タグ別アーカイブ: 電気回路

半導体とバンド理論を尋ねて

追記(2018/05/16) 反省を込めて追記。既に前に同じような記事を投稿していた。半導体とバンド理論の解剖 (2014/01/25) である。さらに太陽電池の解剖 (2014/02/06)にも有る。辿れば、その前年のトランジスタの熱勘定 (2013/01/30)から始まっていたようだ。そこで、電気エネルギーと熱エネルギーが同じものであると考えていたようだ。現在は、『電荷』概念では自然現象の本質を理解することは無理であるとの認識にある。このトランジスタの熱勘定で論じた意味が極めて大切なことを示唆していたと思う。荒っぽくて、反感を買うようの記事が多くて誠にお恥ずかしい。2013年には「量子力学」とは何か?電子科学論の無責任など。

半導体の電子とは? 電力技術における電子の意味を尋ねて30年以上過ぎた。結論は『電荷』も自然界には実在しないと確信するに至った。それならば当然電子も『電荷』などとは関係ないことになる。電気回路の金属導体中を電子が通り、電流になると解釈されている。ただし、筆者は電流は流れず等と言ってきた。だから以下の記事も科学論として認知されるようなものではないかも知れないが、市民や電気の初学者が疑問に思うことに対する『問答』としての価値は十分にあるものと思う。言わば統合的な理屈の自然科学論として見て欲しい。専門的な領域を超えた論理として。さて、現代物理学理論の根幹を成すものに量子力学がある。その代表的な適用が半導体である。半導体の電子のエネルギーレベルとその動作領域の抽象的認識概念が理論構築の原点になっているように思う。フェルミ準位がその要のエネルギー基準値として存在することになっているように思える。そのフェルミ準位は半導体の物性特性に因って、そのエネルギーレベル(電子のエネルギー量)が何ジュール[J]、あるいは何[eV]と決まった値があるのだろうか。

エネルギーバンドとフェルミ準位 電気工学、電気物理と同じ電気エネルギーを取り扱うのに、その専門分野ごとに理論的解釈法や概念がまったく異なる。ただ、原子構造については原子核とその周りを回る電子から構成されているという解釈は自然科学論の基本原則として世界の共通認識になっている。原子構造が科学論の原点にある。『電荷』否定はその科学論から除外されてしまう。永年電力技術で感覚的に身に付けたエネルギーの実在性が染み付いた論理構成の習慣が『電荷』概念の曖昧性に拒否感を抱くようになってしまった。電気物理での半導体の電気現象解釈理論はバンド理論で、正しく原子構造論の電子のエネルギー論を論じているように思う。それは『電荷』概念に基づいて理論構築されている。半導体結晶は基本的にダイヤモンド結合の構造と解釈されている。電子による共有結合が基本になっているように思う。原子核の周りをどのような速度で電子が周回運動をしているかは分からないが、それぞれの電子が回転し互いの隣り合う原子同士の間では、核の周りは複雑な電子回転に伴う『負電荷』の空間場になっているように思われる。単純な電気理論から考えると、負の『電荷』の空間場で、隣り合う原子同士の間でダイヤモンド結晶になる訳が理解できないのだ。電子が回転しながら隣の原子同士が結合する姿が現実世界の空間概念で描けないから理解できない始末にいる。そんな理解能力の無い者が現代物理学理論のバンド理論の意味を考えるなど誠に恥ずかしい極みではある。しかし、初めてバンド理論を学ぶ若い方々も同じような疑問を抱くのではないかと思うので、少し考えを述べてみたい。電気材料を導体、半導体および絶縁体と三つに分けてバンド理論の基礎が説かれる。全てに価電子帯と伝導帯がある。半導体と絶縁体にはその帯の間に禁制帯と言うバンドギャップが存在する。それらのバンドの『帯』と言う幅で表現される意味は電子の持つエネルギーの量の大きさに関係したように見受けられる。電子が回転運動していることに因る運動エネルギーの量の大きさを意味しているのかと思う。電子には質量があるから、その御蔭で運動エネルギーの解釈だ可能である。水素原子は原子構造が単純だから、電子のエネルギー量は基礎物理学では良く算定されて議論されているが、シリコン原子の電子になれば、その運動エネルギーは算定は可能なのだろうか。どの程度の回転速度になるのだろうか。その算定が出来て初めて、新しい半導体の技術開発にバンド理論の意義が生きて来る訳と考える。決して理論が理論の為の理論であってはならない筈だ。『電荷』の実在性はその理論構成に具体的に生かされてこそと思う。リン(P)やヒ素(As)の不純物が添加されると実際の電子のエネルギー量はどの程度のジュール[J]になるのだろうか。

太陽光発電理論と電子 量子力学の理論として大まかに理解している事は、原子や分子にエネルギーを与えると、原子の外殻周回電子がそのエネルギーを受け取って、電子の質量の運動エネルギーの増加を来たし、遠心力と釣り合う様な電子軌道の膨らみを来たすと理解している。光などのエネルギーが電子の運動エネルギーとして吸収される訳をどのように理解すれば良いかも分からないので困惑している。更に何らかの原因で逆に電子の軌道が下のレベルに落ちると光としてエネルギー放射を来たすらしい。勝手な解釈と言われれば、致し方ないが電子の運動エネルギーと光との変換過程が理解できない。量子力学の基本理論を理解している訳ではないが、太陽光発電での半導体は太陽の光を吸収して、電気エネルギーに変換する発電機能設備である。発電パネル内で、電子が光エネルギーを吸収してエネルギーの高い状態で伝導帯に入る。その伝導帯では電子が自由電子となり、原子の束縛から解放されると解釈して良いのだろうと思う。伝導帯の電子はどの程度のエネルギー増加になっているのかを知りたい。発電パネルから次は電気回路を通して負荷に電子はエネルギーを運ぶのかと理論のつながりを考えるのだが、電気回路内の電子による電流概念となると、どうも電子はエネルギーを担う役割は想定されないことになっているようだ。一体半導体内で光エネルギーを受け取ったかと理解するが、回路理論になるとそのエネルギーを担う電子と言う概念は無いようであるため、どこか論理的な繋がりが無いようで理解に苦しんでしまう。もう一度述べる。量子力学における半導体のバンド理論では原子の周回電子のエネルギーの増減を論理構成の基本に据えている。伝導帯の電子は増分エネルギーを電子質量の運動エネルギーとして余分に担ってエネルギー供給機能を果たす役割が期待されているようだ。そこでの電子は速度の増加としての特別の電子になるのであろうか。次に半導体理論によって理論付された電子に関係して、その太陽発電パネルをエネルギー源として捉える電気回路理論では、折角のバンド理論で担ったエネルギーの増加分を電流の根拠である電子には求めていないのである。当然のことであるが、電気回路論では電子に質量に関わる概念は意味を持たないから、電子における『電荷』と電界との間の電気磁気学理論に基づく論理しか考察対象には成らない。だから原子構造論における電子エネルギーに関する運動エネルギーは全く無意味に成る。総合的に全体を見渡した時、半導体パネルで受け取った太陽光エネルギーは電気回路のエネルギー伝送にどのような機能で関わり、負荷に太陽光エネルギーを供給することになると考えるのだろうか。『エネルギー』を基本に考えると、太陽光線も電気回路を伝送する電気エネルギーも負荷に供給されるものも、みんな同じ『エネルギー』でしかないのである。電子の『電荷』は理論的に『エネルギー』を持ち得ないのである。

