タグ別アーカイブ: 電池の原理

電池とエネルギー

電池は『エネルギー』を貯え、便利にその『エネルギー』を使うための科学技術の貴重な成果の製品だ。決して存在しない『電子』などを貯えるものではない。『エネルギー』とはどの様な特性を持った物理的実体か?と考える。見えなくて測れないものだから、その『エネルギー』の動特性を探ることも出来ない。どうすれば、『エネルギー』の空間特性を理解できるかが電池の物理的現象を知る要点であろう。

電池とエネルギーの関係。

電池の内部で『エネルギー』がどの様に貯蔵され、それがどのような条件で電池内部から解放されて電気回路空間に放出されるか。その現象を『電子』なしに『エネルギー』の物理的特性として解釈する必要が有る。電池から送出された『エネルギー』は決して電源に戻る必要はない。負荷に供給されて、それで電池の役割は完了する。『電子』のような概念では、再び電源に戻る無意味な解釈が繰り広げられる。無意味とは何故に負荷を『電子』が通過する必要が有るのか。負荷に『エネルギー』を『電子』がどの様な物理現象として届けることになるのか。何故に『電子』が保有した『エネルギー』を負荷に届けて、その『エネルギー』分だけ欠乏した状態の、異なる『電子』が電源に戻る必要が有るのか。『エネルギー保存則』の意味を忘れないで欲しい。『電子』が負荷を通過しただけで、負荷で『エネルギー』を発生できる訳はない筈だ。無から『エネルギー』は生まれないのだ。電池における電子の役割を問う (2018/05/24) で矛盾の解説に使ったのが下図である。

Fig.1. の図の意味。普通の電池記号と異なる図で表現した。単純に電池の意味を表現すれば、陰極の電極金属で『エネルギー』源のエネルギー貯蔵物質を包み込み、そこから『エネルギー』の無い陰極側に放出され、負側電線路を通して負荷に供給される絵図で捉える。電池の陽極電極および充填物質は所謂電位としては同一にある。充填剤に貯蔵された『エネルギー』はその内部では『エネルギー』として存在している訳ではない。しかし陰極金属体との間には『エネルギーギャップ』が存在する。陰極のエネルギーレベルが充填剤より低い。その接触ギャップで、自動的に充填剤の内部から空間構造変換として『エネルギー』が陰極側に放出される。それは同時に電線路が繋がれているば、その回路空間に対してもそのギャップを埋めるために『エネルギー』が放出される。だから電池内部に見える形で『エネルギー』が貯まっている訳ではない。充填剤の分子的な構造変化として含まれているだけで、結局は質量開放として『エネルギー』の放射になるだけである。

電池の物理現象と科学論。電池の『エネルギー』を観測することも計測することも出来ない。ましてや『電子』の数量を計ることなどもっと困難である。仮想概念で、実在しない物は計れないから。それでは、電池内の『エネルギー』は在るかと言われればそれも無いと言わざるを得ない。『エネルギー』は忍者じゃないが、分子構造の中の質量となって貯えられているとなれば、それは空間分布の『エネルギー』として存在する物にはならないから無いとなる。質量と『エネルギー』に変換し合う物理量は科学論で測り様が無い物だ。自然世界は余りにも純粋過ぎて、物質論の理論の計測手法に馴染まない物かも知れない。分子構造から解放される『エネルギー』が科学論で解明されることを祈る。

関連記事。独楽の心 (2019/01/05) 。熱の物理 (2019/02/07) 。

電池における電子の役割を問う

はじめに 半導体のpn junction (pn接合部)のエネルギーギャップの意味を考えてみた。電池の意味との関連を考えた。電池の原理を問う (2014/11/27) があった。

電池電圧とエネルギー 電池はエネルギーの貯蔵庫であり、エネルギーの供給源である。人の思考における常識が如何に自己に立ちふさがる障壁となるか。すべてが『エレクトロニクス』の支配する世界に居る。その語源でもある『エレクトロン(電子)』の存在の意義を問うことになる。人は高いことを低いより有利と考えがちであろう。電圧が高ければ高い程、それは影響力が強いと考えるだろう。電圧が高いという表現は良くないのであるが、技術用語としては電位が高いとなろう。科学技術用語の持つ常識に『電圧』が有り、プラス極とマイナス極でその電圧の高い方と低い方を区別している。電池はエネルギーの供給源であることは誰もが知っていよう。しかし、誰もがその『エネルギー』とは何かを知っているかと問えば、さて答えられるであろうか。答えられなくても、決して気にしなくてもよい。『電子』に因って解説している人は『エネルギー』の意味を考えていない人が殆どであるから。ましてや化学方程式に因って解説する場合は、殆どその方程式の変換過程の中でその空間に実在する『エネルギー』を意識することは無い筈である。乾電池も蓄電池も+端子から電流が流れて、負荷にエネルギーを供給すると考える。しかし電流と言うものが電池のエネルギーを負荷に運ぶことなど出来っこない。電気理論では、電池のマイナス端子から電子が導線の中を流れて、負荷を通り電池の+端子に戻ると解釈している。電子の逆流が電流であると電気理論の常識が世界の共通認識になっている。それではその電子が電池からエネルギーを負荷に運ぶか?と解説者に問えば、答えないであろう。『電子』あるいは『電荷』に『エネルギー』をどのような意味で結び付けて解釈しているかが明確ではなかろう。2年程前に電圧ーその意味と正体ー (2016/05/15) に纏めてあった。

