タグ別アーカイブ: 電気回路

平行二線式回路の定数について

電気回路現象の解釈理論は電圧と電流による『オームの法則』が基本となって完成している。

しかし、電圧と電流と言う概念はとても優れた解釈概念であるが、それはあくまでも科学技術用の創造概念であり、それに自然界での真相を求めようとすると矛盾の壁に突き当たる。

それは電圧、電流の本質を問えば、『電荷』と言う物理量の実在性に依存せざるを得なくなる。プラスとマイナスの二種類の『電荷』が欠かせない論理的根拠となる。マイナスの『電荷』は『電子』であるが、プラスの『電荷』が何かは極めて曖昧である。その論理的矛盾は『電荷』を切り捨て、『エネルギー』の流れとして理解する事で解決できる。

電気回路現象を『エネルギー』の流れとして捉えれば、導線導体内を流れる『電子』などの必要はなくなり、電線路内の空間の電気定数の解釈の問題となる。この関係は電線路の回路特性 (2021/08/11)にまとめた。それでも未だ残った問題があった。

電気回路例。

電池からの『エネルギー』が電線路空間を流れるとなれば、その特性は回路分布定数L[H/m] とC[F/m]で解釈すれば良い。電線路の特性インピーダンスZo[Ω]は

Zo=(L/C)^1/2^[Ω]

となり、空間の構造で電気現象の特性が決まる。負荷ランプの特性値R[Ω]とZoとの関係で、電気回路の『エネルギー』伝送特性が決まる。

以上の意味を基本認識として、二本の電線で構成される電線路のインダクタンスLと静電容量Cの意味をもう少し考えておこう。

二本の電線だから、具体的にその電線路の特性値を考えれば、右図の様になっていると考えてよかろう。

 

 

 

等価回路。回路特性値 L[H/m] および C[F/m]は右図のように算定される。その訳を考えた。

 

 

 

 

電線路空間を『エネルギー』が伝送するとき、その流れは電線にどのような関係になるか。

L=2La[H/m] およびC=Ca/2[F/m]と回路特性値を解釈する。その訳が右図の様なCaとLaの間での遣り取りとして伝送する『エネルギー』という意味で解釈する。

この解釈は回路に電流計を接続する。その電流計の計測値に及ぼす回路特性を理解するに欠かせない事から取り上げた。

こんな回路論は余りにも、当たり前の基礎論で、学校教育の教科書の問題の指摘でしかなく、科学論としての学術論文になるような内容ではない。然し乍ら、現在の科学理論の根源概念、『電荷』を否定するところから生まれる新しい解釈である。現在の学校教育での物理学理論からは生まれない解釈ではある。

自然界に存在もしない『電荷』概念に論拠を置いた学校での理科教育は、その矛盾の伝統の引継ぎ業界の体制保持の意味しかないのだ。その事は未来を背負う子供たちに対しての教育行政の責任を問う事でもある。また大学教育の物理学基礎理論の根幹が問われる事でもある。例え困難があろうと子供達の未来への考える教育への転換が望まれる。

コイルの電圧とエネルギー

電気回路現象はそのエネルギー伝送空間のインダクタンスL[H/m]とキャパシタンスC[F/m]の機能が司る。

その特異な回路に共振回路がある。その回路現象を解釈するにコイルの端子電圧の意味が中々分かり難い。

今までの解釈で、変圧器のエネルギー伝送現象 (2020/11/14)。および電磁誘導現象の真相 (2020/10/25)等の認識に辿り着いた。『電流』や『電圧』による解釈はあくまでも電気技術的な解釈手法である。自然現象の本質は『エネルギー』が握っている。『電圧』と『電流』の意味も『エネルギー』の空間現象として理解しなければならないことが分かった。そこで回路共振現象を理解しようとすると、どうしてもコイルの端子電圧の意味を捉えなければ困難との認識に至った。それが『エネルギー』による解釈になる。コイルとコンデンサ間の『エネルギー』の遣り取りになる。

上の記事で、『エネルギー』による解釈の基本はある程度示した。それでも共振現象でのコイルとコンデンサ間の『エネルギー』の遣り取りやその周期 Tと(LC)^1/2^[s] 間の関係式の問題は解決に至っていない。

それは『エネルギー』がコイル内でどのような空間分布状態かに関わる解釈の問題でもある。そこにコイルからコンデンサへの『エネルギー』転送とコイル端子電圧の関係が明らかにならなければならない筈だ。コイルは電圧に対して他力本願的機能に思える。自己で端子電圧を決める機能を持っていないようだ。コイル電圧は端子に掛かる外部のエネルギー供給源によって決まる量である。コイル端子への線路静電容量と分布エネルギー量から決まる。

端子電圧とエネルギー。

コイルに図のような電圧を掛けた。コイル端子電圧は外部回路との電気エネルギーのコイルへの入射あるいは放出を伴う。『電圧』とは回路端子の電線間の『エネルギー』分布量と静電容量によって決まる概念量だ。コイルに正の電圧が印加されれば、それは負側電線空間を通して、コイルに『エネルギー』が流入する現象である。その端子電圧に対抗する現象がコイル内に起こらなければならない。電圧に対してコイルは受け身である。印加電圧が零の区間で、コイル端子電圧はどの様な現象になるか。電気物理(コイルの電圧) (2019/03/17) はコイルの『エネルギー』による解釈を始めた頃のものだ。しかし、誘導エネルギーに観る技術と物理 (2019/04/03)はやはり技術論であり、空間に実在する『エネルギー』の認識より技術概念での誘導エネルギー論である。コイル内空間に実在する『エネルギー』は、技術的な『電流』によるコイル内の『エネルギー』(1/2)Li² のような、コイル空間のどこに在るかが理解できないものとは、その意味が異なる。質量に付帯する運動エネルギーとは全く次元が異なり、光と同じ空間の光速度流の『エネルギー』なのだ。

コイルの芯に磁性体があるとする。コイル端子に電圧が印加されている限りは、コイル周辺空間に『エネルギー』が流れ続けなければならない。『エネルギー』の入射が受け付けられなく、内部空間が『エネルギー』の飽和状態になれば、コイル端子の電圧は零の短絡状態となる。その基本的意味を理解した上で、端子電圧とコイル周辺の『エネルギー』分布の関係の解釈を示そう。

電源電圧一定値の①の区間では、コイル間の分布静電容量に対する『エネルギーギャップ』の分布量が一定に保たれている。1ターン当たりの電圧がvuで、その巻数倍が端子電圧となる。その間は電源側から『エネルギー』が流入し続ける。その貯蔵容量が中心空間に要求される条件となる。

