タグ別アーカイブ: 電流は流れず

技術概念『電流』とその測定

はじめに

電気技術は現代社会の基盤を成している。電気理論や回路技術さらにIT情報網は完成された必須の科学技術となっている。しかし《電流とは何か?》と検索してみると、そこに表れる解説は全く訳の分からない説明となっている。殆ど電子の逆流を言うとある。この科学技術社会で、学校教育はじめ科学常識と看做されている内容がどこからこのように決まった解釈手法に迷い込んでしまったのだろうか。『電流』は科学技術概念であり、実に素晴らしい電気計測量なのである。電流は電流計で計る計測量である。それでは電流とは何かを理解するためには、電流計で計るものが何であるかを知らなければならない。今まで『電流は流れず』などと言ってきた責任もあるから、もう一度その意味を解説したい。

可動コイル型電流計

電気回路は電源が電池のような直流が分かりやすいであろう。その回路に流れる電流のアンペア[A]の値を計る測定器の代表が可動コイル型電流計である。それは何を計っているか。

図1.可動コイル型電流計 計器を①可動コイル部構造と②内部回路で表した。回路に流れる電流I[A]をどのように計っているかが計器の動作原理となろう。電流と言うのは電流計で計ったアンペア[A]の値である。電流計は電子の流れ(逆流)など計れる訳が無いのである。電流I[A]と言うものは物理量(自然界の実在量)ではなく、あくまでも電気技術の計測手法として確立した科学技術量なのである。単位アンペア[A]も電荷クーロン[C]の時間微分あるいは単位時間の通過電荷量で定義され[A=C/s]となっている。この電荷の時間微分値等も電流計では測れない。そこで電流計が何を計っているかを知る必要があろう。

電流計は電圧計でエネルギー計測器

基本的には電流を検出するのは抵抗の電圧降下である。②の計器内部のシャント抵抗rs(回路に影響しない精密な低抵抗)に流れる電流Isの電圧降下rs Is [v] を検出しているのである。その電圧をコイルLとそれを囲んだ磁石NSの部分で、電流I'[A]という電流の大きさをコイルの回転角として読み取っているのである。電流計の心臓部とも言える部分が①可動コイル部構造である。磁石とコイルの位置関係がコイル電流I'[A]の値で変わる。磁石とコイル電流の間に働く力の関係はフレミングの法則として説明される。それが教科書の説明であり、それで電気技術者として知識は十分であろう。しかし、物理現象として踏み込んで理解しようとすればそれでは不十分ではなかろうか。直流回路のコイルの意味である。コイルの電気特性はインダクタンスL[H]で捉える。直流回路の場合、コイルが回路内に繋がっていても、電気的に変動が無ければコイルは無いと同じことである。電気的変動が無ければ、コイルの存在は無いのである。それは何故か?コイルとはどのような特性の機能要素かといえば、エネルギーの貯蔵機能がその特徴である。一度コイルにエネルギーが貯蔵されてしまえば、電気回路に変動が無い限り、電気現象はコイルの無い等価回路で書き表される。コイル(エネルギー貯蔵タンク)を短絡して、コイルに負荷電流(コイル電流が内部で還流していると考えても良い)が流れないとしても回路現象としては問題が無い。ただし、コイルの損失が無い理想的な場合ではある。この(磁場と電流間に因る力と異なる)解釈はフレミングの法則の表現する意味とは異なる。磁界を磁束で解釈する科学常識と異なるから。そこで電流計の指針を回転させている力は何かとなる。コイルの周りには、エネルギーが貯蔵されているのであるが、電流が貯蔵されている訳ではない。コイルのエネルギーは電気理論では W=(1/2)LI’^2^[J] とコイル電流で解釈する。それではそのエネルギーとはどのようなものと考えるのか。コイル内の空間にエネルギーが在ると考えるか、そう考えないのか。その解釈が極めて重要なのである。どうも物理学理論では、空間にエネルギーが存在すると解釈していないのではないかと思う。質量に関係しないエネルギーの実在というエネルギー概念が欠落しているように思える。光のエネルギー空間分布と同じ意味の電気現象の解釈が無いようだ。コイルに働く力はエネルギーにあり、その二つのエネルギー流間に因る力でコイルは回転するのである。

①可動コイル部の空間エネルギー

NSの磁石とその中のコイルの磁気について、電気理論では磁束で解釈する。磁束という概念も磁気現象解釈の為の技術概念でしかないのだ。それも空間のエネルギー流の技術的解釈法でしかないのだ。実際は磁極もコイルもその周りにエネルギーが流れているのだ。コイルのエネルギー流が磁石のエネルギー流との間で力を受け、回転するのである。この解釈はフレミングの法則で解釈される現象をエネルギー流間の近接作用力として捉える考え方である。科学論は実験的検証がその論説に欠かせない。だから空間のエネルギー流を観測する方法が無い限り、科学的とは認められないかも知れないが。見えないものを観ることは出来ない意味に成るか。ただ科学的根拠は30年前の『静電界は磁界を伴う』の実験結果のみである。

エネルギー近接作用力

図2.エネルギー近接作用力 コイル電流というものに対して、コイル貯蔵エネルギーは電流と逆向きにコイル内近傍を還流しているのである。回路状態が変化しなければコイル貯蔵エネルギー流は一定のまま流れ続ける訳である。従って、コイルに電流が流れ込む理由は無く、コイルは理論的には回路から切り離されたと考えて良い。元々電線内を電流が流れる訳ではないのである。電線近傍をエネルギーが流れているだけなのであるから。磁石の磁界も図のように磁極表面をエネルギーが還流している磁気現象なのである。今までコンパスの磁気の意味をエネルギー流で解説して来た。磁気はその結合力で特別の強さの意味を持っている。その力の源を磁束という直線的な捉え方では意味が理解できない。力は回転現象に秘められていると解釈する。原子結合力も磁気的エネルギー流にあると思う。参考: 電荷棄却の電子スピン像と原子模型 日本物理学会講演概要集 第64巻2号1分冊、p.18. (2009) にも論じた。

負荷電力と計測

1820年頃、ようやく電気現象の謎が解き明かされるようになった。エルステッドが電流の磁気現象を発見、アンペアが法則を唱えた。と説明される。その当時『電流』などの意味が分かってはいなかった筈だ。言葉で電流の磁気現象と言われると、如何にも電流が分かっていたように錯覚する。電流を計る方法はどのようになされたのか。電流計が完成したのは相当後の1889年頃で、ウエストン型電流計などであろう。それまでにエジソンが1879年に白熱電球を発明し、まず電灯の文明開化が始った。電気エネルギーの供給が産業・商売に成る機運が生まれた。電球の製造・販売や電力供給が産業に成った。さてどう負荷供給電力を、商売の対価を得るために、計るかとなる。測定技術・測定法および測定器が必要になる。何をどう計るかが研究対象に成った筈だ。1881年パリ電気会議で、電気単位 V (ボルト)、A(アンペア)、 Ω(オーム)、 C(クーロン)および F(ファラッド)が決まった。その基準の電気量がどのように決まったかは知らないが、この頃から電流の単位アンペア[A]の計量が研究されたのであろう。

図3.負荷のエネルギー測定技術 直流回路の負荷の消費電力を計るとなれば電圧計と電流計で計る。電気回路の初歩の理論だ。しかし、19世紀中頃を思えば、この測定法を編み出すにどれ程の智慧を絞ったか。ここに西洋技術革新の先進的な努力が隠されていると思う。負荷電力はP[W]で、1秒間の消費エネルギージュール[J]の値を意味している。そんな物理量をどう測定すれば良いか?ストップウオッチで計る訳ではない。電流と電圧で計れるのだ。その測定法を不思議と思わないですか。科学技術の智慧の結晶なのだ。電気を販売するとすれば、エネルギー量となろう。供給したエネルギーの算定はどのようにすればよいか。エネルギーを直接測る方法は難しいだろう。エネルギーが計れないのに、電圧と電流を計って負荷電力p[J/s]を計る方法を完成した。現在は電力量計(ワットアワーメータ)E[kWh]で各家庭への電気エネルギー量ジュール[J]を計っている。

電流計・電圧形で計るもの

電流・電圧の意味 電流も電圧も負荷の電力と抵抗値を計算した値なのである。誠に不思議なり。だから電圧と電流の積が電力p[W]になる。図3.②等価回路とエネルギー流で、電圧・電流計の計測部のコイルは直流回路では変動が無ければ、電源からのエネルギー流には切り離された状態にある。そのコイルに貯蔵されたエネルギー量はコイルの直列抵抗をrとすれば、