過去の関連・関係記事 今迄に取上げた考察記事は半導体、電荷およびエネルギー論については次のようなものがある。

哲学と科学

哲学と科学の違いは?と検索に多くの記事が出ている。それだけ違いが分かりずらい主題でもある。だからみんなはっきりと理解したいと思うのだろう。しかし、解説記事を見ても殆ど満足する人はいないのじゃなかろうか。科学とは何かと簡単には答えられないだろう。更に哲学は人の精神活動に関わる上に歴史の社会状況を踏まえた深い考察が根底に無ければならず、科学以上にとても広い分野を網羅するものであろう。最近頓に思う事がある。それは今まで考える事が自然科学についてだと思っていたが、どうも科学に対する科学界の一般の問題意識と全くかけ離れた処を自分は彷徨っているようだと思う様になった。それは科学論なのかあるいは哲学なのかと分からなくなってしまった。解らなくなったところで、その分からない中味を分析して、哲学と科学について考えてみようと思った。何の社会的評価も特別の専門的評価(博士など)も受けていない者が論じることに賛同は得られないかも知れないが。

哲学は科学も包含 哲学は科学の基盤を整える。博士・博士号はPh.D. でDoctor of Philosophy の略であるように、哲学の無い科学は無いのであろう。最近は極めて狭い専門分野で博士号を取得できる体制に成っているようで、何とも言えない状況だ。自然科学に対して自然哲学と哲学に自然を被せた使い方もある。自然哲学と言う表現でどのような意味を持たせるのかは分からない。哲学と科学を対比させながら、その違いを明らかにするのはとても難しい予感がする。それには少なくとも科学とは何かがハッキリと捉まえられていなければならない筈だ。そこの処で困難な壁に突き当たる。その科学とは何かを考えることが既に哲学に成るように思うから。『電荷』が実在し、しかもそれには『正』と『負』の違いがある事を誰が観測し、証明したのか。正と負の『電荷』をどのような空間像と認識するのか。自然科学の根本原則まで問わなければならなくなる。科学論の根本を解剖する論証は哲学であろう。放電管の放電現象を観測しても、陰極線は観測されるが、陽極線(正極線)が観測されたという報告は無いのじゃないか。それなのになぜ『正電荷』が存在すると成っているのか。誰が『正電荷』の存在を確認し、証明したのか。今でも電気回路の『電流』に関しては『負電荷』の電子のみしか解釈に関わっていない。しかも電子は『電荷』と『質量』の両方で構成された複合素粒子概念で解釈されている。このように科学論の根本原理になる程曖昧性が色濃く成る。

科学と哲学の違い 科学論の根本・原理を科学論の論理性を持って解剖する分析法は哲学になると考える。科学と哲学を論じるには、科学の本質を暴きだす作務がなければならなかろう。そこには科学の本質をよく知り、それを洞察する眼力が欲しい。それは東洋哲学の特徴的な『削ぎ落とし』の思考になるのではなかろうか。『不立文字』への覚悟。捉え難い『エネルギー』の何たるかを問う必要があろう。

電気理論は手品師の世界

理論は真理か?何か手品師の舞台を見ているような感覚の世界だ。
『瞬時電力』とは何か? 『瞬時値』と言う物理量を捉えることが現象のより深い理解につながるかという考えで、その用語を多く使って来た。本当の意味を考えて使って来たかと自分に問えば、殆ど感覚的により真相に近いだろう位の思いであったのかも知れない。
科学理論と言う論理的な厳密性で構成されているとの理解の中で、より根本的な誰もが常識として共通に納得している事象や用語でさえも、その意味を自分は分かっているのかと自問すると、不思議にも分かっていない事に気付く。それも十分分かっていると自負していた電気現象に関わる話でさえも。

瞬時電力とは? IT検索すると、その意味を尋ねる質問者が居る。電気回路の電圧や電流波形はオッシロスコープで観測できる。電圧や電流の瞬時値は波形として見慣れているから、その意味など全く気にもしないで、瞬時値と言う電気量の定義など疑いもしない。

瞬時値の単位と時間 瞬時電力p[W]は波形観測が出来る。単位はワット[W=J/s]である。瞬時値とはどの程度の時間感覚の意味なのか?瞬時だから、時間の長さは『ゼロ』でないのか。

瞬時値と単位と時間 (1)回路と測定の電圧計、電流計そして電力計の測定値V[V] 、I[A]および P[W]は十分長い時間での平均値のような『実効値』を計測している。しかし交流回路であるから、それぞれの値は時間的に変動している訳で、その波形の各時間における値を瞬時値と言っている。回路の瞬時値波形は抵抗などを通して簡便に測定できる。瞬時電力p[W]は掛算に因らなければ波形は得られない。電力の単位[W]は図(2)瞬時電力波形のpの単位も[W]である。電力と言えばワットである。そのワットと言う意味は何かと考えて見る。ワットが流れている訳ではない。流れるのはエネルギーのジュール[J]であろう。[J/s]とはどういう意味か?エネルギーが流れると考えれば、時間当たりとなる。しかしそれでは何か『瞬時値』と言う意味と感覚的にも腑に落ちない。結局の結論としては、瞬時値であるからある時刻における時間微分値と言う意味としか解釈のしようがない。瞬時電力p= lim _⊿t→0 (⊿E/⊿t)=dE/dt[J/s]としか捉えようが無い。となるとdE[J]とはその線路点のどのようなエネルギーを意味しているかと、また疑問となる。ここまで自己を追い詰めて、疑問の渦に自分を引き込む。抜けられないかと不安が解決策を見つけ出してくれる。不思議だ!それが次の話になる。科学技術の競争と言う世界から離れた場所だ。