②の区間。突然電圧値がゼロとなる。その時コイル巻き線周辺の『エネルギー』の分布は①と異なり、エネルギーギャップも零となる。しかし既に貯蔵した『エネルギー』はコイル内部に蓄えられている訳だ。その『エネルギー』の分布様態はコイル巻線部の内側の空間内を還流する図のようなものとなる。この状態は、鉄心部に記したように、その磁極 S と Nが決まった向きの軸性のエネルギー流となる。

以上によって、観えないコイル内の『エネルギー』の分布とコイル端子電圧の関係を解釈する。

あくまでもコイル端子電圧は、『エネルギー』貯蔵機能要素を発揮しながら、その外部への現れ方は他力本願である。外部回路の『エネルギー』分布によってそれに対応する不思議な機能を備えていると解釈した。

この結論をもって、漸くL C の共振現象の解釈に進める。

共振現象とエネルギー空間

自然は時空の花。

空間に展開される『エネルギー』の実相だ。

共振現象を問う (2014/10/06)で考えた。当時より少し認識が深まった。電気回路は全て導体で囲まれた空間の構造内での『エネルギー』の伝播現象である。回路静電容量と回路インダクタンスと言う二つの電気技術評価要素で、その中の自然現象が捉えられる。その科学技術を完成した技術文化に乾杯。

『電圧』と『電流』と言う回路解釈概念が如何に優れた智慧の賜物かをよく理解しなければならない。具体的にその量が測定器で測れると言う不思議さもある。電流は流れずと言い乍らである。そんな素敵な概念を間違った解釈で論じることは許されない。『電子』の逆流だ等と言う間違いが堂々と科学論の中に罷り通っているのだ。『電子』など、自然界のどこにも無いのに。原子の周りを回っている『電子』など有り得ないのだ。

電線導体の中を『電子』が流れる等と言う理屈・理論はきっと何時か子供たちに笑われる時が来る。

共振回路について

基の記事も一つの過程としてみたい。その回路をもう一度取り上げて、回路要素の意味と『エネルギー』の振る舞いを考える。

『(2021/09/07)追記。周期 T と回路定数 L 、 C の間の関係。コイルの端子電圧について、コイルの電圧とエネルギー (2021/09/07)で結論を得た。その結論の結果として、下記の記事は訂正しなければならない。回路の伝送現象も L   C の間の『エネルギー』の転送現象で進行する事に成る。

右の正弦波電圧波形の周期Tも、T=4√(LC)となる筈だ。以上訂正、修正とさせて頂く。この理由は次の記事で述べたい。』

電気回路における『エネルギー』の有り様は、その分布に偏りをもって現れる。この図ではまだその事に気付かない時の物だ。この図のコンデンサの電圧v[V]と貯蔵エネルギー qc[J] の波形で、周期 T[s]は L[H]と C[F] によって決まる。

この波形は未だ『エネルギー』が貯蔵されたとき、その分布は電極の負側が高密度分布になると言う認識には成っていなかった。今は、その分布の偏りが『エネルギー』の空間特性であるとの認識にある。その分布差をエネルギーギャップと呼ぶことにした。さて、この L とC の組み合わせ回路には特別の共振現象が見られる。少しその現象の意味を深く探ってみよう。

共振現象の意味。

先ず初めの段階として、適当にL とC を離して配線でつないでみた。共振の意味を考える為に。今コンデンサは充電されている(エネルギーが貯蔵されている)ものとする。しかし、コイルはスイッチSでコンデンサとは並列には繋がっていない。コンデンサの電圧は図の通りの極性とする。スイッチが off の時、電線路のエネルギー分布はどの様になっているだろうか。

コンデンサの貯蔵エネルギーqc[J]は電極の負側に高密度で分布し、

qc=C vc ² [J] となる。

スイッチSの端子にも『エネルギー』qs= Cs v²[J]がコイル端子側スイッチ端子に分布する。そのスイッチ端子間電圧値もエネルギーギャップもスイッチ間の静電容量 Cs[F] (及び回路全体の空間構造の影響)によって決まる。

電線路の負側配線及びLのコイル巻き線にも『エネルギー』が分布する。その分布量は電線路空間の静電容量の空間分布構造によって決まる。配線部の回路要素 Lo やCoの分布状況等によってそのエネルギー分布は決まる。

上に述べた事は、所謂科学論とは見做されないかも知れない。科学的実験データでの検証を示し得ないから。空間に分布する『エネルギー』を検証できないから。科学論としての説得の力はない。これが科学哲学と言う部類なのかもしれない。『エネルギー』への感覚的心に共感する矛盾排除の論理でしかないかも知れないから。だから誰にもその解釈は、その人が如何に電気回路の特性を評価するかに掛かっている事でもある。『電荷』や『電子』概念で解釈する人はその意味で矛盾なく認識すればよいだけであろう。

上の回路の配線部が長ければ、共振現象に大きく影響する。スイッチ投入以後、エネルギーがどの様な流れ方をするかで共振特性が変る。『エネルギー』は配線の回路要素によって伝送速度も変化する。共振回路としては配線(Lo,Co)は極力無くする意味がそこに在る。ただ回路のLとCだけで共振現象が決まる訳では無く、回路全体の空間構造に因ることを先ず理解すべきだ。そこに『エネルギー』の空間での実在性が認識されるべき根拠が在るのかとも思う。

②の回路の共振は基本の共振現象(LC)が(CとLo)、(LoとCo)更に(CoとL)の関係が加わる事に成る。LoとCoの排除で理想的な共振現象になる。それはタンク回路とも呼ばれるL C が密接な一体構造空間を成すような理想空間となる。その回路の共振周波数 f[1/s] が電気工学では、

f=(1/2π)(LC)^-1/2^

と角度の2πが入る。

ω^2^LC=1 の ω=2πf [rad/s] の f から算定したからである。

しかし、周波数 f [1/s] に角度が入る事は論理的に正しくない。

f=1/√(LC) =1/T [s^-1^]

と解釈する。

「まとめ」 新たに浮かぶ疑問に挑戦すると、結論に到達せずに課題にぶつかる。今回の共振回路問題も少し新しい認識を得たようだ。以前からの思い・疑問が解けそうだ。インダクタンスもコンデンサも空間構造としてみれば同じ基本的物理的意味を持っているとの結論になる。それは空間の『エネルギー』の認識から到達する解釈だ。またそれを次の記事の共振現象問題として、今度こそ纏めにしたい。

今、下書きの記事が多数残っている。次々と、未解決の問題を手掛ける度に、結論に纏まらない。冒頭の記事、共振現象を問う(2014/10/06) の周期 Te についてはそのまま、(6)式とする。また、電気回路の角周波数ωの意味は? (2016/02/04) の疑問も未だ未解決の問題だ。