電流計ではW=(1/2)L(rs/(rs+r))^2^P/R [J]

電圧計ではW=(1/2)L(1/r)^2^PR [J]

となる。計器内の回路定数と負荷特性の関係を表示している訳である。

むすび

以上身近な言葉である電流について述べた。ITなどを検索すると、電流の意味について、中学生向けの解説記事にも電荷、電子が電線内を流れているとある。それが科学常識となっている。専門家が論説する科学リテラシーの問題になる科学的理解とは何を目標にすべきか。自然科学の内容が自然を観察し、その観察する機会に因って子供達のそれぞれの感性に任せるべきものが本筋ではないか。科学技術の為の競争を目的にした教育は理科教育と一線を画した科学技術教育なのだ。理科教育という余りにも偏った、決まり切った授業展開法に縛られ過ぎている処に重大な欠陥が在るように思う。電気現象一つを取上げても、本当に電線内を電子(電荷と質量混合体)が流れていると誰が観測できるのか。何故エネルギー流でないと証明できるのか。

半導体とバンド理論を尋ねて

追記(2018/05/16) 反省を込めて追記。既に前に同じような記事を投稿していた。半導体とバンド理論の解剖 (2014/01/25) である。さらに太陽電池の解剖 (2014/02/06)にも有る。辿れば、その前年のトランジスタの熱勘定 (2013/01/30)から始まっていたようだ。そこで、電気エネルギーと熱エネルギーが同じものであると考えていたようだ。現在は、『電荷』概念では自然現象の本質を理解することは無理であるとの認識にある。このトランジスタの熱勘定で論じた意味が極めて大切なことを示唆していたと思う。荒っぽくて、反感を買うようの記事が多くて誠にお恥ずかしい。2013年には「量子力学」とは何か?電子科学論の無責任など。

半導体の電子とは? 電力技術における電子の意味を尋ねて30年以上過ぎた。結論は『電荷』も自然界には実在しないと確信するに至った。それならば当然電子も『電荷』などとは関係ないことになる。電気回路の金属導体中を電子が通り、電流になると解釈されている。ただし、筆者は電流は流れず等と言ってきた。だから以下の記事も科学論として認知されるようなものではないかも知れないが、市民や電気の初学者が疑問に思うことに対する『問答』としての価値は十分にあるものと思う。言わば統合的な理屈の自然科学論として見て欲しい。専門的な領域を超えた論理として。さて、現代物理学理論の根幹を成すものに量子力学がある。その代表的な適用が半導体である。半導体の電子のエネルギーレベルとその動作領域の抽象的認識概念が理論構築の原点になっているように思う。フェルミ準位がその要のエネルギー基準値として存在することになっているように思える。そのフェルミ準位は半導体の物性特性に因って、そのエネルギーレベル(電子のエネルギー量)が何ジュール[J]、あるいは何[eV]と決まった値があるのだろうか。

エネルギーバンドとフェルミ準位 電気工学、電気物理と同じ電気エネルギーを取り扱うのに、その専門分野ごとに理論的解釈法や概念がまったく異なる。ただ、原子構造については原子核とその周りを回る電子から構成されているという解釈は自然科学論の基本原則として世界の共通認識になっている。原子構造が科学論の原点にある。『電荷』否定はその科学論から除外されてしまう。永年電力技術で感覚的に身に付けたエネルギーの実在性が染み付いた論理構成の習慣が『電荷』概念の曖昧性に拒否感を抱くようになってしまった。電気物理での半導体の電気現象解釈理論はバンド理論で、正しく原子構造論の電子のエネルギー論を論じているように思う。それは『電荷』概念に基づいて理論構築されている。半導体結晶は基本的にダイヤモンド結合の構造と解釈されている。電子による共有結合が基本になっているように思う。原子核の周りをどのような速度で電子が周回運動をしているかは分からないが、それぞれの電子が回転し互いの隣り合う原子同士の間では、核の周りは複雑な電子回転に伴う『負電荷』の空間場になっているように思われる。単純な電気理論から考えると、負の『電荷』の空間場で、隣り合う原子同士の間でダイヤモンド結晶になる訳が理解できないのだ。電子が回転しながら隣の原子同士が結合する姿が現実世界の空間概念で描けないから理解できない始末にいる。そんな理解能力の無い者が現代物理学理論のバンド理論の意味を考えるなど誠に恥ずかしい極みではある。しかし、初めてバンド理論を学ぶ若い方々も同じような疑問を抱くのではないかと思うので、少し考えを述べてみたい。電気材料を導体、半導体および絶縁体と三つに分けてバンド理論の基礎が説かれる。全てに価電子帯と伝導帯がある。半導体と絶縁体にはその帯の間に禁制帯と言うバンドギャップが存在する。それらのバンドの『帯』と言う幅で表現される意味は電子の持つエネルギーの量の大きさに関係したように見受けられる。電子が回転運動していることに因る運動エネルギーの量の大きさを意味しているのかと思う。電子には質量があるから、その御蔭で運動エネルギーの解釈だ可能である。水素原子は原子構造が単純だから、電子のエネルギー量は基礎物理学では良く算定されて議論されているが、シリコン原子の電子になれば、その運動エネルギーは算定は可能なのだろうか。どの程度の回転速度になるのだろうか。その算定が出来て初めて、新しい半導体の技術開発にバンド理論の意義が生きて来る訳と考える。決して理論が理論の為の理論であってはならない筈だ。『電荷』の実在性はその理論構成に具体的に生かされてこそと思う。リン(P)やヒ素(As)の不純物が添加されると実際の電子のエネルギー量はどの程度のジュール[J]になるのだろうか。

太陽光発電理論と電子 量子力学の理論として大まかに理解している事は、原子や分子にエネルギーを与えると、原子の外殻周回電子がそのエネルギーを受け取って、電子の質量の運動エネルギーの増加を来たし、遠心力と釣り合う様な電子軌道の膨らみを来たすと理解している。光などのエネルギーが電子の運動エネルギーとして吸収される訳をどのように理解すれば良いかも分からないので困惑している。更に何らかの原因で逆に電子の軌道が下のレベルに落ちると光としてエネルギー放射を来たすらしい。勝手な解釈と言われれば、致し方ないが電子の運動エネルギーと光との変換過程が理解できない。量子力学の基本理論を理解している訳ではないが、太陽光発電での半導体は太陽の光を吸収して、電気エネルギーに変換する発電機能設備である。発電パネル内で、電子が光エネルギーを吸収してエネルギーの高い状態で伝導帯に入る。その伝導帯では電子が自由電子となり、原子の束縛から解放されると解釈して良いのだろうと思う。伝導帯の電子はどの程度のエネルギー増加になっているのかを知りたい。発電パネルから次は電気回路を通して負荷に電子はエネルギーを運ぶのかと理論のつながりを考えるのだが、電気回路内の電子による電流概念となると、どうも電子はエネルギーを担う役割は想定されないことになっているようだ。一体半導体内で光エネルギーを受け取ったかと理解するが、回路理論になるとそのエネルギーを担う電子と言う概念は無いようであるため、どこか論理的な繋がりが無いようで理解に苦しんでしまう。もう一度述べる。量子力学における半導体のバンド理論では原子の周回電子のエネルギーの増減を論理構成の基本に据えている。伝導帯の電子は増分エネルギーを電子質量の運動エネルギーとして余分に担ってエネルギー供給機能を果たす役割が期待されているようだ。そこでの電子は速度の増加としての特別の電子になるのであろうか。次に半導体理論によって理論付された電子に関係して、その太陽発電パネルをエネルギー源として捉える電気回路理論では、折角のバンド理論で担ったエネルギーの増加分を電流の根拠である電子には求めていないのである。当然のことであるが、電気回路論では電子に質量に関わる概念は意味を持たないから、電子における『電荷』と電界との間の電気磁気学理論に基づく論理しか考察対象には成らない。だから原子構造論における電子エネルギーに関する運動エネルギーは全く無意味に成る。総合的に全体を見渡した時、半導体パネルで受け取った太陽光エネルギーは電気回路のエネルギー伝送にどのような機能で関わり、負荷に太陽光エネルギーを供給することになると考えるのだろうか。『エネルギー』を基本に考えると、太陽光線も電気回路を伝送する電気エネルギーも負荷に供給されるものも、みんな同じ『エネルギー』でしかないのである。電子の『電荷』は理論的に『エネルギー』を持ち得ないのである。