電池のエネルギー供給端子は-極である 直流の電気回路はプラスとマイナスの2本の導線でエネルギー供給回路が構成される。電池からのエネルギーは-極から送り出される。プラス側の導線は殆どマイナス側のエネルギー供給を支える脇役と考えて良い。負荷にエネルギー供給時、プラス側導線を通して電池へエネルギーは戻らない。電池のプラス端子はエネルギー供給に直接関わらない。電池の負側端子からエネルギーは放出され、負側導線近傍空間を通して主に負荷までエネルギーが伝送される。勿論導線の金属内などエネルギーは通らない。電池は-極がエネルギー放出源である。そのエネルギー(電気や熱あるいは光)を陰極線や電子と考えてきたのである。

エネルギーを運べない電子(科学的願望との乖離) 原子核の周りを回転する電子で世界の構成源を捉える原子像が世界標準である。電子が回転すると解釈する科学的根拠はどこにあるのだろうか。『電荷』否定が結局とんでもない現実にぶつかってしまった。科学理論の根源さえ信用出来ない自己を観る。そんな意味を卑近な日常生活の電池の意味に探し求めて見ようと考えた。簡便な科学的解釈を示すに『電子概念』がとても便利であろう。電池のマイナス極から電子が外部回路を通りプラス極に戻ればすべてが説明出来たことに成る。その不思議な論理が科学論理の正当性を世界標準として認められるのだから。 『エネルギー』を置き忘れていませんか? 電池はエネルギーの供給源です。電子論であれば、電子がそのエネルギーをどのように負荷に届けるかの問に答えてこそ科学論と言えるのではないか。そこに電子の実像が問われることに成るのです。電子の特性:質量me=9.1083 ×10^-28^ [g]、 電荷e=1.60206 ×10^-19^ [C] と質量と電荷の混合素粒子。この桁数の算定基準の厳密らしさと混合空間像の認識不可能の不思議に包まれている電子。電子が背負い籠に『エネルギー』を入れて負荷まで届けるのですか。帰りは『エネルギー』分だけ身軽に成ってプラス極に帰るのですか。 『エネルギー保存則』とはどんな意味なんですか。 『エネルギー』が観えますか?そこで、エネルギーに対して電子に求めると無理に仮定した時の科学的願望を絵図にしたみた。

電子の責務と珍道中。 電池はエネルギーの貯蔵庫である。そのエネルギーを負荷で利用する訳だ。どのようにそのエネルギーを電池から負荷に届けるかを科学論として完成しなければならない。高度の量子力学は電子に重い責務を課しているように思える。太陽光発電で電子にどんな物理的機能を果たして欲しいと望んでいるのだろうか。電子がエネルギーを担うべき責務を無造作に要求しているようである。電子の身に成ってその心情を汲んで少し考えてみた。電池も太陽発電パネルも電源としては同じものである。ただ太陽発電パネルは負荷の前にエネルギー貯蔵庫(蓄電池)に繋がっている。負荷の影響は直接受けない。さて電池のエネルギー貯蔵庫からどのように負荷に必要なエネルギーを供給するかを考えるべきだろう。検索で電池の原理を尋ねると電池のマイナス極から化学方程式の反応によって、電子が外部導線を通って陽極に廻り込み、その電池内で電荷を遣り取りして解説が終わっている。電子は何の為に負荷を通ったのか。 『子供の使いじゃあるまいし、ただ通り過ぎるだけじゃ理屈も通らぬ!!』 何故電子が通り過ぎるだけで電池からエネルギーが負荷に届けられると考えるのだろうか?電子は何故マイナス端子から導線を通ってプラス端子に行くことが出来るのだろうか?電子の移動はどんな理論で可能だったか?電界と電荷の関係は無視されても理屈が通るのか。上の図は電子に御足労願う訳だから、その科学認識に寄り添って何とか電子の責務とエネルギー運搬の道筋を考えて描いた図である。電子の(行き道)は、重い責務に喘ぎながら。負荷にエネルギーを届けた(帰り道)は、身軽に成って鼻唄まじり。そんな電子に期待された仕事の責務が想像できる。電子も行きと帰りで異なる姿に。しかし、量子力学には背負い籠でエネルギーを運ぶ意味はない。むしろ質量に頼った運動エネルギーの増加で電子がエネルギーを身に纏う意味に似ている。その場合は電子の帰り道は速度の遅い電子の姿を描くことに成るのか。当然理屈の通らぬ無理な道理ではあるが。もう一つ、化学方程式で『電荷』の辻褄を合せようとしても『負荷御殿の主から必要なエネルギー量が発注される』のである。エネルギーの発注に合わせたエネルギーの発送をしなければ電源・送配電線路・負荷間の辻褄が合わなくなる。勝手に化学方程式に従って、電子を送り出す訳にはいかないのである。負荷の要求をどのように電池側で処理するかが極めて重要な瞬時電力の話に成るのだ。電子に自動的にそんな責務まで負わせては酷と言うものだろう。