共振現象問題が下書き記事の解消になればと願って、一旦まとめとする。

エネルギーと素粒子

現代物理学理論の研究内容はとても高度な学問で、筆者のような、その分野の素人にはとても理解の出来るものではない。だから素人がそんな特別の研究に異論を唱える事は、社会的常識からは許されない。しかし同じ自然科学の分野に属する学問であり乍ら、素粒子論の目指すものが一体この自然世界の中の何を探ろうとしているのか位は、誰もが理解できるものでなければならないと思う。『電荷』の存在理由さえ無いと分かった現在、改めて学問の意味を問いたい。何処でどのように関わる道があるのか?スポーツじゃないが、科学論を戦わす土俵は何処にあるのか。

ここでどのように解釈を論じても、専門家は見向きもせず、無視されるだろう。専門家が唱える内容は、量子色力学(QCD)、コペンハーゲン解釈、反水素原子あるいは電子気体モデル等の概念用語の高度専門的学術理論の世界である。しかしここで取り上げる内容は、中学生の学習内容程度の易しい範囲の電気回路論でしかない。しかしその内容は、初歩的でありながら、教科書にも解説されていない、新しい電気回路論である。『電子』の存在理由も無い事を唱える電気論である。

しかし、敢えてその素粒子研究が未来の社会への希望となるかを専門家にお聞きしたい。基礎研究は役に立つかどうかは分からない事でも、研究が大切な事は分かる。それでも科学への理解を深めたい思いを、共通の市民科学意識の深まりの為にやさしい電気回路現象との関係で確認したい。

何を確認したいか?それは空間に在る『エネルギー』はどのような素粒子から成り立っていると現代物理学理論の高度な自然世界の認識から見て解釈されておられるかを理解したい。それほど難しい事ではないと思うが、とても不思議に思うのは、物理学理論では空間に在る『エネルギー』をどの様に理解されているかが分からないのだ。

電気回路のエネルギー。

右図は豆電球の点灯回路だ。懐中電灯と同じだ。ただ、電線路の途中にコイル、電線を巻き付けた部分がある。回路要素としてはインダクタンスと言う。その値を Laa[H] とする。先ず、物理学理論ではこの電気回路現象をどの様に捉えているか。『電子』が回路動作の主役として取り上げられているように思う。しかし、そんな解釈はもう止めなければならない筈だ。その点に関して既に、中学生への応援電気回路論 (2021/05/09) でも解説した。自然現象はとても易しく、素直に接すれば分かり易いのだ。難しい概念で解釈すべきでなく、深い純粋な自然の心に触れて欲しい。それが空間に在る『エネルギー』なのだ。そこで述べた事はランプから放射される光は『エネルギー』であり、電池から供給されるのも『エネルギー』であり、電気回路全体の動作の主役は『エネルギー』であるという事だ。決して『電子』などの出る幕は、電気回路には無いという事である。ー今し方、8月16日10時半頃、上空をヘリコプターがうるさい轟音を挙げて行きすぎた?ー

コイル内の『エネルギー』の存在確認。

今までの論考で、電気回路は電線で囲まれた空間を『エネルギー』が光速度で伝送される現象の機能回路だと分かった。マイナス側の電線の近傍空間を伝送する現象だと。しかしプラス側にコイルがある。一体そのコイルにはどの様な意味が有るのだろうか。この回路の電流 I は電圧を V とすれば、

I= V ÷ R

と計算される。コイルの意味は式には何も現れない。ではコイルは電気現象に何も関りが無いかと言えば、そうでは無い。確実にコイルの中には『エネルギー』が貯蔵されている。しかもプラス側の電線路のコイル内である。その『エネルギー』を物理学理論ではどのような概念で理解しているかが分からないのだ。物理学理論では『エネルギー』が空間に在ると認識しているのだろうか?その『エネルギー』は『電子』など全く関りが無いのだ。もし、電気回路に『電子』が欠かせない論理的基礎概念だと言うなら、その訳を解説して頂かなければならない。『電子』がどの様に『エネルギー』の発生原因であるかを。

コイルの中の『エネルギー』は電気理論では一応、

E=(1/2)Laa×I² [J]

と解釈している。その式を理解するに、電流が『電子』の逆流と解釈するから、その式の『エネルギー』の意味を捉えるのは甚だ難しいだろう。

だからコイル内の空間に『エネルギー』が実在するとの解釈は教科書には無いのだ。何故か空間の『エネルギー』は物理学理論では認識していないようだ。

コイル内の『エネルギー』の実在性の証明。これがまた難しいのだ。コイルに電流が流れると、コイル内には「アンペア―の法則」によって『磁束』が発生するとの解釈を迫られる。自然世界に磁束など全く無くても、物理学理論によって、解釈の手法が決められてしまう。そこでコイル内に『エネルギー』が実在することをどう科学的論理で証明するかとなる。それが磁気コンパスに頼る事になる。有り難きコンパス様、様である。確かにコンパスをそのコイルの傍に近付けると、決まった向きにコンパスが向く。それは実験で確認できる。しかしだ、コンパスがコイル内で力を受けて、向きを変えたとしても、それがコイル内に『エネルギー』が実在する証明になるとは物理学の専門家が認めるかどうかは分からない。元々磁界と磁気コンパスの間の力の原因を物理学理論で、その訳を説明できるかどうかが怪しいのだ。磁気の「クーロンの法則」で、n極とs極の関係で解釈しているだけであるから、磁束があると言っても何故コンパスの向きが決まるかの訳は説明できていないのだ。その訳は空間の『エネルギー』の認識が無いから、磁束と言う物理概念の自然現象の本質を捉えていないからだ。磁束も『エネルギー』のある空間の現象でしかないのだ。それを、Axial energy flow の空間状態と解釈した。参考資料(*)。

コイル内空間に、『エネルギー』の軸性回転流がある。コンパスにもその磁極近傍空間には軸性エネルギー流がある。その空間の『エネルギー』同士の近接作用力が磁気コンパスの向きを決める現象の原理なのだ。すべて空間の『エネルギー』の関係で決まるのだ。『エネルギー』はどの様な素粒子で成り立つのかをお尋ねした。

(*): 25pWD 磁力密度 f = rot(S/v)  日本物理学会講演概要集 63-1-2. p.310. (2008).