過去の関連・関係記事 今迄に取上げた考察記事は半導体、電荷およびエネルギー論については次のようなものがある。

『瞬時電力』の物理的意味

はじめに 電気技術概念に『瞬時電力』がある。電気エネルギーが現代生活を支える基盤となっている。しかしエネルギー消費量が増加すれば、海水温度の上昇を来たし、地球温暖化による自然災害の増加と言うリスクも伴う状況を来たして居る。先日も新潟地方を襲った暴風雨によって電柱4本がなぎ倒され、突然の停電の被害が発生した。海水温度の上昇が空気中の水蒸気含有率を挙げ、寒気とのせめぎ合いによる上層部の急激な水蒸気体積収縮により低気圧を作り出す。日本の木造住宅の安全性が脅かされる事態を迎えている。竜巻と低気圧暴風雨が伝統的な生活様式の安全性を脅かす事態になっている。食糧生産のハウスも対応できない事態を来たしている。『エネルギー』の物理的意味が正しく認識されていないようで気掛かりである。3月5日西日本では雷の異常発生が観測された。雷の原因は水蒸気の熱エネルギーである。『電荷』などでは決してない。#末尾注#に雷について関連記事。初期の記事、電流は流れず (2010/12/22) にも論じた事である。水と温度の関係は『エネルギー』の何たるかを問う問題でもある。電気技術には『瞬時電力』の他新しい『瞬時虚電力』などと言う用語もある。電気技術の『瞬時電力』の意味を少し深めて置きたいと思った。

瞬時電力とは? 電気現象を論じるに『瞬時電力』と言う用語が使われる。一般にはあまり馴染みがないであろう。電気製品の消費電力も余り気にはしないだろうから。600Wとか500Wと言う数値はその電気製品の1秒間の消費エネルギーが600J(ジュール)、500J(ジュール)であることを示している。その消費したエネルギー量に対して電気料金を払っている。少し電気回路を考える技術者なら電圧と電流の実効値の積との関係で平均の消費電力量で十分理解できる事である。今更改めて、『瞬時電力』でもなかろうと思うかもしれない。しかし無効電力などとの関係を考える時になると、時間的なある瞬時の値がどんな意味を持つのかが分かっているのかと自分に問うてみた。簡単な回路で考えた。

図1.瞬時電力とは何か? 100V、50Hzの電源に10Ωの負荷抵抗。難しい理論は分からないが、基礎的なオームの法則の範囲なら深くも考えられる。電圧v(t)、電流i(t)および瞬時電力p(t)はグラフに描いてその瞬時値を認識出来る。不図気になったのは瞬時電力p(t)の座標の[kW]である。この負荷の電力は電流実効値10AであるからP=1[kW]である。この1000[W]と言う電力は1[s]間の間に負荷に供給されるエネルギーが1000[J]であると言う意味である。瞬時と言う時には時間の長さは含まれていない筈だ。ある時刻の意味である。1[μs]でも瞬時と言う時刻ではない。ワット[W]と言う単位はエネルギーの時間微分の意味である。50Hzの交流電源電圧は1[s]間に100回の回数で負荷にエネルギーを供給しているのだ。その1回分が10[ms]の間に供給される丁度10[J]である。その100回分が1[s]間の1[kJ]になる訳である。

図2.p(t)=dwp(t)/dt  瞬時電力p(t)とは、ある時刻における供給エネルギー値wp(t)の時間微分値を表すものと見られよう。瞬時電力と言う供給エネルギーの電気技術概念もその表現内容を確認しようとすると、なかなか複雑である。それは電圧でも電流でもやはり時間微分の概念が含まれているのだろうから、同じく物理的には微妙な意味を含んでいるようだ。電気回路の基本認識として、『エネルギー』の供給設備であると言う事を理解して欲しい。燃料の『熱エネルギー』を発電設備で「電気エネルギー」に変換し、送配電線路を通して需要家に『エネルギー』を供給しているのである。電気エネルギーを動力に使ったり、熱源として利用したり電灯の光として利用するのである。その『エネルギー』とは何かを認識することが重要である。何処にも『質量』を必要とはしていない。質量でエネルギーを論じる必要は無いのである。確かにモーターの負荷は回転の慣性に動力を働かせるから、質量との関係で論じられる。しかし電気エネルギーには質量は含まれていないのである。電気回路の電流概念には『電荷』と『質量』を含んだ『電子』が主役を演じて論じられる。電気回路で、電源の『エネルギー』を『電子』がどのように負荷まで運ぶと考え得るのだろうか。『エネルギー』の実在性を認識する事が科学論の基本であるべきだ。瞬時電力p(t)は正弦波電源電圧で有れば、数式では電圧と電流の瞬時値から、その積として三角関数の式で表現できる。その電圧と電流の瞬時値は変圧器(Tr.)と変流器(CT)で検出し、その積をオペアンプなどで算定して瞬時電力p(t)の瞬時波形を描くことが出来る。その得られた波形の瞬時電力の単位と数値で、2[kW]のピーク値とは一体どのような意味を持っているのかと考えると、その表現する概念の内容が良く分からないのである。技術概念とは?と誠に不思議な感覚に陥るのである。完璧と思われる技術概念と理論が電気技術者としての長年の常識的世界観が故の物であったのかと、自分の認識に戸惑いさえ感じてしまうのである。

易しいことに含まれる深い意味 電気理論は長い伝統に育まれて、完璧な電気技術論として定着している。それは、電圧と電流の技術概念で十分電気回路現象が理解できるものになっている。極めて易しいオームの法則として完成されている。しかし、その完璧と思える理論でさえも、自然世界の眞相と看做すにはどこか不自然な違和感を感じざるを得ない。そんな感覚的理論の不整合性を突き詰めて来た。物理学理論の『電荷』と『質量』そして『エネルギー』の間に横たわる膨大な絡み合いを解きほぐす作業であったのかも知れない。世界を描くはそんな思いの結論であったのかもしれない。

図3.瞬時電力p(t)とエネルギー伝送 導線内を電子が流れ、電気エネルギーを負荷に供給すると言う解説が普通の電気回路解釈である。今でも教科書はそのように解説されている。電気技術概念の『電流』と『電圧』は誠に素敵な概念である。そんな便利な概念を創り上げてきた電気技術を称賛しなければならない。その御蔭で現在まで電気が社会生活の重要な『エネルギー』供給源として利用出来ている訳である。太陽からは電線路も無しに地球上に『エネルギー』が供給されて、地球の生命が育まれている。お日様が照れば暖かい。太陽の『エネルギー』を受け取っているのである。電線路の銅線の中を『電子』が流れて、電気エネルギーを供給している等と言う解釈では矛盾に耐えないと思うのだが皆さんは如何に考えるかと問いたい。最近は配電線路も絶縁電線を撚って配線しているので、相当配電線路静電容量も大きいかもしれない。その配電線路単位長さ当たりの静電容量をC[F/m]として、電圧分のエネルギー分布量wv(t)[J/m]を表現してみた。電線路には電圧が印加されただけで、線路空間に電気エネルギーが溜まると解釈する。そのエネルギー量を評価する電気技術概念が『電圧』である。電気の眞相(1)-電気エネルギーとは何か― (2014/10/13) に関連している事でもあろう。過去に電気の眞相(2)および(3)で―電圧とは何か―、-電圧と負荷―(2015年)を論じた#末尾注#。電線路電圧の2乗に比例してエネルギー量が溜まる。どのような空間分布になるかは分からない。絶縁材料部でエネルギー密度は高くなるだろう。深い意味でのエネルギー流について。図3で、ポインティングベクトルS(r,t) を使って線路空間のエネルギー流の解釈を描いた。しかしそれも考えてみれば、時間的には瞬時の表現には成っていない。電力の単位ワット[W=J/s]は時間的な瞬時と言う意味での物理概念を表現しては居ないのである。今までの考察では、線路電圧がその線路空間のエネルギー貯蔵量を評価する技術概念であると言う結論に達した。しかしそのエネルギー貯蔵量に対して、負荷に供給される伝送エネルギー量がその内のどの程度の比率であると考えれば良いかまでは示されていない。その負荷供給のエネルギー量を評価する技術概念が『電流』瞬時値i(t)になる筈である。i(t) とp(t) およびwv(t)の間の関係で捉える必要があろう。その辺の関係は次の記事、瞬時電流の物理的意味で別に述べたい。(2018/11/25)追記。瞬時電流や瞬時電力と言う物理的意味が今まで筆者の理解し切れないでいた事さえ改めて考え込んでしまう。その意味を、技術概念『電流』とその測定および瞬時電磁界と概念に纏めることが出来たかと思う。導体中を流れる電子と言う解釈が虚構の科学概念であったと言わなければならない事態をとても残念な結果と思う。物理学の根幹から立て直さなければならないから。