電力の物理的意味(自分への問答) 正しくこの電力p=dE/dtの意味が手品師の隠した「種」に思えて来た。誠に不思議の極みである。位置x点での電線路空間のエネルギー分布dE(x)がその意味を隠している。『光速度伝播』が電気理論の隠した種でもある。『エネルギー』と『光速度』、この二つが種明かしの要だ。dt=dx/c[s]にあり。距離dxと時間dtの関係を支配するのは『光速度c』だ。電線路空間距離位置x点における瞬時電力はp(x)=c dE(x)/dx の『エネルギー』の空間分布の勾配である。昭和62年の『静電界は磁界を伴う』のマックスウエル電磁場方程式の解釈に適用した『エネルギー』と『光速度』の関係と同じ解釈につながっている。とは言っても新たな疑問が待っていた。

思考実験―単相電線路の瞬時電力とは?- 単相交流回路は一般にはその亘長を考慮する必要が無い。だから電線路電圧は電源から負荷端まで同じ電圧と考える。もし少し電線路の長さが長いとしたら、その回路の電気現象をどのように捉えたら良いだろうか。電源は電線路の電気状態を電圧と周波数で制御するだけである。電源は負荷の状態を認識できない。ただ電圧保持に必要なエネルギーは電線路の要求に見合う様に供給するのみである。負荷電力が大きければ、電圧保持に必要なエネルギーが多く必要なだけである。50Hzで、相当電線路が長いとすれば、線路電圧は電源からの距離によって異なる筈である。即ち、電線路定数(C[F/m] ,L[H/m])によって決まるエネルギー伝送速度c[m/s]によって支配される。電源からの距離xの地点での電圧値は図のように、x/c[s]だけ遅れた位相の電圧となる。これが電気回路現象を支配する基本原則である。言わんとする意味は、電流も電線路の位置により異なるのである。電線路空間内を『エネルギー』が伝播速度で流れているのであり、或る位置x点での瞬時電力pxはその点の電圧と電流の積で評価するが、『エネルギー』の光速度に近い伝送速度の現象下での認識が必要になる。もし電線路亘長X=3000kmのような場合を考えると、その電圧分布は丁度半波長の波が乗った状態と考えて良いだろう。当然電源での瞬時電力もx点の瞬時電力も、また負荷点の瞬時電力も同じではない。さらに、もし負荷がスイッチSオフとしたら、電源の供給『エネルギー』は電線路の分布回路要素C,Lおよびコンダクタンスgの機能によって支配されるから、帰還する電源への『エネルギー』をどのように処理できるかも問題になる。送電電力系統での開閉サージ電圧が定格電圧の7倍にまで跳ね上がる現象も観測されていると本で読んだ。電線路の『エネルギー』の往復反射での電圧上昇現象である。電気現象を解釈する電気理論は電気工学の電圧、電流概念が如何に便利で優れたものであるかは誰もが否定できない。しかしそれは科学技術の応用としての技術理論であり、自然の物理的本質を唱える理論ではない事だけは理解して欲しい。電気現象の本質は光速度での『エネルギー』の伝播現象であることを。電気回路の電力とは何ですか? (2016/12/16)から考え始めて、今年は電気回路解析の『時定数』の意味を取り上げ、電線路空間の『エネルギー』の振る舞いについて考察した。電力概念も難しいと知った。

課題 電線路空間を伝播する『エネルギー』の本当の姿はどのよであるか?線路定数から、電圧分布エネルギーはCv^2^[J/m] 電流分布エネルギーはLi^2^[J/m]で電線路単位長さ当たりの値を捉えようとしても、その『エネルギー』の電線路空間内での分布などは全く捉え切れない。ただ電気現象の本質を理解するには、電線路空間内の『エネルギー』とその光速度伝播認識が欠かせない。未だ手品師の「種」を明かせない。x点の瞬時電力pxに負荷電力prがどのような関係で影響し、そのエネルギー分布勾配が生じると考えれば良いかなど全く不明である。また、三相交流回路に対して、単相交流の方がその電圧エネルギーの線路往復流に因り原理的には複雑な現象となる。多くを未来への課題としたい。

コンデンサの機能と電気スイッチ

電力回路ではコンデンサは力率補償用設備機器として考えられる。電力回路では実際にコンデンサをそれ程問題にすることは無いでしょう。しかし電気回路の解釈問題としては考えておくべき問題があるようだ。負荷回路にコンデンサを直列に繋ぐことは余りない。誘導性負荷にコンデンサを直列に挿入すれば、R-L-C回路となる。その直列回路で、コンデンサのリアクタンスを大きくするには静電容量を限りなく小さくする必要がある。コンデンサのリアクタンスを大きくすることは回路インピーダンスの総合リアクタンスはマイナスの容量性と解釈すべきだろうか。無限にコンデンサの静電容量を小さくすれば、回路電流は流れなくなり回路遮断と同じくなる。いわゆる電流を遮断する機能を持っているとみることができる。こんな単純な回路の意味を吟味することにも重要な意味がある。元々コンデンサは電気導体が繋がっていない構造を成している。回路としては所謂『電子』の通過を阻止する機能とも見える。電気導体が閉回路を構成していないのである。そんな根本的な意味で、コンデンサの物理的意味を考える考察材料として意義があろう。次の回路を考えてみよう。
1.R-L-C直列回路 ここでコンデンサの電極が離れて、原理的には導体接続を遮断しているスイッチと同じ機能を持っている事を理解してもらいたい。空中の配電線路の2本が離れて平行に張られているのも、見る視点を変えて見れば小さなコンデンサが張られているのと同じ事なのである。

1.直列回路とC  (1)コンデンサ容量をとんでもなく大きな値にした。直列の総合リアクタンスXは9Ωで、誘導性回路となる。(2)はリアクタンスゼロとなる。電源から回路を見れば、純抵抗Rの回路に見える。リアクトルもコンデンサも共に10Ωで、丁度共振状態となる。コイルとコンデンサの間でやりとりするエネルギー量が丁度釣り合って、電源からのエネルギーの関与が無い状態で、電源と切り離された回路要素となる。(3)静電容量を極端に小さくした。C=1[pF]として、そのリアクタンスはX=-3183 [MΩ](負のリアクタンス値) と完全な絶縁状態となる。即ち等価回路のように、コンデンサが回路のスイッチオフの機能を示すことになる。このコンデンサがスイッチのオン―オフ機能を持つと言う意味は、元々コンデンサの電極は離れた導体の遮断状態となっているから、特別な事ではないのだ。ここに、電気回路の『スイッチ』とコンデンサの機能に共通な意味が隠されていただけで、気付かなかったのだ。静電容量が小さければ、電極間の空間に蓄える『エネルギー』の量が少ない訳で、丁度スイッチの接点間の空間に蓄える『エネルギー』が少なくて回路遮断する機能と同じ意味なのだ。スイッチの接点間の空間エネルギー分布に繋がる意味である。それが『物理』である。覚えることで無く、学校教育の目指すべき教育内容は『理解する』である筈だ。本質を捉えることは『一つ』の事柄が広く全体に通じる視点を養える筈だ。
2.RとLCの並列回路 序でに並列回路についてもコンデンサの意味を、電気回路現象の例題として考えておこう。