お粗末な年賀状。

その年のマグネットへの恋模様。

電線路の回路特性

電気理論と回路空間 (2021/07/29) で電気回路現象が電線路の空間に因る事を述べた。

決して、電気配線の導体内を電流や『電子』が流れることはない。しかし、現実の教育で子供たちに誤った科学論を押し付けているのだ。残念ながら、科学者が真剣に自然と向き合わないで来た結果であり、教育者が教える事に疑問を抱かないで過ごしてきた結果である。

もう少し、具体的に電気伝送技術からの『線路定数』の意味を掘り下げて、数式の解釈法を利用して解説しよう。

この解説は、基本的に電気現象の解釈で、物理学理論は全く役に立たないものである事を前提にしている。科学技術理論として、電圧や電流の概念を使い、学習することはとても大事な事である。それはあくまでも自然現象を人の生活に利用するための、簡便な解釈法としての技術理論である。日常生活での生活の術としての知識として重要である。しかし、物理学理論としては、それはあくまでも自然現象の真理を解明することを目的とした学問である筈だ。意味も分からない『電圧』や『電流』などの電気技術用語を利用して、如何にも自然の真理であるかの如くの教育は完全に間違っている。何時までも訳の分からない『電子』の空間像の実相を認識できずに、消化不良の気持ちを持ち続けなければならない不快な気分で居なければならない。そんな気持ちを子供たちに味わわせて過ごす教育の現状は許せない思いだ。

物理学理論の罪。『電圧』、『電流』で解説すること自体が、全く電気現象での物理的機能を知らない専門家という不思議な伝統組織群の話となっている。典型的な事が『電荷』や『電子』の空間像を真摯に描こうとして来なかった事にその原因があると思う。

空間に在る『エネルギー』を認識していない。

光がどの様な『エネルギー』であるかを、その自然に向き合って来なかった事、その事に対しては科学者に、特に物理学者にその責任がある。

その電気回路での空間特性と電線路空間構造の関係を示して、電気現象が『電子』などで解釈できるものでない事を示す。何時までも『電子』の在りもしない仮想概念に頼っていては益々、物理学の存在理由が問われることになる。考える科学論でなければならない。

電線路空間特性。分布定数回路空間の世界 (2019/10/14) による。

電線の太さdとその間隔Dが電気回路の特性のすべてを決定するのである。ただし、電線路空間の空間媒体の影響が大きく関わる。裸電線での回路空間としての解釈を上の図では示してある。実際の電線はビニル絶縁電線などである。金属導体の近傍空間がエネルギー分布に大きな意味を持っている。そこは普通はビニル絶縁体で被われている。だからその媒体の影響を強く受けることは認識する必要がある。また、エネルギーの分布は電圧の負側に偏ることも認識しなければならない。それが『エネルギーギャップ』と言うものだ。電気回路から物理学理論と教育 (2021/07/22)にその参考記事がある。

ここ迄の認識に至るには長い道のりがあった。筆者の過ち。それは、日本物理学会での2001年の発表での失態である。

28aYW9  プランク定数の次元と実在概念  日本物理学会、第58回年次大会。p.338.(2001).

実は、その内容を発表せずに、とんでもない御迷惑をお掛けしたことである。実は、電気学会での『静電界は磁界を伴う』の資料を会場に置き、その内容を話した。誠にお恥かしき限りだ。この発表に至る経過がある。2000年に新潟大学で、物理学会の大会が行われた。その大会がプランクの記念大会となっていた。その事を知って、翌年の2001年に発表するために用意した。考えてみれば、如何にその当時の、『電荷』概念への疑念を明らかにするべき研究の場を失う事への、自己に対する科学研究の責任と社会的不可解への怒りが心の奥にあったからとは思う。

その直接の切っ掛けは、物理学理論で「粒子性と波動性」の解決すべき課題があった。一つの現象を波動性と見るか粒子性と見るかの曖昧な未解決の問題があった。一つの物理現象が二つの見方で解釈しなければならないとは如何にも不可解であった。その解決は光を『エネルギー』の空間流として認識する以外ないと考えていた。その空間像を指数関数の表式で、提示したのである。曖昧な波動ではその空間的実体を理解できない。それでは物理学と言えないと考えた。その意味を示した。しかし、その事を理解するには、空間の電磁エネルギーの実像を認識しなければならないという意味で、『静電界は磁界を伴う』の意味を話した。電界と磁界は空間の『エネルギー』の分布をそれぞれの捉え方で解釈しているだけでしかないのだ。その意味で、発表に行き過ぎであったことをお詫びしなければならない。しかし、そのプランク定数の捉え方は間違いなかった。

プランク定数での疑問。余りにも有名であり乍ら、大きな謎、それはその『次元 [Js]』であった。最初の日本物理学会での発表も、[JHFM]と言う次元を明確に認識する事の大切さであった。

現在の認識は プランク定数の概念 (2018/07/17)に述べた。プランク定数の次元が [Js] である意味を考えれば、空間の伝播『エネルギー』の一つの単位とその通過時間の積だという事位は感覚的に思いつく筈だと思った。それ以外粒子性と波動性の矛盾は解決できないとその当時考えた。その空間に実在する『エネルギー』という認識が、物理学理論に欠かせない基本である筈だ。『電子』ではその『エネルギー』は理解できない筈だから。

関連記事。

27aZA-1  量子論の起源を問う 日本物理学会講演概要集 61-1-2. p.394. (2006).

30aXG-8  量子エネルギー mv² の空間 同上 61-1-2. p.329.  (2006).

23aWA-1  量子エネルギーのベクトル解析 同上 69-2-2.  p.291. (2006).

等で、光の空間エネルギー分布像を論じた。それらは、光とは何か?₋光量子像‐ (2012/01/15) に記した。

前の記事。質量とエネルギーに、光のエネルギーと質量の関係への思いを詩に託した。

質量 それはエネルギーの象形

エネルギー それは質量の解放像

エネルギーは 眠りで世界に現れる

その寝姿が質量である

エネルギーは不均衡を好む

その局限で質量となる

エネルギーは光で その本領を発揮する

光は 自然が託した 未来への伝言である

物理学理論と科学技術理論との関係をきちんと捉え直して、未来の教育をどのようにすべきかは皆が、一般市民が考えるべき問題と思う。それが教育行政に上手く反映することが民主主義の基本であるだろうから。

 

電気理論と回路空間

教育における指導内容。学校で使う教科書は教育の行政機関が細部に亘って検定で合格する内容を決め、その指針に従ったものでないと教科書として学校では使えないように思う。その教科書の電気理論について問題を指摘したい。電気回路現象について、教育の場で真理を伝えたいと願って30年過ぎた。

ここで展開する考察は、科学理論ではなく文学論だと過去に言われた。確かにその通りだ。科学的検証法に則っていないから。しかし、科学的に測定できない物が自然世界を基本的には象創っているのだ。科学理論とは何かで、次に述べる意味を分かって頂かなければならない。

 簡単な電気回路で教科書の解説とその回路の真の電気現象を比較してみよう。

24ボルトの電源に豆電球を繋ぐ。電線は2本を適当に這わせた。この回路で、電圧は電線間に掛かる筈だ。電圧とは何かが現在の教科書では明確に示されない。確かに電線のプラス側とマイナス側の何処に電圧計を繋ごうと、その電圧値は24ボルトを示す。

電気理論では電線2本で、負荷のランプに電圧24ボルトが掛かる。だから電線がどの様に配線されようと、その線間電圧に何も影響を及ぼすとは考えない。プラス側の電線には電源端子からランプの端子迄同じ電位24ボルトだという意味である。マイナス側の電線の電位は基準の0ボルトと考える。

