]間に100回の回数で負荷にエネルギーを供給しているのだ。その1回分が10[ms]の間に供給される丁度10[J]である。その100回分が1[s]間の1[kJ]になる訳である。

図2.p(t)=dwp(t)/dt  瞬時電力p(t)とは、ある時刻における供給エネルギー値wp(t)の時間微分値を表すものと見られよう。瞬時電力と言う供給エネルギーの電気技術概念もその表現内容を確認しようとすると、なかなか複雑である。それは電圧でも電流でもやはり時間微分の概念が含まれているのだろうから、同じく物理的には微妙な意味を含んでいるようだ。電気回路の基本認識として、『エネルギー』の供給設備であると言う事を理解して欲しい。燃料の『熱エネルギー』を発電設備で「電気エネルギー」に変換し、送配電線路を通して需要家に『エネルギー』を供給しているのである。電気エネルギーを動力に使ったり、熱源として利用したり電灯の光として利用するのである。その『エネルギー』とは何かを認識することが重要である。何処にも『質量』を必要とはしていない。質量でエネルギーを論じる必要は無いのである。確かにモーターの負荷は回転の慣性に動力を働かせるから、質量との関係で論じられる。しかし電気エネルギーには質量は含まれていないのである。電気回路の電流概念には『電荷』と『質量』を含んだ『電子』が主役を演じて論じられる。電気回路で、電源の『エネルギー』を『電子』がどのように負荷まで運ぶと考え得るのだろうか。『エネルギー』の実在性を認識する事が科学論の基本であるべきだ。瞬時電力p(t)は正弦波電源電圧で有れば、数式では電圧と電流の瞬時値から、その積として三角関数の式で表現できる。その電圧と電流の瞬時値は変圧器(Tr.)と変流器(CT)で検出し、その積をオペアンプなどで算定して瞬時電力p(t)の瞬時波形を描くことが出来る。その得られた波形の瞬時電力の単位と数値で、2[kW]のピーク値とは一体どのような意味を持っているのかと考えると、その表現する概念の内容が良く分からないのである。技術概念とは?と誠に不思議な感覚に陥るのである。完璧と思われる技術概念と理論が電気技術者としての長年の常識的世界観が故の物であったのかと、自分の認識に戸惑いさえ感じてしまうのである。

易しいことに含まれる深い意味 電気理論は長い伝統に育まれて、完璧な電気技術論として定着している。それは、電圧と電流の技術概念で十分電気回路現象が理解できるものになっている。極めて易しいオームの法則として完成されている。しかし、その完璧と思える理論でさえも、自然世界の眞相と看做すにはどこか不自然な違和感を感じざるを得ない。そんな感覚的理論の不整合性を突き詰めて来た。物理学理論の『電荷』と『質量』そして『エネルギー』の間に横たわる膨大な絡み合いを解きほぐす作業であったのかも知れない。世界を描くはそんな思いの結論であったのかもしれない。

図3.瞬時電力p(t)とエネルギー伝送 導線内を電子が流れ、電気エネルギーを負荷に供給すると言う解説が普通の電気回路解釈である。今でも教科書はそのように解説されている。電気技術概念の『電流』と『電圧』は誠に素敵な概念である。そんな便利な概念を創り上げてきた電気技術を称賛しなければならない。その御蔭で現在まで電気が社会生活の重要な『エネルギー』供給源として利用出来ている訳である。太陽からは電線路も無しに地球上に『エネルギー』が供給されて、地球の生命が育まれている。お日様が照れば暖かい。太陽の『エネルギー』を受け取っているのである。電線路の銅線の中を『電子』が流れて、電気エネルギーを供給している等と言う解釈では矛盾に耐えないと思うのだが皆さんは如何に考えるかと問いたい。最近は配電線路も絶縁電線を撚って配線しているので、相当配電線路静電容量も大きいかもしれない。その配電線路単位長さ当たりの静電容量をC[F/m]として、電圧分のエネルギー分布量wv(t)[J/m]を表現してみた。電線路には電圧が印加されただけで、線路空間に電気エネルギーが溜まると解釈する。そのエネルギー量を評価する電気技術概念が『電圧』である。電気の眞相(1)-電気エネルギーとは何か― (2014/10/13) に関連している事でもあろう。過去に電気の眞相(2)および(3)で―電圧とは何か―、-電圧と負荷―(2015年)を論じた#末尾注#。電線路電圧の2乗に比例してエネルギー量が溜まる。どのような空間分布になるかは分からない。絶縁材料部でエネルギー密度は高くなるだろう。深い意味でのエネルギー流について。図3で、ポインティングベクトルS(r,t) を使って線路空間のエネルギー流の解釈を描いた。しかしそれも考えてみれば、時間的には瞬時の表現には成っていない。電力の単位ワット[W=J/s]は時間的な瞬時と言う意味での物理概念を表現しては居ないのである。今までの考察では、線路電圧がその線路空間のエネルギー貯蔵量を評価する技術概念であると言う結論に達した。しかしそのエネルギー貯蔵量に対して、負荷に供給される伝送エネルギー量がその内のどの程度の比率であると考えれば良いかまでは示されていない。その負荷供給のエネルギー量を評価する技術概念が『電流』瞬時値i(t)になる筈である。i(t) とp(t) およびwv(t)の間の関係で捉える必要があろう。その辺の関係は次の記事、瞬時電流の物理的意味で別に述べたい。(2018/11/25)追記。瞬時電流や瞬時電力と言う物理的意味が今まで筆者の理解し切れないでいた事さえ改めて考え込んでしまう。その意味を、技術概念『電流』とその測定および瞬時電磁界と概念に纏めることが出来たかと思う。導体中を流れる電子と言う解釈が虚構の科学概念であったと言わなければならない事態をとても残念な結果と思う。物理学の根幹から立て直さなければならないから。