 2. 並列回路とC  リアクタンス分と抵抗分を分離して考える。コンデンサの静電容量の値を変えて、コンデンサの意味を考えた。(1)は特に容量を大きくした場合で容量性負荷となる。リアクタンスは負である。(2)は共振条件でリアクタンスは無限大となる。従って、リアクタンス回路は定常状態では電源と切り離されたようにコイルとコンデンサ間でエネルギーの遣り取りがなされて、電源のエネルギーを必要としない状態になる。だから等価回路の(2)となる。共振回路の損失があるからそのエネルギー分は電源から受けることは当然であるが、考え方としては電源と切り離されると言う認識で良かろう。(3)のC=1[pF]ではコンデンサの機能はスイッチのような意味になってしまう。だから負荷はL-Rの並列回路となる。

結論 コンデンサの呈する電気現象を『エネルギー』に対してどう解釈するかを考えて来た。従来の伝統的解釈は『電荷』の正と負の概念によって解釈する方法であった。その『電荷』は存在しないと言う科学的常識離れの論を展開し、科学者の顰蹙を買って来たと思う。『電荷』概念に依った解釈法を取れば、空間の『エネルギー』の実体が不明確になり、世界に存在する質量の無い『エネルギー』を認識できなくなる。あくまでも世界は「光」と言う世界の根源要素から出来ていると言う認識に依って、コンデンサの電気現象を論じた。電気スイッチが空間エネルギーの電圧を保持した回路遮断機能と看做す観方で、コンデンサの意味を解説できたと考える。

時定数から観る電気現象

まえがき 気軽に使っていた電気回路の時定数が余り一般的な常用概念で無いようだと気付いた。検索で調べると、過渡現象での応答時間としての意味が中心となっているようだ。オペアンプの電子回路で重要な意味を持っている。序でに古い学術用語集の電気工学編と物理学編を開いてみた。驚いたことにそのどちらにも『時定数』は載っていなかった。電気回路の角周波数ωの意味は?の記事が良く見られている。その訳が『時定数』を使ってインピーダンスを表現している事かな?とも思えた。商用電源周波数ωとの関係での認識は余り無いようだ。ところが少し考えてみると、自分でも意味が分からない事があることに気付いた。そこで、正弦波交流回路での電気現象を時定数に着目して、少し詳しく考察してみようと考えた。伝統的に完成した電気回路解析に時定数を導入すると、また新しい現象の意味が観えて来るように思う。時定数は電気回路要素によって決まる数値であるから、回路の特性評価はその値でほぼ決まる訳で、交流回路解析に利用しないのは勿体ないであろう。そんな感覚で求めたのが等価回路変換の定理でもある。

電気回路実験 こんな実験をしたいと思った。回路要素の値をいろいろ変えて確認したいと。L とC の値は丁度50Hzで共振する値である。R=0で本当に共振するかな~?と思いながら。

時定数とは? 電気回路の中でも余りにも根本的な事だから、物理実験と思ったが、それも相応しくなかったかも知れない。この回路を例にして議論を進めたい。

時定数とインピーダンス 電気回路は例題の図のようにL-R-Cの3つの要素で解釈する。しかしそんなに実際の回路は単純ではない。例えば電気のモーター負荷を考えれば、回路要素で表現するのも難しい。抵抗分Rは巻線の分は測定できるが、実際の動力としてエネルギーを消費している消費電力分を評価するには抵抗値として解釈するが、そんな抵抗がある訳ではない。暑い夏に使う『クーラー』はモーターが冷媒を圧縮する動力の『エネルギー』を利用する家庭電化製品としてお馴染である。今年の日本列島はまた一段と酷暑の様相を帯びている。世界的傾向でもある。便利な『クーラー』は地球加熱機でもあるんだよね。そのエネルギー変換器(電気エネルギーから熱エネルギーへの)の回路要素はやはり抵抗で等価的要素と看做す訳である。回路に在る抵抗とは少し異なる意味を持っている。そんな動力の等価抵抗をも含めて、回路要素の意味を捉えるには、時定数と言う技術概念が便利であろうと考える。そのインピーダンス表現については、電気現象と三角関数に述べた。

時定数と電気特性 回路要素と時定数の関係について、少し考え方と意味を見直さなければならないと思う事がある。今まで、回路要素の次元から無意識的に時定数を捉えて来た。その意味は次のようなものであった。しかし、①,②,③に対して④のようなインピーダンスから得られる時定数まで含めると、今までのような意味だけで単純に解釈できないようだ。

回路と時定数 初めに挙げた実験回路の回路要素の組み合わせでその回路の時定数を図1のように考えていた。①、②および③の様に捉えていた。②のT=RC [s] は積分回路に使われるなど馴染みの時定数である。しかし、正弦波交流回路のインピーダンスとの関係で特別な意味を持っているとは考えていなかった。それが前の記事で述べたように、④のような回路要素R-L-Cの場合には、T=RCと言う定数には余り重要性が観えなくなってしまった。その事を次のグラフで示す。

時定数Tと力率角φ 実験回路の要素値L=67.55mH 、C=150μFで、抵抗R=10 ΩとR=1Ω の二通りの場合の回路特性を計算した。今まで時定数が次元が時間[s]でありながら、正弦波形上では時間の意味を持っていなかったことに、その意味を理解できずにいた。時定数の時間をようやく理解できた。時間t=φ/ω=(arc tan ωT)/ω で時刻の時間に換算されることを理解した。その回路の力率角φと時定数を図2に表現した。電気回路解析上で、今まで隠れていた宝物を探し出したような気分に居る。電気回路が芸術に見える。横軸座標の変数にK={1-1/(ω^2^LC)} を選んだ。Kの範囲は 1から-1の範囲である。K=1の意味はコンデンサの無いR-L回路である。またK=-1の状態はリアクトルが無い、R-C回路である。K=0の場合はCとLのエネルギーの貯蔵容量が等しく、丁度位相反転の状態で、LとCの間でエネルギーの遣り取りがなされ、外部からは無効電力要素が観えない状態である。いわゆる共振現象状態にある。ただ抵抗負荷と観えるだけである。