光の正体が電気現象の基礎事項 電気現象は線路空間のエネルギーの挙動として理解する必要があろう。電子が『エネルギー』を背負って負荷まで運ぶ理屈は成り立たない筈だ。どうしても物理的な自然現象として捉えるには、光のエネルギー伝送の意味を基礎に考えなければならない。電子では、エネルギーの光速度伝送を説明できなかろう。『電荷』概念では物理現象としての電気回路解説は無理である。『現代物理学理論』の高度な数学理論での解釈は何も理解できないが、身近な電気回路の『オームの法則』の自然現象としての物理的意味を掘り下げて解釈することの大切さは理解できる。目指すは市民が理解できる科学論であるかも知れない。

#末尾注#

雷の正体 (2012/11/13) ドアノブの火花-熱電変換- (2014/02/09) 雷は熱爆発 (2014/05/03)

電気の眞相(2)-電圧とは何か― 電気の眞相(3)-電圧と負荷―

電気回路理論と電磁気学の関係

標題のような関係を問われているようだ。言われてみれば、なかなか悩ましい問題かもしれない。電気回路理論は物理学の分野と言うより電気工学の科学技術応用理論になると考えた方が良かろう。回路理論は電流や電圧と言う科学技術概念で論じる分野になるから。しかし電気磁気学(現在の教科書の内容は電流、電荷概念によって解釈しているから、それは科学技術の範疇になり、真の自然の真理とは異なる。2018/02/13)はあくまでも自然現象として電気現象の真理を探る学問分野になろうから、電気工学と異なる物理学の範疇の分野になろう。物理学は応用でなく自然の真理を説き明かす学問分野と考える。だから物理学は例えば『電荷』の実在性を説き明かす事を目的とするような学問分野であろう。科学技術概念とその用語は応用分野が広がるにつれ、次々と新しい概念・用語が造りだされる傾向にある。超伝導現象等も古い電気磁気学には無かった、気付かなかった現象である。その新しい応用技術用語・概念が如何なる自然現象なのか、その本質を究めることが物理学である筈だ。そこには電流を自然の真理と解釈するようではとても物理学とは言えない。広く自然哲学としての見極めをする学問が物理学であろう。応用と真理は常に対立する学問分野であるべきだろう。電流概念(電荷と質量の混合素粒子である電子の流れと言う概念。しかし電流はA[C/s]で、その単位には質量は入らないと言う不思議な電流概念論の矛盾)を否定すれば、初めて電気回路内の現象の意味が分かって来る筈だ。電流が流れていない事が分かれば、導体としての銅線の資源量は節約され、設備は軽量化されるのだ。それが自然現象の本質を究める学問・物理学であろう。物理学の電気磁気学は根本から作り直さなければならない処に立っているのだ。電気工学と電気磁気学は全く異なる分野である。科学技術の社会に生きる現代人がその科学技術の本質を理解し、賢く生きる未来を見据えるに欠かせないのがその科学技術に隠された真理を認識しながら、技術との関わりを考えることであろう。技術を理解するには、電気工学で有ればオームの法則やファラディの法則と言う便利な技術法則を使う術を身につける必要がある。ファラディの法則一つをとっても、磁束と言う概念を使うが、科学技術法則として《磁束=コイル印加電圧の時間積分》と言う概念で捉えることが必要である。しかし、その法則さえ物理学として自然世界の真理を求める分野では磁束など存在しない事を理解する必要がある。磁束もただ一つの『エネルギー』の回転流を評価する科学技術概念でしかない事を。

今電子レンジと水について考えている。水分子が衝突し合って加熱されると解説されているのを本当か?なと。マグネトロンと同じく、MRIもなかなか不思議な理論で、すべて磁界と磁束の科学技術概念がその基本理論を構成している。みんな『エネルギー』の様相に観えるから、筆者の迷惑論かと御免なさい。

生体電流と生体制御

生体電流と言う言葉が有ることを知った。ブログのダッシュボードに質問らしい言葉が載る。そこに「生体電流って何か高校生」とある。その事に触れて、述べよう。電流と言うのだから、電気現象の電流と同じ意味で使っている用語であろう。しかし生体に流れる電流と言うには電流の概念とそぐわないと言う意味で無理がある。電気現象で電流と言うのは必ず2本以上の往復導線が必要である。生体内の神経細胞やニューロンの神経索のようなエネルギーの伝達経路は光ファイバーに近い1本の通路であろう。元々電気現象の『電流』と言う技術概念(『電子』の流れ)が『エネルギー』の電気現象の真理を語れる訳ではないのであるから、生体電流と言う意味に疑問を抱くのは当たり前のことである。『エネルギー』は電荷などの移動現象ではなく、空間を伝播する光と同じ縦波なのである。だから生体電流と言うものも、神経細胞の伝達空間が有れば、そこを流れる縦波の『エネルギー』なのである。近年は義手の開発も進み、脳信号を義手に伝えることも可能になっているが、検出器と脳との間の空間を通して、脳の考える情報の制御エネルギーが自由に伝達可能になっている。それは電流と言う2本の導線の電荷の移動などと言う古い電気現象解釈では理解できない事を示していると思う。少し前に細胞に関する疑問などを書いた。脳の機能と個性脳と生体制御の謎が有る。

電流は流れずと言う電気現象に対する解釈から、生物学は全くの素人ではあるが、生体電流と言う意味の理解に役立つかと思った。『電荷』での科学理論には綻びが多過ぎるように思う。

コンデンサとエネルギーと電荷

特にこの1,2年コンデンサの電気現象を考えて来た。IT検索したら、高校生などの質問があって、それに教えられた。一応高校の物理の教科内容になっているようだが、考えると中々一筋縄では答えられない。疑問だけが残る。次の二つの記事が筆者に教えてくれた質問であり、それに答える解答者の解説でもある。さすがに解答者も考えたことであろう。筆者も解答するつもりで、別の視点から考えてみよう。ただその視点が社会的な合意を得るのに困難なものであろう。科学論は一般に過去の先人が築いて来た伝統ある共通認識の基礎認識の上に、新たな発見とか深みを付け加えるもので、そこに新たな共感や賛同を得て互いに達成感を広げるものであろう。社会的な安定した常識の意識が望まれる。それに対して、筆者が述べる科学論は、伝統的な科学常識の教育に携わっている方々に違和感と嫌悪感を抱かれるような内容が多いと自覚している。だから人と融和を重んじるなら殆ど書けない内容ばかりであることも知って居る。気に障る場合はご勘弁願います。『電荷』否定とその概念矛盾認識がその原点に在り、世界の根源要素は『エネルギー』であるとの解釈に基づいているので。余りにも科学常識論からかけ離れ過ぎているから、社会的混乱と言う点で迷惑な事でもあろう。
(1)コンデンサと静電エネルギーについて 高等学校の物理Ⅱの問題を学習して、疑問を提起したものだ。理科の指導内容にはその教科特有の専門用語が使われる。言葉の意味を的確に理解することは、はじめて学習する者には難しいこともあろう。質問者がどのように理解しているかが気になる用語がある。それは『静電エネルギー』である。その『エネルギー』とは何処に在るどんなものと理解しているのだろうか。それは『電荷』でもないし『電界』や『磁界』でもない。静電容量はコンデンサの空間構造の『エネルギー』を貯蔵する容積である。コンデンサ容積内に貯蔵する『エネルギー』を『静電エネルギー』と言っていると思うが、質問者はそうではなかろう。その『エネルギー』を『電荷』で結びつけて空間に実在するように理解するのは無理であろう。物理学での『エネルギー』は電界あるいは電圧に依り受ける『電荷』の移動に対する仕事量の合計値としてエネルギー量ジュールに換算した物として教育されているから。質量に働く力と移動距離で評価する基本的『エネルギー』概念だけで解釈しているから。電気エネルギーは全く質量には無関係の『エネルギー』なのである。光と同じ『エネルギー』なのである。『電荷』があると、どこに『静電エネルギー』が実在すると言うのだろうか。『電荷』の中に在るのだろうか、それともその周りの空間でしょうか。それは教育者側に問う『問答』でもある。結局『電荷』や『電子』の具体性が曖昧なまま、その存在が科学理論の複雑な絡み合いの中に常識化されている処に問題があるように思う。