光の正体が電気現象の基礎事項 電気現象は線路空間のエネルギーの挙動として理解する必要があろう。電子が『エネルギー』を背負って負荷まで運ぶ理屈は成り立たない筈だ。どうしても物理的な自然現象として捉えるには、光のエネルギー伝送の意味を基礎に考えなければならない。電子では、エネルギーの光速度伝送を説明できなかろう。『電荷』概念では物理現象としての電気回路解説は無理である。『現代物理学理論』の高度な数学理論での解釈は何も理解できないが、身近な電気回路の『オームの法則』の自然現象としての物理的意味を掘り下げて解釈することの大切さは理解できる。目指すは市民が理解できる科学論であるかも知れない。

#末尾注#

雷の正体 (2012/11/13) ドアノブの火花-熱電変換- (2014/02/09) 雷は熱爆発 (2014/05/03)

電気の眞相(2)-電圧とは何か― 電気の眞相(3)-電圧と負荷―

原子・分子結合力と周回軌道電子論の矛盾

初夢の恐怖  初夢の恐怖 原子核の周りを今年も元気に電子が高速で回っている。科学の世界も安泰であります。そろそろ独りぼっちは寂しいので、纏まった分子結合への夢を見た。回転する電子同士が手を繋ぐ。中心の核私は電子に振り回されて目が廻る初夢の恐怖。それでも電子周回軌道原子構造論は安泰と言う初夢。夢の謎解きが待ちどうしい。2018/01/11 追記。

はじめに 世界は光が支配している。宇宙全体を支配するのは光である。星も砕け散れば光になる。光は原子の全てを創り上げている。質量は光である。光はエネルギーの空間像である。世界はエネルギーである。人類よ、エネルギーの意味を捉えよう。エネルギーに質量が必要と言う誤解を解こう。自然は単純である。雷の発生理論が上空での氷の摩擦での電荷分離現象が原因であるなどと言う研究機関の解釈が罷り通るのはやめて欲しいと願う。

原子とは 複雑怪奇が原子から始まった。『電荷』がその基になってしまった。電荷は光になるか、ならないか?世界に存在する全てが光になる。光を含めてエネルギーが世界の根源であるから。原子は原子核とその周りを周回する電子から成り立つとなっている。その原子核は陽子(正電荷と質量)と中性子(電荷なしの質量)の集合体と成っている。理解できないこと、中性子は正電荷と負電荷が合体して中性なのか、電荷に無関係なのかが明確か?正電荷の陽子が陽電子と中性子に分裂するとも言われる?核の陽子がクーロン力に逆らって集合体を構成する原理は何か?こんな事を言ってはいけないだろうが、そもそもプラスの陽子と中性の中性子で原子核が成り立つという必然性は何なんだろうか。湯川秀樹博士の中間子論で核理論は成り立っていると言われるが、筆者にはとても理解できないので窮してしまう。。最も単純な原子は水素である。一つの陽子の核と周回運動する一つの電子から構成されていると。陽子も電子もすべてエネルギーから出来ている。陽子も電子も消滅すれば光を含めたエネルギーに変換される。世界はエネルギーと等価である。