L、Cと変数Kの間の関係『問答』 グラフの意味を少し説明する。K≧0の誘導性回路の場合のKの変化の意味。抵抗値一定、リアクトルL=67.55mHのままで、コンデンサCの値を150μFから変化させれば、Kは変わる。ではどのようにコンデンサの値を変えれば良いか?実は筆者も戸惑った。解答を得たが、しばらく『問答』として置く。ヒント:K≦0の負の場合は分かり易い。コンデンサの値を150μFのままで、コイルの値を減少して零にすれば良い。簡単で、コイルの巻線を解いて行き、コイルが無くなればL=0となる。その時K=-1である。頭の遊びにコンデンサの場合を考えてみましょう。この関係には、物理的考察の価値があるので別の記事とする。電気工学の『エネルギー』が空間の実在概念として重要であるとの意味を考えてみたい。

時定数と等価回路変換『問答2』 折角等価回路変換の定理を提唱した手前、この問題にその手法を適用してみよう。

等価回路変換 直列回路の要素が並列回路に等価変換できる。先に取上げた等価回路変換定理に従って変換したら、回路要素はL’、C’およびR’のようになる。『問答2』:L’ 、C’ およびR’の算定は課題としておきたい。(ヒント)エネルギーに対して、要素の抵抗分とリアクトル分は互いに関係し合っている。

エネルギー消費と未来予想図(苦い話) 科学技術の恩恵で、過酷な労働から解放され、時間的な余裕のある生活を予想図として描いて来た。しかし労働条件や生活環境は望んだほど良くならず、むしろ自然環境が人の制御できない過酷な状況を呈している。熱中症に気を付ける等と言うことは50年前には全く予想していなかった。それは誰も恨めない己自身の人間が創り上げた地球環境だから。昔の東京オリンピックの頃には春と秋の穏やかな四季を生活のリズムに過ごしていた。来る東京オリンピックが平穏な気候の中で成功して欲しいのだが。地球環境に関わる『エネルギー』とは如何なるものかを考えたい。その『エネルギー』の意味を理科教育で子供達に教えているだろうかと心配だ。電気エネルギーを消費することは、その人が消費するエネルギーと同じ量の『熱エネルギー』で海の水を釜(原子力発電所等の汽力(蒸気力)発電所の復水器)として沸かしていることを知って欲しい。その発電所の熱効率が43%程度で、半分以上が海の加熱エネルギーとして捨てられて、初めて電気エネルギーが利用できることを知って欲しい。さらに利用した『エネルギー』のどれ程かがやはり地球の加熱エネルギーに費やされている。異常気象豪雨は人間が過熱した海の温度上昇の熱エネルギーがもたらしている人工災害でもある事を。電気エネルギーを利用する人間の全ての人が知っていなければならない科学技術社会の基本知識である筈だ。理科教育の社会的課題でないか?

等価回路変換定理の適用例

Yoshihira Kanzawa (金澤 喜平)名前が正しく翻訳されない訳は自分の存在を否定されているようだ。舞鶴鎮守府から帰還していないか?

何十年も専門家としての学術機関に所属することもできず、仕事も無く社会的繋がりなしのお恥ずかしい立場で過ごして来た。普通はそれぞれ専門の研究分野を極めるものであろう。今やっと電気現象の道らしきものが観えてはきたが。本当にどう処すれば人並みの生き甲斐を得られるかの方策も見つけられずに、能力の無さを曝け出して来た。どこかで、『以下余白』のお墨付きを頂いたまま、昭和39年の所属の不可解が観えて来ても人生をやり直す訳にも行かずに今日を過ごしている。昭和62年、63年の居場所もなく彷徨っていた諸行無常の重ね日がそのままに、逸脱者と罵られていた日々を思い出す。今日は少し電気工学の専門的内容で、一つ具体的例題を取上げてみよう。先行きにどんな結果が得られるかも確認せずに思い付くまま書きながら。昨年(2016)の睦月の29日に等価回路変換の定理をここに発表した。この定理は余りにも単純な変換式であるため、どうしてこんな式が得られたかを自分でも不思議に思っている。しかしとても良い変換公式であると感心している。それに関連して、定抵抗回路の問題にも触れることができ、電気回路現象の奥深さにも刺激を受けた。今回はその『定抵抗回路』の問題に等価回路変換の定理を適用して、その具体例から定理の有効性を取上げてみたい。大学の講義では取り上げられないだろうが。

定抵抗回路例 去年初めて、定抵抗回路と言う面白い回路があることを知った。今回はやはり去年電気回路の中に隠れている意味を等価変換回路で見つけた。その回路変換の例に定抵抗回路を取上げてみたいと思った。先ずは定抵抗回路の意味を少し見方を変えて解釈した。

定抵抗回路と時定数 定抵抗回路の意味を時定数と言う回路概念から考えてみれば、分かり易い理由があった。上の回路例では二つの回路ブロックZ_1 とZ_2 が直列に繋がった回路である。単純にそれぞれの回路の電源電圧に対する電流の位相差が時定数に隠れている訳である。Z_1はT_1の時定数の分だけ位相が遅れる意味を含んでいる。Z_2はT_2の時定数によって電流が進む位相になる。遅れと進みの位相回路が直列に繋がれている訳だから、全体で周波数に関係なく電圧に対する位相差がゼロとなると言う意味が隠されている訳である。時定数と言う意味から解釈すれば、定抵抗回路の意味が分かり易くなる。ところが、回路時定数と言う概念の次元を考えると、そこにはまた不可解な意味も含まれているのである。

等価回路変換の定理と定抵抗回路 ここでR-L-Cの直列回路を定抵抗回路への等価的回路変換をする場合を例題にして、等価回路変換の定理の適用を試してみる。

定抵抗回路への等価回路変換 実際に適用を試みると、基本的に変換後の定抵抗回路の条件を満たすべき事からの制約があることに気付いた。元の直列インピーダンス回路を図のような(R)+(L)+(R)+(C) の元回路とした。(RL)回路と(RC)回路をそれぞれ等価変換して、並列回路の直列接続の定抵抗回路にする。等価回路変換の定理を適用して定抵抗回路の回路要素を算定すると、(変換要素値)のような変換式になる。同じ抵抗値であるべきR’が①と②のように異なる算定式になる。ここで一筋縄では解決しない問題だと初めて気付いた。この問題の解決策は一つある。ωT=1の条件を満たせば成り立つ。R’=2R 、L’=2Lおよび C’=C/2となる。

回路要素の条件 定抵抗回路に条件がある。その事から等価変換する元回路にもその条件の制約が掛る。少なくとも、元回路が純抵抗回路の条件を満たす必要があると気付いた。従って、どんな元回路でも定抵抗回路に変換できる訳ではない事だった。余りにも当然のことであった。

回路要素間の制約条件 定抵抗回路に要求される要素間の条件は上の通りだ。元回路に求められる条件は上の(2)式である。定抵抗回路は電源周波数に無関係に純抵抗R’と等価な回路である。この両回路間、元回路とその等価変換された定抵抗回路間には [T=T’]と言う関係が成り立っている。不思議だね。