上の図で、「p1点 とp2点の2点間の電圧は幾らか?」その答えには深い意味が隠されている。答えは24ボルトではないのだ。しかし電圧計をつないで測れば必ず24ボルトとなる。『その意味は何か?』が自然現象の真理を理解する起点となる。そこが、えも言われぬ自然と科学理論との絶妙な差である。空間の『エネルギー』は科学的手法では決して測定できないのである。その事は科学理論の検証の限界を示すことでもある。そこは哲学になろう。人の感性に頼らざるを得ないところだ。 科学技術理論は自然を利用する視点で組み立てられた解釈法である。その視点で見れば、その理論は如何にも論理的で完璧に見える。しかし、素人、科学技術理論に疎い人から見るときっと何か理解し難い『本当か?』と言う思いが燻っていると思う。検索情報の中に、初めて学んだような子供たちが、『電流とは?』とか『電圧とは?』とか素朴な疑問が質問に見受けられる。結局その回答者が答える内容は、決まりきった意味不明の教科書や高等理論でお茶を濁した内容で逃げているのが現状である。教科書を書く人が過去の伝統的解釈論の伝承に心しているだけが故の、真剣に疑問と格闘しない専門家であるからと思う。そこのところを、自然を利用する視点と異なる、自然に己の心を開いて感応させようとの思いで、科学理論を見直してみたいのだ。自然は科学理論の定義概念程複雑の本質を持っている筈などない。『電荷』など自然は必要としない。原子構造論のような複雑さを自然は嫌う。

 

そうは言っても、電気回路理論通りに電圧計を繋いでみれば、どんな場合も思い通りの実験的に証明できる。それが科学的理論の真理の捉え方の原則である。その解釈法は誠に理に適っている。誰に対しても目に見える形で「答」として示せるから。科学技術を活用する観点からは全く間違いはない。何処にも非の撃ちようが無い。そんな科学技術理論が伝統的に生活に果たした意義は計り知れない有意義なものである。

 それは物理学理論と言う伝統的で、専門的な共通の科学論の基本に則った解釈法に適合している。しかし、その伝統的解釈法では空間に『エネルギー』があると言う意識、認識に基本的に立って居ないのだ。『エネルギー』は運動エネルギーや位置エネルギーが基本になっている。それは『質量』がエネルギーを認識するための具体的根拠と解釈しているからだ。質量の無い物理量が空間に在るとは認識していない。

『エネルギー』とは何か?

 ここで使う『エネルギー』と言う用語は、ややもすると地下資源のエネルギー政策の燃料と解釈され易いかも知れない。しかしそれとは違うのだ。『光のエネルギー』が空間を光速度で伝播していると考えるか、そう思わないか。そこに明確な認識を示して貰わなければ、先の話が嚙み合わない。エネルギー(energy)とは? (2011/09/07)等の旧い記事もある。

 もし光が空間を伝播する『エネルギー』だと解釈しないなら、最近空間の電線路無しの『エネルギー』伝送、『電力』伝送と言う話題もちらほら見受けられるが、そんな話題は物理学理論とは嚙み合わない話となると思うが如何でしょうか?決して空間に質量によって『エネルギー』を飛ばす技術で考えている訳ではなかろう。受ける方は光速度の弾丸を受け取らなければならない仕儀となる?電磁エネルギーは空間に分布した『エネルギー』の縦波なのだ。スマホの電波も同じ空間の『エネルギー』の縦波なのだ。電磁波は電界と磁界の質量を伴わない、誠に都合の良い曖昧さを隠した如何にも高度な専門的知識の数学的表記理論の総合概念だと言っているように思える。空間を光速度で伝送する『エネルギー』の波だ等とは解釈しない。光が『エネルギー』の波だとは考えず、振動(何が振動しているかには答えない物理学理論)の波だと言う。例えば、NHKの放送電波の電力が300[kW] と言う。空間に放射する『エネルギー』の1秒当たりの量である。その空間に放射するものが何であるかは『エネルギー保存則』との兼ね合いの理屈としても理解できよう。電界や磁界の強度を空間ベクトルで解釈する電磁波の電磁気学理論以前の問題であろう。

そこで改めて考えて欲しい。電線路空間はどのような物理的役割を担っているか?『空間』という物理的対象は電気『エネルギー』の伝送に対した、特別に考えるべき機能を何も持たないと解釈するのか?と言う疑問である。確かに現在の理論で、電線で挟まれた空間が『エネルギー』伝送に特別の役割を持つと考える必要もないのがオームの法則等の電気理論だ。電圧と電流という科学技術量だけで、他に何も付け加える必要などないのだ。だから電線が張られていれば、その電線の間の空間など何の役割も持たないと言う解釈が普通の電気理論の解釈となるのだ。だから何も考えることなく、オームの法則が便利に使えるのだ。電気回路現象、それは実験で確認できる。科学的理論に適って実験的に証明されるという大前提が確立しているのだ。学校で習う教科書で、電線路の『空間』と、その空間を流れる『エネルギー』等と言う話はどこにも無い。だから初めから電気回路現象に『空間』が大切な役割を担っている等と聞くことも無い。誰も教えない。教える先生が居ない。何故そのような教育の場に成っているのだろうか?

 その原因は❓ 研究者や専門家は、その研究内容が社会に役立つことが認められて、その研究業績に人生の誇りを掛けているのだ。役立つ研究とは経済的な競争に有効な業績として残るものに意識が向く。日長ぼーっと目の前の景色を眺めて、景色と光の物理的関係は何だろうか?等と疑問に思っても何の経済的利益にも、研究業績にもつながらない。研究室で、科学研究費を獲得するような研究課題を探し続けなければならない『任期制度』の若い研究者の研究環境は厳しい状況らしい。先輩や指導者の研究業績に従って、その方向性で決まった内容しか生きる研究の道は無いのだ。『電荷』など自然界に存在しない等と言えば、それだけで研究の道は厳しい。『静電界は磁界を伴う』という物理的意味をどれだけの方が分かるか。

しかし、自然現象を解釈する方法は科学理論が唯一ではない筈だ。次の電気回路の線路空間を例に、その事を考えてみよう。

空間のエネルギー伝送 『エネルギー』が空間に満ち溢れている。光はその代表だ。電気エネルギーも光と同じエネルギーの空間の流れだ。

金属導体の電線内部を『エネルギー』が伝播する訳ではない。電気回路現象のように、物理学理論によって自然現象が起こる訳ではないのだ。自然現象のある面を切り取って解釈する方法が物理学理論なのだ。あくまでも自然が在っての、それに対する人の解釈法の物理学理論なのだ。