電荷と静電エネルギー 『静電エネルギー』とはどんな意味で解釈しているかを、筆者の理解する内容で確認したい。物理の教科を教えた事もなく、間違っていると悪いので基本的認識を図に依って考えたい。先ず『静電エネルギー』とは『電荷』が持つエネルギー(?)と理解するのか?『電荷』でなくて空間が保有する『エネルギー』なら大いにその解釈で結構なのだが、どうも物理学理論から推論するとそうではないようだ。『電荷』と言うのも実際は『電子』等に付帯したものとしての、それが持つ『電荷』量という意味で解釈すれば良いのだろうと思う。教科書理論では『電荷』が単独に存在すると言う、質量の無い独立した概念とは捉えておらず、質量に付随した概念として解釈されているようだ。だから『電荷』と言う時は、それは『電子』か『イオン』かの意味で捉えて良かろう。図は中心に『電子』の抜けた原子の集まりで+Qクーロンの原子集団があるとした。現実にはプラス電荷同士が集まるのもクーロン力から考えればなかなか理解し難いのだが、大目に見ておこう。さてそのプラス電荷が空間に存在した時、周辺の全空間には電気力線と言う電界の歪み空間を作り出すと考えて良いのだろう。それが教科書の電界の意味であろうから。全空間の中心が張る立体角は4π[st.rad.(ステラヂアン)]である。半径r[m]の球表面は電界強度E[V/m]のベクトル空間と看做す。そこに何か『電荷』があれば、その電荷には中心の電荷+Q[C]に依る力が働く理論に成っている。それは遠隔力か近接力かも考える必要があるが、先ず空間の電場と言うものをどう解釈するかであろう。その空間は電界があるが、『エネルギー』は存在しないと解釈するのかどうか。空間に『エネルギー』があると解釈すれば近接作用力が有力になるが、教科書のようにただ電界を抽象的に捉えているなら遠隔作用力とする見方になろう。筆者は電界が在れば、それはそこに『エネルギー』が存在することと同等であると解釈するがそれはここでは伏せておく。元々電界なる概念の実在性も理解できない筆者であるから。前置きはそれくらいにして、『電子』に掛かる運動を考えてみよう。『電荷』だけでは運動に依る『エネルギー』の意味を捉えられないのが物理学理論(単位[eV]の概念問題もあるが)だと思う。必ず質量が無いとエネルギー論は成り立たないように思う。『電荷』には力が働いても運動方程式の加速度α[m/s^2]が生まれないから。どうしても質量にお出まし頂かなければならない宿命にある。『電荷』だけでは無理でも『電子』の質量に依りエネルギー論が可能になる。そうするとまた困ってしまう。よく無限遠から『電荷』をその位置まで持って来るにどのような仕事をするかとなる。その仕事がエネルギー論には欠かせない。仕事の解釈は力によって質量を動かした時、力ベクトル f [N]と移動距離ベクトル r [m]のスカラー積で仕事量のスカラーw= fr [J] で捉える。その仕事量は質量を動かすことに使われた消費エネルギーである。普通消費エネルギーと言う場合は、その『エネルギー』は熱として空間に放射される感覚で捉える。しかし、仕事量の幾分(1/2?)かを質量の『エネルギー』増加に変換する場合もある。そこに、電磁気学理論での『エネルギー』のもう一つの単位に[eV]がある。特に素粒子物理学理論等で『エネルギー』と言えばジュールでなく[eV]の単位で解釈するのが一般的である。それは一つの『電子』の電荷量が電界空間で移動した時に『電子』が得ると考える『エネルギー』の量を基準単位とした評価量であると解釈するが、間違いだろうか。その場合、『電子』には質量が在るから電界に因る力で、質量の加速度運動が起こるから『電子』の移動が可能であり、最終的にその質量の運動エネルギー分はどのように[eV]のエネルギー量の中に認識すれば良いのだろうか。[eV]の単位が表現する『エネルギー』の中味は『電荷e[C]』が電位差V[V]間を移動しただけで『エネルギー』を獲得する様な表現単位に思える。しかし、その[eV]単位がコンデンサの電極版間での『電子』などが保有する『エネルギー』に結びつくのか理解が難しい。『電荷』だけのそこには質量の運動力学の基本原理の加速度が見えない。実在物体を移動させる力とは質量の慣性に掛かる加速度を評価した物理学運動原理と思う。そのように質量を伴わない『電荷』のみを移動する運動エネルギー論は物理学理論には無いと思うのだが、その解釈は間違っているだろうか。このエネルギー単位[eV]で思考を整理するためエネルギー単位[eV]を尋ねてに別に取り上げた。さて、質量を伴う『電子』を対象に仕事を考えてみよう。図では、電界に因る力が『電子』に掛かれば、『電子』は加速運動をすることになろう。無限遠からrの位置まで力が掛けられれば、加速度によって相当の高速度運動に成っているだろう。それが力と運動の基本的解釈ではなかったか。そこで、その『電子』の持つ『エネルギー』は如何程と解釈すれば良いのだろうか。再び『静電エネルギー』とは何が持つエネルギーのことか?を考えてみよう。それはコンデンサと言う二枚の対向金属電極に因って構成された空間がその静電容量と言う単位ファラッド[F]の機能の基を成すものである。その空間が空気か誘電体材料かに因って機能の強さに差が生まれる。『静電エネルギー』はどこにどのようにして得られて、何が保持する『エネルギー』と解釈すれば良いのだろうか。『エネルギー』をコンデンサに蓄える仕組みは電気現象として如何なるものであるかと言うことである。このような設問形式で、問いながら考えることは高校生が初めて考える内容としてはそう難しい事ではないだろう。数式で解説している訳でないから、意味を汲んで貰えないかと思った方法だ。何が言いたいかと言うと『静電エネルギー』とは結局具体的にどんな『エネルギー』と理解しているかと言うことであり、曖昧であっては論理の物理には成らないと言う意味を理解して欲しい。誠に難しい教育の社会的問題を論じる様なことになって、読まれる方に申し訳ない思いもある。真理・真髄あるいは哲学とは社会的混乱でもあるのかと?生徒、学生にはこの問題に対処する方法は無い。教育する側、学力試験・入学試験を実施する側に考えて欲しい事だ。ようやく問題の核心に話題を絞ることが出来る。コンデンサの充電現象についての物理的(物理学教科書的ではない)解釈に入ろう。それは『電荷』概念に因るコンデンサ充電問題における矛盾についての考察である。その基本的観点は電気現象がすべて『光速度』の現象である点であろう。

コンデンサ充電現象の意味-『電荷』と光速度現象― 質問者のコンデンサ充電現象の話に入ろう。一定電圧の電源とコンデンサを繋いだら、どんな現象が起こるかが基本の話になる。先ず電気現象はすべて『光速度』の規範の基に在る。そこで、コンデンサ充電とはその電極板のプラス側とマイナス側に相反する『電荷』が集積された状態として理解しているだろう。物理学教科書の『電荷』の現象として考えてみよう。質問者は電源にコンデンサを繋いだ瞬間にコンデンサ電圧が電源電圧になると解釈しているのだろうが、それは止むを得ないことである。電源とコンデンサを並列に接続する図を想像すれば当然である。しかしその電気現象の本質を理解する事には初学者には無理があるのだ。元々教科書が光速度で電気現象を理解する教育内容になっていないのだから。その辺を捉えないとエネルギーが半分になると思うのも当然で、そこに誤解の意味の原因があろう。