例題 元回路のインピーダンスZ=R √{4+(ωT-(1/ωT))^2^} の直列回路をそれぞれ、R-L とC-Rの二つの回路ブロックで並列回路に等価変換すると定抵抗回路に変換される。そんな例題を取上げた。

定抵抗回路条件を満たす要素値の例題を選ぶに少し苦労した。しかも商用周波数の50Hzでの条件の為、無極性のコンデンサ容量が大きくなってしまった。抵抗値もR=21.22[Ω]と切れの悪い値だ。元回路も一応共振条件で、等価的には純抵抗となっている。R’ とC’を算出してください。時定数と共振現象はまた未知の迷路に入りそうだ。

電気工学から物理学を問う

単純な問題を取り上げさせて頂きます。大学生が参照基準に基づいた教育を受けたら、どのように解答されるかと考えて。

『問題』

単相交流回路のエネルギー伝送問題

単相交流回路のエネルギー伝送問題 参照基準に照らして、もし『電荷』が電気現象解釈に必要だと考えられるなら、特にその『電荷』のエネルギー伝送上に果たす役割を詳細に論じてください。伝送線路途上に於いて『エネルギー保存則』と『電荷』との関連についても論じてください。

参照基準 現代物理学の学術的高等教育を受けた経験がない者が失礼とは思いますが、科学理論はその内容が複雑すぎて理解できない人も多いのではないかと思う。その原因は具体性が無いからではなかろうか。物理学は理論に偏り過ぎているから、もっと具体的な科学技術を物理学の参照基準とするべきと思う。具体的とは日常的な易しい問題に誰もが分かり易く答えることではなかろうか。電気磁気学の単純な単相回路は誰でも考えられる具体的問題でもあろう。物理学の素粒子の根本概念『電荷』はあらゆる自然科学の理論的論拠概念となっている。その『電荷』は電気現象での解釈に大昔に共通理解の一つの物理量として定着して来た長い伝統的な概念である。しかしその実体をどのように分かり易く説明すべきかと考えると、余りにも曖昧で捉えどころが無いために、誰も具体的には避けて論じないのだと思う。摩擦すれば物を惹きつける実験で、その原因が『電荷』であると決めつけている。本当に『電荷』が電気現象に欠かせない物理的実在量なら、上に挙げた単純な電気回路の電気現象で、電源から負荷に送られる『エネルギー』の伝送過程を『電荷』あるいは『電子』で電線路途中の伝送理由を説明できる筈であろう。私には『電荷』では説明できない。『電荷』とは何か?を説明する参照基準を何に求めるのか。参照基準は最も分かり易い基準概念でなければならないだろう。

愉快な電気回路の仲間達

最近、電気物理とは何かと考える事が多くなった。電気技術回路理論と電気物理学は全く異なった研究対象分野であると思うから。そんな意味を電気回路で表現してみたくなった。先日、『先従隗始』の諺を見た。先ず自分から始めよと言う意味もあるようだ。無意味な回路にも意味があるかと思った。

エネルギー流は?エネルギー流は?

電源とランプ負荷の間に役にも立たない回路らしくない電線路を繋いで見た。何の為かと言うと、電気物理とは何かを考えてみたいと思ったからだ。物理とは物事の『理』を極める学問の領域であろうと思う。電気科学技術の『電流』や『電圧』の意味は電気物理学として極めるには、それがどのような実体を指すのか先ず理解することとなろう。自然現象は電気回路や宇宙の世界あるいは動植物の世界で、みんな異なった理論で解釈する様なものではない筈だ。それらを結び付ける物は日常生活の中の主役『光』しかなかろう。電気現象も「光速度」で光そのものと同じである。その中で、電気現象回路の特徴を挙げれば、空間に電気材料の主役として『銅』と『鉄』および『絶縁物質』で構成されたエネルギー利用機能設備となろう。科学技術はエネルギー利用効率を高め、無駄を省くのがその研究対象である。しかし、電気物理は理論を極める対象だから、大いに無駄な真逆の研究が重要であろう。そんな意味で上に挙げた回路が電気物理現象を考えるに良かろうかと思う。この回路を実際に実験してみたいものだか未だそこまで至っていない。ただ、天晴れーコイルと電圧とエネルギーの今年の実験結果があるから取り上げられる。

個性派珍回路機能要素 6個の回路要素を上げた。①はエナメル銅線を塊状に丸めて銅盤上に置いた回路(?)。この要素の電流と電圧はどんな具合に解釈すれば良いかと言う問答である。まず最初にこの回路を見てどう感じるかである。コイルとコンデンサの機能を思うか。そのエネルギーをどのように感じるか。コイルには磁束。コンデンサには電荷。そう解釈の糸口を考えるのが教科書の電気磁気学の常識的思考の基本である。その磁束と電界でエネルギーを表現できるか。②同軸ケーブルと言う。この回路要素をコンデンサと感じられるか。コイル要素は殆どなかろう。絶縁物、ジュートなどの材料で誘電率が変わりその分伝播速度の低下(光速度の低減)が起きる。電気エネルギーが誘電体内を伝播するからである。③直交型コイルとでも言えようか。二つのコイルが噛み合わされたものだ。このコイルは二つのコイル巻数を同じとして、最大巻き込んだら、その形状はどのようになるだろうか。直交のエネルギー流(磁束ではない)が回路機能に及ぼす作用はどのようになるか。④は磁気材料の鉄の意味を考える回路である。鉄は変圧器に欠かせない電力送配電設備の要の電気材料である。当然アンペアの法則で磁束を考えるであろう。鉄の筒の中に導線が通る訳だから、どこに磁束が通るかと考える。アンペアの法則によれば、銅線周りは磁束が強いが、少し離れれば、磁束は半径に反比例して減少することになっている。交流と直流では、導線からの半径に対する現象伝達速度から光速度の意味を加味しなければならないと言う意味の違いはあろう。そんな導線と鉄筒間の空間的関係も考慮すべきではあろうが、重要な視点として鉄の中でのエネルギーの貯蔵・放出をどのような現象として捉えれば良いかである。鉄の磁気特性に因りエネルギー損失の程度が変わろう。熱として放射されれば損失となる。それは変圧器の鉄心材料と同じ意味を持っていると解釈する。この回路は負荷回路ともなる。鉄心の発熱特性により負荷抵抗器ともなる。導線を鉄で被覆すれば。その発熱原理は電流のオームの法則とは違うことになる。あくまでも空間エネルギー伝播現象による解釈となる。その空間エネルギー伝播現象に対して、線路電圧のエネルギー分布が鉄によって遮蔽されることになるのか?それなら鉄の代わりに銅管の中に導線(銅管による遮蔽)を通したら、空間エネルギー分布はどうなるか。エネルギーはどこをどのように通るか。⑤銅板を貫通する。銅板とは絶縁貫通か一体形状かによって違いがあろう。空間エネルギー流に違いがある筈。⑥電気技術では決して採らない回路形式である。鉄板の渦電流で発熱するから。鉄板貫通部の発熱は間違いない。それは鉄がエネルギーを熱に変換する現象とみる。⑤の銅板では起きない現象が鉄板では起きる。それは鉄と銅の原子周期律表で、原子番号が3つ違うことに因る原子の違いが基になって起きる。鉄Feと銅Du に疑問を記した。