原子・分子結合力の原因は電荷かエネルギーか 電荷概念を否定し、クーロンの法則を斬ると言えば電気磁気学の伝統的な論理の拠り所を失ってしまう。何の頼る術もない。しかし、原子同士が結合し複雑な高分子から生命現象まで司る世界は現実だ。質量の万有引力では原子結合は説明できなかろう。他に結合する力の原理は何があるか。そこに「電荷」が救いの神に成っていた。しかし『電荷』とは何かと尋ねても答える術もない。プラスとマイナスの『電荷』の空間的存在形態の違いを明らかに出来ない。プラスの電荷は突起を持って居るとか、マイナスの電荷は陥没欠損穴を持って居るとかの空間的違いが無ければ、プラスとマイナスと言う実在性を論理的に説明できない筈だ。そもそも電荷がどのようなものかを説明もできないし、確認出来ないのだ。摩擦によって熱は発生する。摩擦熱だ。熱はエネルギーだ。古代から人は摩擦で火を起こして来た。摩擦で熱エネルギーに変換できる事は見て理解できる。不思議な事に摩擦で電気が発生すると解釈した。摩擦電気と言う。引き付ける力が存在する現象を眼で見ることが出来た。摩擦によって確かに引き付ける力を産むと言う事だけは確かである。その現象が『電荷』が生まれたからであると言うことを検証し、確認出来る訳ではない。電荷は眼に見えない。しかし、眼に観えない元素の世界の科学論が結合力を必要とした事に因る必然的結果として、摩擦現象の引き付ける力が元素の世界に結びついたと考える。誰も否定できない科学論になった。摩擦が眼に見えないがプラスとマイナスの電荷を産むと解釈した。摩擦すると分子結合の物質が摩擦面で、原子の外殻を周回する電子を剥ぎ取り、どちらかの物質側の一方にその電子が移動でもすると考えるのだろう。その為二つの物質で電荷の平衡が破られそれぞれ一方の電荷に分かれると考えるようだ。その電荷分離の原理はどちらの電荷が集合するかの詳しい訳は原子論的に少しも説明されない。摩擦によりクーロンの法則に反する電荷移動が起こる理由が見えないのだ。この摩擦の場合はクーロンの法則は忘れないと理論にならない宿命のようだ。ヴァンデグラフ起電機が後押しもした。丁度粒子性と波動性のように科学理論に横たわる宿命として閑却するようだ。誠に理論は都合が良いのだ。しかし今、エネルギーと言う空間に実在する物理量、光を認識すれば、物を引き付ける原因が『電荷』でなければならないと言う事を一概には言えない筈である。先ず熱エネルギーが放射現象として空間に実在する意味を理解できるかの問題にもなろう。質量には無関係の熱エネルギーを。布団を陽に乾せば、熱エネルギーが籠って暖かくなる。その熱エネルギーである。摩擦現象が熱を産むことは誰もが知っている。しかし科学論の引力に成った時、摩擦熱の意味は消えて摩擦電荷が主役に躍り出る。電気の解説になると、摩擦で熱は発生しないかの如くに、摩擦で発生するのが電気と決まっているかの解釈であるが、そこに間違いの基がある。それが誠に都合よく現象を説明出来たから、摩擦電気と言えば納得できる解釈として世界の常識となった。雷まで氷が摩擦し合うことで電荷が発生するとの解釈で説明されて、その論が認知されている。摩擦は仕事のエネルギーを対象物に与えるから、何らかのエネルギーがその対象物に蓄積されるのはエネルギー保存則の原理通りである。そのエネルギーは殆どが熱である。物体に熱が溜まれば、その近傍の空間にその熱エネルギーの影響が現れるのは当たり前のことである。その近傍空間に現れるエネルギーの影響がどのようなものであると認識するかの問題である。ドアノブの火花―熱電変換ー 2014/02/09 に関連記事。

周回軌道電子論の矛盾と言う意味 原子構造に関する研究に全く携わった経験の無い者が論じる事が如何に失礼かと思いながら、書く事を許して頂きたい。電気技術感覚からの原子構造に対する感覚的矛盾論である事を述べたい。専門家から観れば、愚にもつかない内容かもしれない。核燃料のウラン235もやはり92個の周回電子軌道論で解釈されるのだろうと言う点で、数Å内にそんな電子軌道が成り立つ筈が無いとクーロンの法則との矛盾を否定できない困難が理解を妨げるから。周回電子間のクーロンの法則の排除力を考慮せずに、それ以上に離れた遠隔力の核のプラス電荷との間でクーロンの法則が有効に働くなどと言う意味が原子構造空間内で論理性を説得できるのだろうか。この論の基にはクーロンの法則を斬る(2013/01/06)での『電荷』概念否定の意味がある。この正と負の電荷間に働く電気力が周回電子と中心核を纏める構成源の力と成っている。その原子と他の原子間に働く分子構成力として、主体となるものは原子外周を回転する電子が担っている事になっている。回転しながら原子間の構成力となるにはどのような空間像で理解すれば良いのだろうか。2価、3価と結合手が多くなれば原子同士が超技巧結合手法でも採らなければ原子が眼を回してとても耐えられる筈は無いと思う。そんな周回運動する電子同士に因る分子結合が可能と言う理論が罷り通る科学論とは本当に不思議な事だ。付いて行けない超高等理論だ。