図2.コンデンサ充電現象 どんな電気現象も過渡状態では、単純な回路要素で表現できるほど簡単ではない。ただ直流電源にコンデンサをスイッチで接続しても、コンデンサの電圧が瞬時に電源電圧になる訳は無い。それは現象が光速度の遅れを伴うことと、回路周辺の空間がその現象の伝達に影響を及ぼすからである。それは漏れインダクタンスとか抵抗などで表現する事も出来るが、決まった値ではない要素値であろう。厳密な方程式では表現できない。電流と言う技術概念量(is,ir)を考えれば、現象の光速度伝播から、それも電源側と負荷側では厳密には同じ量ではない。ここでコンデンサに充電される『電荷』と言う概念量に基づいて、その充電機構やコンデンサ電圧と『電荷』との間の物理的意味を考えてみよう。コンデンサのプラス電極とマイナス電極の『電荷』の分布を決める原理とその充電機構をどう解釈するか?プラス側のプラスの『電荷』は原子イオンが集まる訳ではないから、電極板から『電子』を引き抜き、電極板金属原子のイオンが残ると考えるのだろうか。その現象も電源側のスイッチSから始まって、コンデンサ端子に現象が伝わることになる。その時導線内にどのような電界(電荷分布に因る)が生じ、『電子』を引き抜く現象が起きるのだろうか。その引き抜き現象が終端のコンデンサまで伝播する様子をどのように解釈できるだろうか。次に、マイナス電極のマイナス『電荷』は電源の負側導線を通して『電子』が流れ込むと考えるのだろうか。そのマイナス側でも同じ意味での光速度伝播現象の解釈が要求される。単純に『電荷』が充電されると言う現象でも、その論理的解釈法を理解するにはとても難しい。『電荷』に因るコンデンサ充電現象はどんな原理で可能か?蛇足であるがもう少し述べたい。『電荷』移動は図1で考えたように電界E[V/m]が無ければならない筈だ。『電荷』は電線導体内を流れると教科書では説明されているから、電線内に電界が無ければ『電荷』は動かない。電源端子の電線内とコンデンサ端子の電線内とでは、同時に光速度を超えて同じ現象には成らない。導線内の単位長さにどんな電界が発生すると考えれば良いか。その電界の発生原理が明確に示されなければ、コンデンサを充電する『電荷』の移動を説明できない筈だ。図1でも述べたように、『電荷』では質量が無いから運動論には適さない。だから『電子』の質量をお借りして、『電荷』だけで良いのに質量まで組み入れた論理となる。コンデンサ電極には『電子』の『電荷』と『質量』を共に充電しなければならない論理になる筈だ。そこで考える、電線内の電界の発生が論理的に解説できるか。どのように電界が発生するのだろうか。抵抗降下電圧とは意味がまったく違うのである。電界と抵抗降下が同じでは、結局『電子』を動かす電界が無いと同じ事である。『電子』『電荷』を動かす電界は『電荷分布』に因ってしか図1の電気力線は説明できない筈だ。導線内に電荷分布に因る電界発生原理を示せなければ、『電子』移動の説明にならない。その『電荷』分布による導線内の電界発生の説明が出来ないなら、図1で論じた電界と『電荷』移動の意味は無用な事になる(本当は『電荷』など存在しないから意味は無いのだが)。『電荷(電子)』は加速度運動方程式に因って力を受けて初めて移動すると言うのが物理学の電気現象の原理の筈であろう。ローレンツ力の磁界加速は円運動で加速すれば中心に螺旋運動してしまう。磁界加速は今回の問題には無関係だ。電荷分布に因る電界しか『電子』は移動できない教科書理論の筈ではないでしょうか。

『電荷』とクーロンの法則 電極板に『電荷』が溜まるとは、どのような電界強度分布から可能なのだろうか。クーロンの法則は同じ極性の『電荷』同士にはその距離の2乗に反比例した排斥力が働く筈だ。どのようにクーロン力を打ち消す力が働くのか、その原理を示すことが理論の物理学としては欠かせない筈と思う。それは摩擦に因る『電荷』発生の解説が古くから受け入れられた解釈手法になっている処に原因があるようにも思う。クーロン力の強さを決める変数が距離と言う科学論の意味を是認するなら、『電荷』集合に対する力の論理的解釈法が示されて初めて電極板の『電荷』分布が論じられると思う。クーロンの法則を超える『電荷』集合の原理が。

静電エネルギー さていよいよ『静電エネルギー』とはどのような電気量で、どこに存在すると解釈すべきかを考えよう。電極板の『電荷(電子あるいは原子イオン)』を素に解釈するとすれば、その『電子あるいは原子イオン』が保持する『エネルギー』と言う意味で捉えるのか。極板に在るそれらの電荷対象は何処で『エネルギー』を保有して、どのような違いを前後で得たのか。『電荷』が『エネルギー』を保有するとはどのような『電荷』の様態の変化を生じると言うのか。『電子』が『エネルギー』を保持したり、失ったりする場合の『電子』内に起こる変化はどのような事で理解するのか。そのように考えた時、『電子』そのものに『静電エネルギー』の保持や消失の責務を負わせるのに矛盾を感じないだろうか。理論的とは、理屈の筋が通っていなければならないのである。矛盾が少しでもあれば、それをそのまま有耶無耶にしてはいけない。しかし、すぐに解決できる場合は余りなかろう。その時こそ、その矛盾を忘れずに何時か解決する時を待つ心掛けが欲しい。『電荷』が『静電エネルギー』を持つと解釈できるだろうか。式での W=CV^2^/2 [J] のV^2^[J/F]([V]=[(J/F)^(1/2)^]であるから) にその責務を持たせる以外ないように思う。『電荷』の次元[C]を『エネルギー』に関係付けて表現すれば、それは[(JF)^(1/2)^] となる。この『電荷』の意味と電圧の意味とをどのように『エネルギー』に関係づけられるかと言う問答になろう。コンデンサの静電容量C[F]は『エネルギー』を貯蔵する機能強度を表現しているが、『エネルギー』を貯蔵する空間的容積ではない。もし『電荷』が『エネルギー』を保有すると言うならば、プラスとマイナスが電極板に向き合う事の貯蔵効果は何なんだろうか。
(2)静電エネルギーの半分はどうなる? 上の(1)に続いて同じ問題であるが、この問題には『電荷保存則』と言う面の意味が強いと思う。質問者の解釈と疑問は至極当たり前の内容であろう。その質問に答えることはまた難しい。『エネルギー』が半分になるが『電荷』は保存されるという前提に在る。電圧が最終的にVになると言う事を実験的に検証できるだろうか。即ち『電荷保存則』が成り立つか?『電荷』の存在を否定する筆者が考える方向は決まってしまう。しかし、最終電圧がどうなるかに残念ながら答える能力もない。その辺の事情を電気現象としてどのように考えるかを述べたい。

電荷保存則と電圧 『電荷』と電圧は電気理論の根幹を成す密接な関係に在る。電圧は電圧計で計測できる。『電荷』は決して測定できない。コンデンサの静電容量は空間的構造体として定義されている。だから電圧が測定できれば、『電荷』は判定できるとなる。しかし、『電荷』が何ものかを確認はできない。『電荷』と考えている物が『熱』と同じ『エネルギー』だなどと言えば科学常識に反する。質問者の求めに答えようとすれば、図3のようにまとめるしかない。科学は実験的に検証しなければならないと言われるが、最終電圧がどのようになるかを計測する方法が筆者には思い付かない。『エネルギー』は電線路空間内で過渡現象の複雑な経過を経て落ち着くであろう。方程式を解く能力が筆者には無い。計測は必ず『エネルギー』を消費しなければできない。『エネルギー』だけが消失して、『電荷』が保存される理由が分からない。

まとめ 電気回路としては極めて単純なものでありながら、その現象を理解しようとするととても難しい事を改めて教えられた。『静電エネルギー』一つの技術用語さえ、長く伝統的に使われているのに、確信を持ってその実像を質問者に示せない。数式で表現される内容の奥に隠された真理はなかなか見え難い。今でも理解できないコンデンサ静電容量の物理学的・電気磁気学的解釈がある。電極版間のギャップが小さくなれば成る程静電容量が大きくなるとはいかなく意味か?ギャップの限界と『エネルギー』の流動模様に関係するか?