物理学理論に逆らった電気回路論。

 図は電線の配線の空間構造に考える為の工夫をした。電線路線間間隔に差を付けた。決して電気回路としてこんな無意味と言える配線は実際にはしない。何の経済的利益も生まない無駄な事だから、電気技術研究者はこのような配線構造は考えないだろう。しかし、中には分布定数回路など、高周波伝送路の設計などをしている方が『おや?』と技術者感覚から、何かに気付くかも知れない。電線路は反射波などの無い一定の特性インピーダンスで統一しているのが、同軸ケーブルなどである。線間間隔が狭くなればその空間の静電容量 C[F/m] は大きくなる。当然その線路空間の電気的特性は変化する。送電線路でも電気特性は線路定数のC[F/km]、L[H/km]等で解釈する。それは電線路空間構造によって決まるからだ。決して電線の中を『電子』が流れる事は無いのだ。『エネルギー』伝送の役に立たない『電子』の役割は何処にも無いのだ。

上の図の回路空間が直流電源回路であっても、その空間のエネルギー分布密度[J/m]は様々な反射現象を伴いながら、結局一定の負荷電力供給に対応する値になって、『エネルギー』供給の自然現象機能を発揮する事に成る。詳細の『エネルギー』分布は皆さんにも考えて欲しい。

その意味の起点を教えてくれたのが『変圧器の奇想天外診断』(2015/06/03)の実験的結果である。電気現象の本質は『静電界は磁界を伴う』の実験結果を理解することから分かる筈だ。

電圧・電流の物理的概念

「電気回路から物理学理論と教育を考える(?職歴不明?)」で漸く結論に至った。しかし、過去のすべてに不可解のまま、科学論の土俵への道も知らずに来た。職歴不明の如何ともし難き今、ただ教育現場が如何に在るべきかと思う。

2年程前、電圧・電流とエネルギーと時空 (2019/08/11)、それに続いたこれが電気回路の実相だ (2019/10/01) および電気回路のエネルギー問答 (2019/10/02) 等に、その当時は未だ『エネルギー伝播現象』の実相を捉えてはいなかった様子が観える。その後の2年間で漸く到達した。振り返れば実に不思議な感慨を覚える。疑問を抱き続ける事に。

電圧・電流はエネルギーの伝送特性量

電圧・電流とエネルギーと時空 (2019/08/11)。そこに示された波形だ。

物理的概念と表題にした。その意味は物理学理論の物理ではない。自然現象としての電気エネルギーが伝播する現象を物理的に解釈するという意味、即ち自然の屈という意味である。

現代物理学理論は既に自然現象を理解するには役に立たない過去の遺物論となっている。自然界に存在もしない『電荷』や『電子』で解釈するあらゆる学術論は、自然現象を理解するに色眼鏡の度がきつ過ぎて、人の解釈を迷わせる存在に観える。

光のエネルギー量。hν[J]で評価する光。その解釈では、光の空間エネルギーの分布を理解できない。光のエネルギーを振動数のみで解釈する理論では、決してエネルギー量のジュール[J]を認識することが出来ない。単一周波数の光が幾ら高密度であっても、その振動数での解釈では決してエネルギー量を評価できないから。空間を伝播する光のエネルギー量が自然現象に影響することを評価できないから。それは電気回路現象の理解が出来ない。電圧、電流の自然現象としての意味が認識できない。その意味で将来に向けた理科教育として相応しくない。そこで上の波形の意味が問題となる。

さて、物の理屈として上の電気現象波形の意味を考えてみよう。電流波形や電圧波形の意味が分かれば物の理屈の例となる。これぞ物理学となる。

図の横軸は角度表記である。それは同時に時間軸と見做せる。ωtのt[s]軸と同じ。オームの法則は実に優れた科学技術法則だ。自然の奥底の現象を技術料に置き換えて評価している解釈法が素晴らしいのだ。その概念『電圧』と『電流』が含む自然現象の真理は決して自然界に存在しない『電荷』などで解釈する事は出来ないのだ。誠に有り難い事は西洋哲学が自然現象を活用する意味において、特段の意義を発揮している点である。その御蔭で現在の科学技術の恩恵に浸れるのである。科学技術競争社会はその思想の延長線上にある。しかし、東洋哲学の方向性は少し異なるように思う。自然の中に深く入り込み、自然と思いを同化する方向性のように思う。自然を守る方向性と。

ー苦言。エネルギーの大量消費で発電エネルギーと同じ分を海の加熱で賄っている事を全ての電気エネルギー利用者の科学リテラシーとして認識しなければならない。豪雨災害の原因や高温異常のフーン現象はすべて海の加熱エネルギーの自然的放射現象をその根源にしている事を。ー

東洋思想は科学技術的進展を目的とする方向性とは考え方が異なる。自然現象の本質を求めるには、科学技術概念の自然的真相を理解する為に、その概念の中身に『削ぎ落し』の思考を重ねて、理解に到達するように思う。自然はすべて空間の『エネルギー』一つの千変万化の具象像でしかないと漸く考えられる。それは光一つが空間の『エネルギー』の密度分布の縦波現象でしかないのだ。電界や磁界の概念はその『エネルギー』の空間状態を科学技術的解釈法に合理的な手法を編み出した、自然界に実在する物理量ではない仮想的概念なのである。その様な意味を踏まえて、電圧、電流波形の意味を単なる技術概念という意味でのみ解釈すべきでない。光のエネルギーの空間伝播現象との関係付けで認識すべきである。

波形図の横軸は角度量である。それは又、ωtの関係から、時間軸 t[s] とも見做せる。この図の波形の意味は、電線路のある位置で観測した時、その位置での、その電圧と電流の値が時間的に変化する様子を表現したものである。波形の値はその位置の値で、離れた位置の波形は違う値なのである。その事をこの波形で表現した深い意味の数量であると理解しなければならない。波形一つも漠然とした意味ではないのだ。この波形の同じ意味を横軸に距離を採って表現すれば、右に波の進む位置の方向を採った場合、左右が逆転した波形になる。空間図形の表現内容も注意してみるべき意味を含んでいる。

電圧 v(ωt) の波形、電流 i(ωt) の波形が正、負に変化する正弦波形である。この電圧と電流と言う物理的概念が何を定義したものかを理解するのはなかなか難しい。科学論では、『電荷』が存在するとの仮想的認識に基づいて理解しようとする。そこに、根本的な不明確にならざるを得ない原因がある。その『電荷』概念に基づく解釈では、子供たちが満足できる明快な説明が出来ないのである。理屈で非の打ちようがない論理性は期待できない。説明者自身が、おそらく分からないからなのであろう。『電荷』に因る解釈である限り、教科書の正当性が保障されていないのである。『電荷』は自然世界には存在しない、科学論用の仮想概念でしかないから。