鉄と銅 電気機械の鉄と銅の比率でその特性に特徴が現れるようだ。その金属表面における空間エネルギーの境界の相互干渉現象のように思える。銅はエネルギーの内部侵入を避けて反射し、鉄は内部への吸収で、貯蔵する特性の違いを持っているように解釈できる。鉄の特徴である磁気特性とはどのような現象かが『問答』になろう。よく磁区と言う結晶構造で解釈される。それを磁束で理解しようとしても、磁束そのものが仮定の技術概念であるから、物理的意味を理解できないだろう。磁区に因る解釈が基本的には正しい筈だ。エネルギーの貯蔵形式を鉄金属の磁区に求めるなら、その結晶構造の軸性エネルギー回転流の保持機能として理解するより他には無いだろう。変圧器における鉄心への考察からの結論である。

鉄との関係回路要素④と⑥ この回路で何を考えるか。電気エネルギーの伝送状況あるいはその原理を考えたい。『電流は流れず』と唱えて来た。それは銅線の中を電子や電荷が通過するのではない事を唱えて来たのだ。電子がエネルギーを背負って負荷まで届ける訳ではなかろう。余りにも当たり前の事でありながら、何故電子が導線の中を流れて、負荷にエネルギーを運べると解釈するのか。そんな事は無理である。自然が単純な故に理解できない複雑性を表す現象を考えれば考える程、人間流な複雑性で理解しようと考える。確かに、原子力発電所で核燃料を燃やすと、その熱エネルギーが如何にも魔術に掛けたように、電気エネルギーと言う目に見えないエネルギーとして手元の届くのである。単純に考えれば、熱が送配電線路を通して何も違いの無いエネルギーとして科学技術の御蔭で利用しているだけなのである。電気も熱も同じものなのである。だから雷も水蒸気の熱エネルギーが原因なのである。とそんなことを踏まえて、鉄の吸収するエネルギーの仕組みを考えて見ようか。遠隔作用と近接作用の事でもある。銅の金属導体はエネルギーを反射するあるいは受け入れない。しかし導体と言う意味のようにエネルギーを導く金属体の性質がある。導体表面近傍のエネルギー密度が高いが、内部には殆ど侵入できない。だから熱損失(変換)は少ない。それは銅金属の原子的構造が持つ特性であろうが、その構造的な意味の原理は分からない。それに対して、鉄は金属結晶構造の磁区と言う空間構造がエネルギー流の侵入を磁区の回転エネルギーとして受け入れやすい特性を持っていると解釈する。原子結晶構造の空間的構造がそれを可能とする。磁石の磁化はその保持エネルギーの回転流を表面の空間に影響を及ぼし、それが磁石の特性となる。少し話が逸れた。もし導線内に電子が流れて・・と言うような解釈をするなら、その電子が何故遠隔作用で離れた部位に磁束のようなエネルギーを造り得ると考えるのか(アンペアの法則?)。電子にはそんなエネルギーを背負っている訳ではないが、複雑に仮定概念を組み合わせて、解釈するのが電気理論である。電流と電圧とは何かを、その物理的意味を追究するより他には理解の道は無い。ここに述べた事は、数学的理解力がない自分の自然解釈の方法でもある。

電気回路要素Lの機能とエネルギー感覚 コンデンサ型配線の・・ 電気の眞相(3)-電圧と負荷ー

電気回路問答

また世にもつまらぬ電気回路を取上げる。電気技術者なら、決して誰も試さない電気回路である。これほど単純な回路を問答対象に取上げようなどと考えることがまともな感覚ではなかろう。
「エネルギー感覚」を試す問題として提示した。ただし、考えるだけの問題にしてください。

電気回路問答Lの意味?

(厳重注意) こんな回路を組んではいけません。実験等したらとんでもない危険なことになります。危ないから絶対だめです。

天晴れ(コイルと電圧とエネルギー)

自分で言うのも変だけど。我が感性に『天晴れ』と。やっぱり嬉しいもんだ。自分で分からずぐずぐずしている姿を辿って、不図気付いた解消には特別の高揚感を感じる。それにしても、気付くのが遅かった。

コイル3つコイル3

コイルの①が今までの実験で利用したものだ。それに対して②と③のコイルが追加したものだ。みんなポリラップの芯の紙筒に巻いたコイル。電気回路技術者の端くれとして、不可解な実験結果に悩んでいた。その不可解な現象の原因はすべてコイル①の巻線の3本の内の1本1-1’の電線が特別の電線を使っていた事に有った。奇想天外実験の最初の電源電圧印加時にヒューズ切れを起こした。それでコイル絶縁に問題があるかと、コイル1-1’だけ難燃架橋ポリエチレン線1.2mmを使った。結論はその絶縁材料の空間エネルギー分布の高密度化に因る平行電線間のエネルギー流の不平衡が原因であった。架橋ポリエチレンのエネルギー伝送特性によるものであった。電線導体内に電流が流れる訳でないから、エネルギーは金属導体表面の空間を伝送するのであれば、その導体近傍の空間特性・誘電率や透磁率によって影響を受ける。ポリエチレンが導電性を持つという意味(ここで言う導電性と言う用語は誤解を受けそうだ。意味は例えばコンデンサ内の絶縁体がその誘電特性で電気エネルギーを蓄えると言う時の、その電気的なエネルギーの出入りに対して決して絶縁ではないと言う意味で使った。液晶テレビの材料も絶縁体だか導電?体だかどう区別するか?)はこの実験結果にも現れていた。コイルと電圧とエネルギーの実験結果には、鉄心コイルを含め全て架橋ポリエチレン絶縁電線を一本の巻線だけ利用していた事に依る現象が測定結果に示されている。コイル②(30ターンの3本線を別々に分けて巻いた分接巻)、③(32ターンの3本線を揃えた合接巻で、コイル①と同じ巻き方)の場合はすべて、ポリウレタン銅線0.4mmを使った。