電荷概念とクーロン力 電気物理の最初の概念が『電荷』であろう。電気を論じるすべての基礎が『電荷』である。その基礎が理解できない、納得できないと疑問の中を彷徨って来た。高校生の質問がもう一度『電荷』の意味を問う機会となった。まとめとして、『電荷』とクーロンの法則そして電荷の『エネルギー』の関係を図にまとめて見た。コンデンサの電気現象の図は電極にプラスとマイナスの『電荷』が向き合って集まる解説から始まる。――今(2017/09/01/am:9.30)ヘリコプターが酷い騒音を撒き散らしている。誰の仕業か?――筆者は先ずその基から理解できない事に気付いたのが今から30年程前の事であった。クーロンの法則を斬る  に述べたが、コンデンサの電極に同じ極性の『電荷』が集電荷するには相当のクーロン力に因る排力が働く。その排力に逆らって同一『電荷』が集荷する理論的根拠が欲しい。そのクーロン力に逆らう力が示されなければ、コンデンサの『電荷』模様の解釈は理解できないのではないか。もう一点気付いた。『電荷』の『エネルギー』の意味である。(1)プラスの素電荷2個とマイナスの素電荷1個が電気力線の電場内で、一点に集荷した。図1の解釈から、その場合の集合電荷の『エネルギー』は如何程と解釈すれば良いのだろうか。同じく(2)のマイナス素電荷が3個集合した場合は、その総合『エネルギー』は如何程と解釈すれば良いのだろうか。(3)はとても不思議な未解決の『電荷』概念の問題である。プラスの電荷とマイナスの電荷が合体したら、『電荷』はどのような結果になるのか。プラスとマイナスの二極『電荷』概念の根本的問題に思えるのだが、高校生も不思議に思わないのだろうか。『電荷』は消えるのかどうか?

現時点の纏めとしては、『エネルギー』でなく『電荷』を電気現象の基礎概念にしている限り、残念ながら質問には答えられなくて御免なさい。

電力用ケーブル

自然現象の奥深くに隠されている本源は見え難い。科学技術にその自然現象が応用され、今日の地球上に人間の生活圏を拡大して来た。科学技術は応用の科学である。本源から見れば、電力系統のエネルギー供給機能で未だ多くの無駄がある。導線導体内を電子と言う『電荷』流の概念には、矛盾があるようだ。先に太陽発電設備から大量の導線が盗難に遭ったと言う話を聞いた。金属銅が資源として狙われた。電流など流れていないのだから、導線材料等中空導体で良いのだ。そこで提案の電力用ケーブル。

中空導体の電力用ケーブル 中心部は冷却材でも流しておけば良いのだ。空中配電線でも低圧絶縁ケーブルでも、電気エネルギーは導体間の空間を伝送されるのであって、その導体表面のエネルギー密度が一番高い。その絶縁材料の誘電特性等でエネルギー伝送量は考慮されるべきである。コンデンサの強誘電体特性も電力ケーブルもその原理は皆繋がった自然現象の本源に因るのだ。太陽光発電のケーブル盗難を監視する必要もない大電流用電力ケーブルが実用化されれば良いのだが。本来なら特許になる筈だろうが?

電流と哲学対話

これも科学論(市民の分かる) 科学論は科学者が組織する機関や学会の合意の共通認識の範囲に限られた基本原則を守った中での論議しか許されないのだろうか。電気工学の技術的感性に基づいた自然世界の観照を通して、身に付いた感覚から物理学理論を学習させてもらって来た。所謂専門的常識論に囚われずに自由に自然世界の実相を心に映して、自然との対話を積み重ねて来た。科学理論の中でもその最も基礎理論となる電気磁気学が電気工学技術論と近いことから取り組み易かったため、その内容を分析し、解剖することを通して多くの理論に矛盾の不整合性が存在すると考えざるを得ない事態に至ってしまった。初めはこんな事態になるとは考えていなかったことに戸惑いもある。科学常識からは異端の認識からの科学論は科学論とは言えないのだろうか。失礼ながら電気現象に少しは関わりを持って過ごした昔の過去がある。そんな者にも、数学的数式は使わなくても、日常の言葉だけでも電気現象の基本概念『電流』の意味位は解釈できる。毎日電気磁気学の高度な授業展開をなさっておられる専門家の皆さんは『電流』とは何か等とはお考えになられないのでしょうか。電流は流れずと主張する者からの科学論であるが。

電流と電子の関係 電流とは電子の逆の流れを言うと解説される。決して電気工学の専門家は深く電流の意味を追究しない。それは物理学の領分であるからなのか。しかし、物理学の中の電気磁気学の専門的教科書を開いても、そこには電流そのものの意味を追究する解説は殆ど無い。電線の中を電子が流れていると断定した専門的定義の基で解説が進められる。一方物理学理論の根本的概念を構成する電子には、素粒子論のレプトンとして質量(9.1091 ×10^-31^[kg]等)と電荷(1.602 ×10^-19^[C])から構成されていると認識されている。電流の概念では電荷の他に、特に質量の必要性に言及したその姿を解説する物理学論を見かけることは無い。電流の単位は電荷の時間微分で定義される。しかし電子には質量がある。その電子の流れに因る電流には電荷だけで良いのだが、何故か電子と言う物理学概念に従えば、質量も一緒に流れることになる。何故に電流が電荷の他に質量も伴う電子の逆流として解釈しなければならない概念として電気現象の根本的常識になっているのか。皆さんは少しも疑問を抱かないのでしょうか。

光速度との関係の不明確性 電気現象はほぼ光速度で伝播する。その速度に電子がどれ程素早い対応をする論理的根拠が示せるだろうか。例えば1kmの配電線に電源電圧を印加したとする。電子は導線の内部を流れると解釈されるようだ。単相交流回路として、二本の導線があり、負荷は何も繋がれていない無負荷の配線とする。負荷端で導線は繋がってはいないから完全に分離した二本の導線が平行に張られているだけである。その時導線内の電子に掛かる電界はどこからどのように掛けられるのか。電源側からただ電圧のそれぞれの(プラスとマイナスの)極をどこも繋がっていない二本の電線につないだだけである。なぜ電線の導体内部に電子に運動を起こすような電界が掛ると言うのだろうか。電力変換技術を通して身に付いた感覚からすれば、導体である電線内部には電界等発生する訳など有る筈が無いと言う認識が定着している。導体内部に電界は無いと。離れた電線に電圧を掛けると電子が電線の終端まで運動力学の質量に加速度を生じる原因が発生し、電子運動が起こり、電線全体に電圧分布が生じると言うのだろうか。この電気現象にはマイナスの電子だけで、プラスの電荷にお出まし頂く余地は無いように思う。電子に運動をさせる加速度の基である電界と言う電気概念はどのように掛けることになるのだろうか。平行の電線が何処ででもが繋がっていなくても、ほぼ光速度で電線間には無負荷終端まで『エネルギー』が伝送され、保有されるのだ。決して電子が『エネルギー』を運ぶ訳ではない。

初期の投稿記事を拾う。

  1. 放電現象と電荷・電流概念 (2010/08/02)
  2. 電流計は何を計るか (2010/11/10)
  3. 磁界・磁気概念の本質 (2010/11/16)
  4. エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18)
  5. 電流は流れず (2010/12/22)
  6. ファラディ電磁誘導則・アンペア周回積分則の物理学的矛盾 (2011/01/30)
  7. 新世界への扉ーコンデンサの磁界ー (2011/02/20)
  8. 『電荷』と言う虚像 (2011/04/08)

哲学の意味?

今年は書き初めの代わりに、哲学の意味を考えた。

写真150哲学 日常に無関係な内容かもしれない。その文字に込められた、偉大な中国文明の漢字の意味を探りたくなった。

現代社会は人類の智慧を確認したくなる様相を示している。グローバルと言う経済競争で世界が利益を求めて混沌の中に彷徨っているようだ。先日、NHKの番組に法隆寺を尋ねる紹介があった。聖徳太子の願いが自然災害、疫病更に権力闘争の災いを無くしたい事にあっての建立であったのだろうと思う。世界は現在も宗教と言う信仰心で、それぞれの人心がまとまる事を願って営まれている筈である。宗教が昔からの智慧の拠り所として尊ばれて来た。しかし,今ますますその宗教が世界の対立の火種になっている。国家間の権力闘争と同じく、己の権力による支配を宗教と言う精神的呪縛力を利用した手段で危険な日常性を作り出している。そこに哲学の意味を重ねて考えて見た。今世界は哲学など、先を競って利益を獲得する為の経済競争の中では何の価値も認められない時代になったようだ。哲学など生活の足しには成らない。それどころか、経済性追求の意識には邪魔者かも知れない。人の幸せ、社会の安全より自己の経済力が社会支配の求める意識になっている。派遣労働による人の生活不安など政治は競争の正当性に隠して、社会的不健全性を広めている。そこには政治の正当性は見えない。格差は人の能力によって生まれても、それが当り前な社会制度と進める。こんな政治は間違っている。社会正義や哲学は意識外に押しやられる。