(1)電圧について。1[V] と言う電圧値は何でしょうか。

電線路間に掛かる電圧の意味が、先ず物理的に明確でなければならない。電圧が正の波形の場合の電線路に生じる原因が何か?『電荷』で説明できますか。電圧波は光速度で電線路を伝播する。電源から正の電荷(陽子?イオン?その具体像?)と負の電荷(電子像?)が電線路に流れ出て、その電荷が光速度で進むのですか。ここで既に「電荷」論には無理があると分かる筈であろう。電子の流れでは電圧の解釈は無理であろう。電気回路は、その回路特有の回路空間に静電容量と言う定数値を持っている。その定数を εo[F/m]とすれば、電線路の空間に分布するエネルギー密度は

εo V^2^[J/m]

と、電圧の2乗で表されるのだ。電源のエネルギー供給能力と回路空間定数に関係した技術概念が電圧の意味なのだ。

(2)電流について。1[A]、その物理的な意味は何かを明確に示さなければならない。

電圧の電源に電線2本で電気配線空間を張る。電線路終端に負荷抵抗を繋ぐ。電線導体に電子が流れて電流となると解説される。そんな理屈が厳密な物理論として通るだろうか。電圧と同じく、電線路空間にはエネルギーの流れる速度を決める回路特有の定数がある。誘導定数をμo[H/m]とすれば、そのエネルギーの流れる伝送密度は

μo i^2^ [J/m]

となるのだ。電流値の2乗に因るのだ。電流と言う概念の意味もそのエネルギーの流れに関係したものとして在るのだ。

記事の冒頭に掲げた波形の V^2^ [J/H]およびi^2^[J/F]はそのような意味を表現した意味を持っている。空間の『エネルギー』分布に関係した概念を持っているのだ。

ここ迄述べれば、誰でも『電荷の科学論』は教育現場での緊急課題だと気付くと思う。

交流回路現象は、直流と違って、負荷でのエネルギー反射現象が電圧エネルギーギャップに対して、時間位相が少し複雑になる。賢明なる研究者の皆様なら、既にお分かりと思う。

電子とエネルギー(バンド理論は魔界?)

時は今、エレクトロニクスの時代。エレクトロンとは何者だ❕

電子の実像を探し求めて、長き彷徨いの中を過ごした。電子は質量と電荷の二刀流の使い手だ。その変幻自在のあり様は正に魔境に誘い込まれたが如くに、その意味不明に惑わされる感覚になる。問答実験(2014/01/31 )にも。

何の知識も、学術研究の取り立てて自慢できるものは何もない。『バンド理論』が量子力学の主戦場の英雄となって、君臨している。

物理現象の本質はすべて、空間での『エネルギー』の振る舞いにしか見えなくなってきた。長く『バンド理論』のその周辺の意味を理解しようと考えを確かめてきた。過去の記事がある。

謎(pn接合は何故エネルギーギャップ空間か) (2017/05/07)。

『エネルギーギャップ』と電圧に関係した記事に、

電池と電圧(エネルギーの基礎研究) (2019/11/19)。電池と電圧(エネルギーの実験) (2019/11/19)。ダイオード電圧 (2020/08/26)  等がある。

バンド理論の『バンドギャップ』とは何か?その代表的な解説がある。半導体の部屋にその図が示されているので参考にさせて頂く。

半導体の伝導現象は『バンドギャップ』と電子及びホールがその解釈の基本的対象概念である。そこで、電子がエネルギーレベルで高い状態になるか、ならないかで伝導体に上がるか、価電子帯に留まるかが決まる。

さて理解できない事。それは次のような解説である。

『半導体は、電子が運動エネルギーで価電子帯より増加して、伝導体に励起され、若干の電気伝導を示す。また、価電子帯から励起した電子の抜け殻にホール(正孔)が発生し、正の価電子の様に振る舞って電気伝導に寄与する。』

その解説内容は、電子が若干、そしてホールが正の荷電体の様に伝導の役割として働く意味と理解する。さて、半導体は電気回路の銅線あるいはIC導線の金線から銅線に繋がって外部負荷につながる。そこで、電子は運動エネルギーが増加して、更にホールのエネルギーも高レベルの値で外部回路での伝導に寄与するとの意味での解説と理解する。

ここで、気掛かりの事がある。バンド理論の解説はそれで分かったとしても、繋がる電気回路がその電気エネルギーの伝導現象に重要な意味である。電気回路で、電子(運動エネルギー?)あるいはホールが『エネルギー』をどの様に負荷に届けるかが、その技術の粋としての半導体の真骨頂である機能を発揮する役割の筈だ。それは、一般の電気回路の解説では電流が流れるという意味を、それと反対向きに電子が流れて電流の意味の機能を発揮するとなっている事との関係から。

科学理論はあくまでも総合的に、広い場面との整合性が取れた解釈が出来ないと誠に不明確な分かり難いものになってしまう。どうも現代科学論は、とても専門性が重視され、その狭い専門的科学論によって総合的な整合性と言う面で、とても曖昧な理論となっていようだ。どの様に電子あるいはホールが負荷に如何なる理屈で『エネルギー』を届けるかが示されなければとても科学理論としての解説としては納得できない。誰もが何も疑問を呈しないところもまた不思議の極みに思う。

専門家とは、一般の市民が理解できるように易しく、詳しく(「電荷」の空間像等)解説するところにその真価が発揮されるべきと思う。筆者には、『電荷』像さえ理解できない為か、なかなか『バンド理論』の意味が理解できない。新潟県教育委員会での採用事務手続きも無かった16年間の教職員歴(?)はじめ、職歴不明(?)で悩む筆者の電気回路現象解釈論からの疑問に対して、専門家のご意見をお聞かせ頂ければ望外の喜びとの思いを込めて。

 

電源電圧の物理概念

(2021/06/16)。漸く辿り着いた。『静電界は磁界を伴う』(1987年4月)の発表をしてから辿り着いた。決して『電荷』や『電子』等を必要としない電気回路現象解釈。自然世界に、その空間に『エネルギー』がある事を知って欲しい。物理学理論のどこに、その『エネルギー』の概念が在るだろうか。物理学理論は役立つのか (2021/04/09)。

『電圧』と言う誠に優れた電気技術概念。その意味は長く物理学理論において、『電荷』によって解釈されてきた。しかしその電圧の物理概念は『電荷』などでなく『エネルギー』が示す自然現象の意味であった。