実験の意味と結果 現代物理学の最先端研究は、その専門的細分化と実験・計測装置の設備が大掛かりである。然るにここに示す実験内容は、不思議な現象ではあるが、その内容は極めて単純な子供もできる器具のものである。電圧測定だけの結果でしかないので、その実験を行う思い付きがむしろ面白かろうと考える。そこで、疑問と改良実験、その結果の失敗の繰り返しで、結論に辿り着く過程が面白かろうと思う。その過程を含めて実験結果の報告だ。

実験Ⅰ コイル②を新たに巻いて実験した意味。それはコイル①の測定電圧の不平衡な違いが気になったので、コイルを分けて巻いた場合、巻線1-1′ と2-2′ に対する巻線3-3’との間の電圧値にどのような違いが出るかを確認したかった。そこで今までと同じように、巻線1と2端子に電源電圧をかけて見た。その結果が次である。

実験Ⅰ実験Ⅰ

結果評価 この結果にも巻線3との間の電圧値で、離れた結合の少ない巻線1との電圧が大きい。測定電圧値で、一つ注意すべき点がある。それは他の場合にも言える事であるが、電源電圧値は全く調整していないから、配電線路電圧の負荷変動の影響があるので、数ボルトの差は意味がない。この場合は、20Vほどの差があるが、その意味が理解できない。未解決の疑問だ。

(2015/09/26)追記 実験Ⅰの疑問の解決。当然のことであった。電圧を計ると言うことは、導線間の空間エネルギーを計ると同じ事であるから、コイル1と2に電源電圧を掛けたのだから、コイル1と2の間の空間にエネルギーが分布している訳である。従って、コイル1と3の間に電圧計を繋げば、コイル1との間のエネルギー分布を拾う。しかし、コイル2との間には電源によるエネルギー供給空間外であるため、コイル3との間で拾う量は小さくなる。その空間エネルギー検出量の差が20ボルトになったと解釈する。

実験Ⅱの1 実験Ⅰの結果を観て、再び元のコイル①で確認したい事が浮かんだ。電源電圧印加を巻線3に掛けたらどうなるか。その結果だ。

実験Ⅱの1実権ⅱの1

この結果の評価 コイルと電圧とエネルギーの実験結果と比較してみれば、巻線3と巻線2が入れ替わっただけで、巻線1に対する電圧が大きい事は変わりがない。

実験Ⅱの2 電源電圧印加端子を3から3’に切り替えた場合も示す。

実験Ⅱの2実験Ⅱの

(2015/09/26)追記。 実験Ⅱの1と2の結果はコイル1に関係した電圧が大きい。その意味は、最後に書いた実験全体を通した結果評価に述べてある。

実験Ⅱの3(215/08/15) 昨日はいわゆる終戦記念日。また不図気が付いた。コイル①で電源電圧印加端子を2と3としたらどんな結果になるかを調べていなかった。この場合は架橋ポリエチレン絶縁体のエネルギー伝播現象は起こらないだろうと気付いた。測定結果が次である。

実験Ⅱの3実験Ⅱの3

結果評価 巻線2と3はエナメル線と看做せる普通の平衡電線である。巻線空間エネルギー分布に偏りはない事を結果が示したと考える。予測通りと解釈したい。(2015/09/26)追記。僅かだが6Vの差がある。その訳は?実験Ⅰの解釈から見れば、逆に思える。

実験Ⅲの1 実験Ⅰの分接コイル②についても電圧印加を巻線3-3’の場合を確認した。

実験Ⅲの1実験Ⅲの1

実験Ⅲの2

実験Ⅲの2実験Ⅲの2

実験結果の評価 ところどころ測定値の欠落(測定忘れ)があるが特に問題無し。さて、ここまでの実験ⅠからⅢまでの結果を観ると、コイル①の巻線1だけが難燃性架橋ポリエチレン絶縁線で、他はすべてポリウレタン絶縁の銅線である。予想に反して、巻線1だけが全て電圧が大きめに計測される。そこで一つ気掛かりな点が浮かんだ。印加電源電圧の電位(この電位と言う概念は技術用語としての捉え方で、物理的意味は余りないと考えるのだが、配電線路の電圧には柱状変圧器からの二次側で、必ず1線は第二種アースで大地に落ちている。変圧器の故障事故による高電圧6300Vが配電線を通して家庭内に侵入する事による感電事故を防ぐ安全対策としての第二種アースがある。)の影響かと考えて、建物のアルミサッシを基準にして電源電圧を調べた。電源スイッチがコンセント型スイッチで、片側1線のみのスイッチである為かと考えた。しかしスイッチオフ時には、電圧が15Vや24Vで現れたが、スイッチオン時には影響がないように思える。ここで、また解釈できない壁として実験結果が精神的負担を掛けて来た。悩んだ!!

実験Ⅳの1 他に対策が見えなくなって実験結果が教えてくれた。まさかと言うことに気付いた。コイル①の巻線1だけが特別の電線を使っていたと。改めて、ポリエステル銅線3本を使ってもう一つ合接コイルを巻いて確認しようと考えた。それがコイル③である。三本の銅線を交差しないようにきちっと揃えて、巻上げたら32ターンであった。実験結果が鮮やかに出た。

実験Ⅳの1実験ⅳの1

実験Ⅳの2

実験Ⅳの2実験ⅳの2

実験ⅳの結果評価 電圧印加端子1と3および1と2のそれぞれの場合で、電圧印加されない浮遊巻線はそれぞれ2-2’および3-3’で、その巻線に対する測定電圧がほぼ同等の値を示した。この測定結果は今までの測定電圧値で初めての結果である。

実験全体を通した結果評価 最大の発見的事実として挙げたい点がある。合接コイル①の巻線1-1’に難燃性架橋ポリエチレン絶縁線を使った事によってコイルの電線路特性に『エネルギー流』の空間的ひずみを生むと言う現象の発見である。この事の意味は少し複雑でもあるから別に改めて詳しく説明をする(2017/12/12追記。電線路のエネルギー伝送の意味は電線導体内を伝送されるのでなく、その導体で挟まれた空間内を伝送される。絶縁被覆の銅線なら、エネルギーはその絶縁被覆内(コンデンサと同じ意味)で密度が高くなるため、その誘電特性に因って伝送速度などが決まる。光の屈折と似た現象で、その空間のエネルギー密度がその絶縁媒体の影響を受けるから電線導体の絶縁体で電気エネルギーの伝送特性が支配されるという事になる)。従来の電気回路論では説明がつかない筈だ。基本的認識は『電流は流れず』を理解する事である。もともと実験に供したコイルは電気回路としての実用的価値は全く無いものである。こんなコイルを巻くこと自体が電気技術者の発想には無い。正しく奇想天外な発想から生まれた偶然の発見かもしれない。不立文字の哲学的発想、東洋的『無』に通じるかも知れない。

平行電線路の珍現象(この項は削除2017/12/12)