哲学の文字の意味を自己流で解釈してみた。

写真152文字の意味 勝手な自己流の解釈を付けた。今世界の智慧は宗教でなく、科学者にとって変わられたように見える。科学理論が人の理解を超えた内容になっており、如何にも科学理論が世界の真理を言い当てていると勘違いし易い状況を生み出している。『哲』の字の意味は昔優れた指導者を哲人とも言ったようだ。日常生活で、生活の道具や生活技術の優れた事を「手」の文字で言い当て、仲間を守る統率力を武力の優れた意味を「斤(マサカリ)」に託し、理屈や説得力を「口」の文字で表現したと。現代社会は、科学技術が生活の豊かさを労働の苦役から救った形で社会の基盤になった。生活の安全な有効性の限界を超えてしまった今は、「ドローン」等の危険な手放しの上空輸送まで正当化しようとしている。「ドローン」はひも付きの制御可能な安全性の範囲でしか利用できない筈である。「ドローン」を操縦する者には危険のリスクが無い。それが社会的危険となる。無人爆撃機も科学技術の許される規範を超えている。社会的安全性に歯止めを無くした人間の驕りの精神構造が世界に溢れている。考える事は踏み切れない壁がある事を自覚することでもあろう。考える事が哲学だ。そこに現代哲学の意味がある筈だ。福島原発の悲惨な事故とその後遺症も解決できずに、人の幸福に生きる権利を奪いながらも、政治はその事に対する哲学を忘却している。

科学技術や科学理論と哲学 大学の哲学学科は文学部に属している場合がほとんどであろう。古くは宗教がその担い手であっただろう。しかし哲学は現代の社会に直接かかわる事柄を考える事がその使命であると考える。本当に電気回路の導体に電流が流れると考えるのだろうか。金属導体の中を電子が電荷と質量を背負って移動すると考えるのだろうか。科学理論には論理的矛盾が多過ぎる。欲望と権力支配とが哲学を忘却している。電気回路一つを取上げて考えると、益々理解できない疑問に突き当たる。解った心算でいても、不図気付く疑問が膨らみだすのだ。

静止電力変換回路の基礎

新潟県立新津工業高等学校の電気科で16年間(昭和39年4月1日~昭和55年3月31日)、子供達に電気関係の教科を教えて来た。電子工学から始まって、電気機器、発変電および送配電と主に電力関係を受け持った。それらの教科指導に当たって、具体的に理解するには、生徒の実習・実験が重要である。その為の準備を通して実際に回路・設備を作り、勉強した。その内容を、『新潟県工業教育紀要』に投稿して発表した。それらの内容は手元になかったので具体的には確認できなかった。この度、新潟県立図書館にある事を知り、複写で手に入れた。なかなか良く出来ていると、自己満足した。それらの内容の一端を示しておこう。
第3号:分布定数線路実習に関する一考察(p.122~127)
第7号(昭和45年度):静止電力変換回路の基礎(1)~第16号(昭和54年度):同(6)である。その中の電力変換回路の基礎の一部を参考に示す。
第7号:電力用半導体整流回路

電力用整流回路単相半波整流 電気回路における回路要素、特にリアクトルの特性を理解するにはとても良い教材である。エネルギー感覚を会得するに良い。正弦波では、その回路要素の機能を知るには物足りない筈だ。

直流偏磁現象直流偏磁現象 電気回路には変圧器が繋がっている。その変圧器を含む回路では、時に複雑な動作波形が観測される。その中に、鉄心の磁気特性との関係で、直流偏磁現象が起こる。その波形が複雑であるので、その特殊な例として三相半波整流回路を組み、その偏磁現象の解析を波形で示した。ここで取上げた電力用整流回路は電気回路を学習するにはとても良い教材であるから、基礎実験として誰もが経験すべき回路であると思う。当時時代の先端である整流回路の基礎を実際に電気科の生徒実習に取り入れていた。今では実際の日常生活でも、インバータ何々と言う様に半導体制御が当たり前になっている。時代は正弦波では役に立たない学習内容である。現在に至るも当時から電気理論で、磁束が電流によって発生すると言う極めておかしな基本解釈を教育現場で採られている事に大きな問題である事を知るべきである。コイルに掛かる電圧の時間積分で磁束は生じる事を認識すべきである。その事の意味を次の記事が示している。
第8号:トランジスタインバータと単相誘導電動機の速度制御

トランジスタインバータロイヤーのトランジスタインバータ この回路(本当のロイヤーの回路とは同じくはないが、鉄心の飽和特性を利用した電圧ー周波数変換原理でそう呼んでいた)はNASAの宇宙関連技術の一つの成果として開発された回路と聞いた。トランジスタ2個でトランスとの単純な回路構成で、印加電圧を変えると周波数が比例して変化する自走発振回路である。この回路の意味を知って、パワーエレクトロニクスの魅力の虜になった。変圧器の鉄心磁束が印加電圧(直流電圧)の時間積分で決まる事を示す象徴的な回路である。洗濯機用コンデンサモータがあったので、その周波数による速度制御特性を調べた実験記事である。この研究は財団法人 産業教育振興中央会の補助を受けたものであった。
第9号:サイリスタによる電動機速度制御

サイリスタ電動機制御サイリスタ回路構成 サイリスタ6個で幾つかの回路構成に適用できるように工夫した。

サイリスタ電動機制御ー2-ゲート回路 実験するには、その制御回路の制作が主になる。しかも全部自己開発である。今見てもその意味が理解できない程忘れ去ってしまった。特にこのゲート回路で、制御用三相変圧器の制作は良く出来たと。この実験が1年間で完成したのは感心だ。思い出した。この制御回路をどのように作ったかを考えたら、思い出した。大切な本があった。神田の古本屋で購入した、Transistor Circuit Design  TEXAS INSTRUMENTS,INC International Student Edition McGRAW-HILL KOGAKUSHA が手元に残っていた。この書籍によって、トランジスタ回路を学習したのだ。
第11号:サイリスタインバータによる単相電動機の速度制御

サイリスタインバータサイリスタ単相インバータ トランジスタインバータと違って、サイリスタはoffする為には逆バイアス電圧を掛けなければならない。

サイリスタインバーター2-ゲート回路と実験波形 主回路はインパルス転流並列インバータで、開発者の名をとってマクマレー・ベットフォードインバータとも呼ばれる。動作も少し複雑な為、記事のp.44には動作波形も詳しく説明してある。ゲート回路(マルチバイブレータとフリップフロップの組み合わせ)をどのように設計したか覚えていない。
第12号:サイリスタチョッパ

サイリスタチョッパ回路と波形 スイッチのオン、オフで負荷の直流電圧の平均値を制御する方式。スイッチをサイリスタ2個で構成した回路である。

サイリスタチョッパ‐2-ゲート回路と波形 主回路は極めて単純であるのに、ゲート回路はなかなか工夫した回路である。我ながらこんな回路を組んでいたかと驚いた。電圧は15V位か。
第16号:三相サイリスタインバータによるかご型誘導電動機の可逆加減速駆動

三相サイリスタインバータ主回路とゲート論理回路 この論理回路を組んだ事はかすかに記憶にある。IC回路を組んだのは初めての事だ。しかし間違いなく正確に回路制御、電動機の可逆加減速運転が出来た。

三相サイリスタインバータ‐2‐回路素子定格等

三相サイリスタインバータ‐3‐電動機運転特性 運転特性で、プラッキングによる逆転時間に7秒ほどかかった事が最後の電磁オッシログラフに示されている。この装置だけは使うかとの思いで持ち込み、長岡技術科学大学のパワー研の実験室の棚の上の奥に置いた事を思い出した。

この最後の標題だけは氏名が金沢でなく、金澤となっていた。時には毎年回路を組んで発表したので、お正月は原稿書きで徹夜が多かった。研究と言うより、変圧器造りや回路組立てで、ペンチ、ボール盤、鋸、金槌と半田付けの手作業が殆どであったように思う。そんな中での回路解析を通して、パワーとか「エネルギー」および電流波形解析から感覚的なものが身に付いたようで、それが現在の『電荷』否定や『電流は流れず』に繋がったと思う。