交流電源電圧の電気回路における物理概念を上の図によって考えたい。電圧は電気回路の現象を決定的に決める基本量であると感覚的にも捉えられる。

長い間その電圧の意味を、『電荷』によって解釈してきた。漸くそれは『エネルギー』が示す電気回路現象であったとの結論に至った。回路の負荷に誘導性負荷と容量性負荷を取り上げた。電源電圧は正弦波交流とする。電線路は二本の電線を張ればそれでよい。その電気回路をどの様に解釈するかが一つの要点となる。また、電気現象は全て『エネルギー』の光速度伝播現象である事を認識しなければならない。決して『電子』は電圧の意味に何の役目も持ち得ない。単純な2本の導線で囲まれた電線路の空間を電気のエネルギーが流れるのである。電源電圧 v[V] とすれば、それは下の式、(2)式のように電線近傍の空間に、単位長さ当たりの静電容量 C[F/m]によってエネルギー分布が決まるのだ。

 

その電線路単位長さ当たりのエネルギー分布 δp[J/m]は電線路全体に瞬時に行き渡る。数㎞の電線路に電圧を掛ければ、その電圧は光速度のエネルギー流によって、電線路全体がその電圧値になる。そのエネルギー流の流れは上の(1)式の流れの式で表現できる。速度 co=(LC)^-1/2^ [m/s] で流れる。電気現象の最大の特徴は、光速度伝播現象であるという点だ。電気理論や物理学の教育者は決して、1秒間に『電子』などが地球7回り半の速度で伝送できない事を肝に銘じておくべきだ。子供達に嘘で誤魔化す教育はするべきではない。長く30年以上もかかった結論である。

電圧とは。(2)式より、

v=√(δp/C)  [(J/F)^1/2^]=[V]

で表される、電線路空間のエネルギー分布を解釈した技術概念だという事である。この電圧は直流であろうと交流であろうと特に差は無いのだ。交流電圧は直流の電圧値がただ時間的に変化する違いでしかない。それはエネルギーが光速度伝播である事にその特性があるからだ。

(1)式の電力p₀[W] はその電線路電圧の伝送エネルギー流の最大限界値を表す。光速度 co=1/(LC)^1/2^ [m/s] との積で表される。(注)最近の配電線路もピン碍子は使わず、静電容量が大きな、特性インピーダンスの小さな高エネルギー密度の、容量増の配電線路になっている。

(3) 、(4)式は負荷の特性を表す式だ。

その電力の式は、誘導性負荷の場合は、

誘導性負荷の波形

その貯蔵エネルギー量は印加電圧の時間積分で決まる。また容量性負荷の貯蔵エネルギー量はその電力が電圧時間微分で決まる。誘導性負荷の場合の電気現象波形を示す。wl[J] がLrの貯蔵エネルギーである。

 

 

電気の眞相-電気エネルギーとは何か- (2014/10/13) が電気回路現象への疑問との格闘の一つの問答の始まりかも知れない。

まとめ。

漸く電気技術理論、電気工学理論を、その優れた電気技術文化として理解できる心境になった。『オームの法則』、交流電気回路の『インピーダンス解析理論』、その『電圧と電流』の技術概念を理解できた。決して『電子』など必要としない事を理解できた。残念ながら「クーロンの法則」は教育の場には相応しくないことも確かな事である。『電荷』概念は余りにも自然の真相からかけ離れた解釈を強いる事に成るから。また、『磁気』とは『エネルギー』の軸性回転流の空間場であると理解できた。残念ながら地磁気の逆転現象などはこの地球上に起こり得ないと分かって欲しい。『電界』も『磁界』も全て『エネルギー』の科学理論構築用の解釈概念でしかないと言う意味で、自然世界の「真理」とは異なる事をも知って欲しい。教育の、理科教育の専門家は未来への新たな方針を立てなければならない時に在ると理解してほしい。どうか皆さんからの、『電荷』や『電子』の概念を否定する私への批判を期待します。

時と歩んだ世界

(2021/06/02)。10年以上ブログを投稿させて頂いている。感謝です。2010年2月に初めてpcと言うものに触れた。ワープロ代わりに購入した。しかし、ITに接続して新しい世界を知った。相手が見えない世界に、思いを表明してどの様な事が起きるか、その未知の世界に期待もあった。

ファラディー電磁誘導則・アンペア周回積分則の物理学的矛盾 (2011/0130) が初めの頃の一つの記事だ。この記事にだけ突然千件を超えるアクセスが起きた。

その中に、『インバータと磁束φ ④』が記事中にある。トランジスタでの電力制御を初めて知った驚きの技術として忘れることの出来ない記念のものである。電気理論と電気技術との乖離を認識するに欠かせない回路として挙げる。変圧器に直流電圧を印加すると言う考えられない驚きの回路だ。1969年秋の内地研修で経験した驚嘆の回路であった。この事は、目から鱗‥ (2021/06/05) の記事に述べた。

ここに「アンペアの法則」の矛盾が示されている。変圧器の磁束が励磁電流によって生じる訳ではない。電流概念を問う基点となった。

電流が導体内を流れる。しかし、その「プラスの電荷が流れる」と言う論理は無理であると分かったのだろう。だから負の電荷の『電子』が逆向きに導体内を流れると専門的解説が成される。その解説も、その論理的な責任ある理屈が示されているとは言えない。そこには専門家としての良心が見えない。筆者はただ電気回路の中に起きる自然現象としての『エネルギー』の振る舞いを感覚的な捉え方で、そこに寄り添いながら考察を進めてきた。それは余り学術的形式の論文としての表現には程遠いものでしかないだろう。その訳を考えると、学術的標準用語を使う程専門的な習熟もなく、理解が無いことが基にあるからだろう。だから勝手に自由に解釈する習慣が、余りにも学術理論の常識から離れてしまった感覚のままになってしまったのかも知れない。殆どの基礎的科学概念、物理学的概念を否定する処に立ってしまった。空間に実在する『エネルギー』の実相を、その象徴的具体例に『光』の空間像を描いて捉えている事に在ると思う。

光の相対速度と空間 (2020/06/08) 。プランク定数の概念 (2018/07/17) 。今はその光の意味を電気磁気現象を理解する基礎として認識して欲しい思いにある。それが時の成果と言えるかもしれない。

『静電界は磁界を伴う』。科学理論の世界が異なって見えた原点がこの発表に在る。とんでもない自然の認識に挑戦する賭けに挑まざるを得ない仕儀になった。幼稚な社会性の乏しい筆者には無理な科学論の道であった。何か最初から社会的な存在としての、憲法、行政法上の仕組みの中に組み込まれていなかったような思いに在る。集団体制にとっては邪魔者で、はみ出し者のようだった。古い事件のうろ覚えがある。貝野村役場が火事になった。貝野中学校が火事で焼失した。意味が分からない?信濃川で隔てられた小さな集落の貝野村が、更に二つに分かれた分村事件。我が家の土地がいつの間にか新潟県道に化けて、今でも踏み躙られている。

エネルギー考にまとめた。『エネルギー』一つに科学論の基礎概念を頼りに何とか辿り着いた。理科教育の未来の一つの方向性を示した。陰で応援が有ったから曲がりにもできた。感謝。