(2020/08/14)追記。上の絵図を書き換えた。img298

電子にエネルギー伝送責務は無理な注文である 電子は不要である。電池からのエネルギー(熱エネルギー即ち電気エネルギー)そのものが負荷の要求に応じて電線路空間内を伝送されるのである。電子不要の科学論。

電池の原理を問う

電気の不思議に魅せられて、自然の意味を説き明かす科学技術の大きな足跡として、ボルタの電池を挙げて良かろう。電池について、電池・電気分解に良く解説されている。しかし、残念ながらその解説では私は満足できない。理解できないのである。電圧ー物理学解剖論ー に乾電池の電圧は何故1.5ボルトなのかと疑問を呈した。マンガン乾電池は塩化アンモニュームや酸化マンガンを澱粉で練り合せて、炭素棒(+極)と亜鉛(-極)の電極材で構成されている。そんなうまい組み合わせを見つけた技術に感服する。1.5ボルトと言う標準電圧に決めた過程も中々興味あることだ。設計者・発明者はその電池構成が1.5ボルトになる事を理論的に認識していた訳ではなかろう。今、何故1.5ボルトになるかを問うても明確に答えられないのじゃないかと思う。乾電池の練り物が1.5ボルトと成る意味が分からない。これは日常生活の中の極めて科学技術の本質を問う『問答』のように思う。難しい一般相対性理論等の学問に対して、より市民科学のあるべき姿を問う問題であろう。一つの解決の道のりとして、乾電池の使用済みの電解質練り物の状態が初期状態と何がどのように変わっているかを調べる事かも知れない。しかし、決して利益を生まないかもしれない事には、現在の科学研究体制は許さない窮屈さに縛ららている。しかし、理科教室の場合はできるかもしれない。乾電池1.5ボルトの意味を探る実験。学校の理科教育・科学教育の在り方を問うのである。化学式で解説されるが、少し疑問に思うと、本当の事が分からなくなる。教える先生方は、その内容を深く理解しているなら、当然応えられる筈だ。電子が流れて化学式のように巧く説明され、実に世界の真理のような印象を与えるに十分な説得力を持っている。はじめて学習する子供達に対しては。その子供たちが学習すべき世界標準の教育内容が整っている訳である。その事がとても多くの学習すべき、記憶すべき負担を強いているとは考えないのだろうか。むしろ疑問を提起することで、より印象強く記憶に残るとも言えよう。

金属のイオン化傾向 これは化学の学習内容になるのだったか。金属元素にはイオンになり易いものとなり難い物があると言う。しかし『電荷』を否定する立場からすれば、原子のイオン化と言う意味さえ理解できないのだ。しかし、実際に原子の間にはイオン化と言う或る特性において、決まった序列が発生している訳である。その意味をどのように解釈するかの『問答』である。『熱エネルギー』で解釈したい。金属が溶液内で変化する溶融と析出の現象をどのように解釈するかである。物理学、化学では電子のやりとりで解説される。電子と言う意味を何で捉えるかと言うと決して『質量』では考えず、『電荷』だけで理解するだろう。全く『質量』のやりとりの意味を説明できないから。それなら電子等と言わずに、『電荷』と言えばそれで良かろう。物理学では、『質量』が無いと論理を展開できないジレンマを抱えているのだ。『電荷』だけが独立の世界の実在とは言えないのだ。

硫酸銅に亜鉛板を入れた時の現象 イオン化傾向と言う金属特性の解釈法。原子量の小さい原子程、一般的にイオン化傾向は強い。亜鉛Znと銅Cuでは、亜鉛がイオン化の力が強い。だから亜鉛が融け、硫酸銅の銅が固体金属として析出すると言う風にイオン化傾向で解釈される。何故金属にイオン化傾向と言う差が生じるかは問わない。イオン化傾向と言う順序を覚える事を要求される。イオン化傾向と言う金属元素間の物理現象の意味は、熱エネルギーのやりとりの問題なのである。亜鉛が融解し、銅が析出するのは銅から『熱量』が亜鉛に移動する現象である。電解液の温度の環境下で、銅と亜鉛の保有エネルギーの余剰と不足の関係から起こる金属元素間の物理現象と観る。固体の状態がその元素の保有エネルギーレベルのより低い状態に在ると観る。融解するには熱などのエネルギーを吸収する必要がある。分子より原子の方がエネルギーレベルは高い。燃料電池は水素(高圧エネルギー)と酸素のエネルギーレベルの高い元素が結合する事により、水分子のエネルギーレベルの低い状態になるから、余剰熱エネルギーを放出し、動力源として利用できるのである。金属だけではない。水の沸騰も気体になるには蒸発熱を吸収する現象である。元素には特有の熱エネルギーに対する特性差が潜んでいると解釈したい。原子と分子の妙 を書きかけのまま結論がまとまらない。物理・化学の基本問題に素人が意見を書く失礼をご容赦ください。燃料電池は水素が燃料だ。エネルギー問題で、自動車の排気ガスはなくなり、水だけを排出するから空気汚染は解決される。しかし水素製造には電気エネルギーを使わなければならない。その社会システム構築に費やすエネルギー消費問題は、経済成長と言う美名の基に隠されてしまう。地球温暖化の問題が燃料電池自動車で解決される訳でない事を科学技術社会の基本問題として捉えた置かなければならない。水素を創るエネルギー消費と燃料電池の社会的エネルギー消費問題。

鉛蓄電池 1859年、フランス人プランテの発明とある。鉛蓄電池は今も使い続けられている優れた発明だ。150年以上使われ続ける科学技術製品だ。驚くべき歴史を踏襲した製品だ。そんな意味も意識したい。鉛蓄電池も『熱エネルギー』で原理を解釈したい。

鉛蓄電池の解釈鉛蓄電池と陰極

『電荷』否定の新しい蓄電池の解釈を図に示す。鉛蓄電池の電極は陰極の鉛と陽極の酸化鉛で構成される。硫酸が電解液で、陰極の鉛が溶融して、硫酸鉛となると、蓄電エネルギーが消費され減少する。陽極の酸化鉛(二酸化鉛PbO2で上の図に誤りあり)は教科書的解釈では、水素による阻害を抑える減極剤としての働きを兼ねていると。もし陽極も鉛Pbなら電池にならない。鉛蓄電池の原理は陰極と硫酸との境界面に全てが組み込まれていると観る。イオン化傾向で、PbとHは隣接する。硫酸に亜鉛を使えば、激しく反応して、やはり電池にならない。穏やかに蓄電エネルギーを放出できるのは、隣同士のエネルギー保有差が小さいからと考える。鉛が融解して硫酸鉛PbSO4になる時、保有熱エネルギーを放出する。この保有熱エネルギーと言う意味も分かりにくいかもしれない。それは、原子構造が電子概念を否定したうえでの解釈でなければ分かりにくいと言う事になろう。上に挙げた『原子と分子の妙』のエネルギー流の磁気模様で捉える必要がある。磁気エネルギー流は、その量的増減は自由に変化しうると考えれば良かろう。その環境自身がエネルギーの空間だから、エネルギー吸収・放射も変化しうる自由にある。鉛の外界へのエネルギー流の影響と希硫酸の電解液のエネルギー環境との間の何らかの干渉がエネルギー不均衡の修正として関係づけられると解釈する。それが鉛の融解現象の意味との理解である。更に水素も酸素と反応して(燃料電池)更にエネルギーを放出する。その合成分が陰極から負荷に供給される電気エネルギー(熱エネルギー)である。この解釈では、陽極は殆どエネルギー放出に関わらない。その為、鉛蓄電池の『電圧』は陰極と電解液の接触面に、その全ての原因を秘めていると観る。図②にその意味を示した。熱と電気の関係は雷は熱爆発に於けるものに同じである。