タグ別アーカイブ: 電圧

謎(p n junction は何故エネルギーギャップ空間か)

『エネルギー』の存在形態を尋ねる旅。半導体はエネルギー変換制御に欠かせないスイッチング素子である。電力制御とは『エネルギー』制御である。三相交流回路の瞬時空間ベクトル解析で、スイッチング機能を回路定数サセプタンス化して解釈する意味を考える。その基礎考察で半導体の意味を理解したい。電力系統のスイッチング機能を担う半導体のp n junction とはどんな物理的意味を持っているかが分からない。その動作原理を『電荷』に頼れないとすれば、『エネルギー』に頼るしかない。専門家は良く解って居られることだ。しかし私は理解できないから困っている。何とか、まとめ に結論と覚悟した。

エネルギーギャップ 素人なりのp n junction の意味をダイオードを例に考えた。p型半導体とn型半導体の接合部にどんな現象が起きるのか。理解力の低い頭にはフェルミレベルという専門用語さえ理解できないのである。単純な頭で考える単純な考えは、『エネルギー』の内部分布しか思い当らない。そんな意味を図に表現してみた。エネルギーギャップと電圧の間に謎を解く鍵がないかと期待する。エネルギーは高密度部から低密度部へ流れると考えたいが、乾電池に蓄えられる『エネルギー』は内部では消耗しないで、必ず外部負荷を通して消費する。乾電池も『電荷』では理解できないので、考える謎解きの旅でもある。

まとめ 過去の記事をまとめて確認しておきたい。エネルギーギャップという意味に至るまでの過程も見たいから。最近の記事から古い記事の順で。電気回路スイッチもエネルギーギャップを支える機能要素と解釈する。コンデンサの場合も、エネルギー貯蔵のそのエネルギー空間形態をどのように理解するかも確答できずにいる。スイッチとはエネルギーギャップのスイッチング機能要素と看做せるだろう。その解釈をダイオードのスイッチング作用に広げて捉えた。接合部にエネルギー準位差が生じると、丁度スイッチオフの状態と同じ働きを呈すると考えた。単1乾電池もエネルギー貯蔵庫で、そのエネルギーが内部でオフ状態を保持しているように思える。外部でエネルギーギャップゼロとするような回路接続をすると、エネルギーが流れる。ダイオードのn側にマイナス電源で、エネルギー準位を高める接続により外部回路と電源がつながる状態になる。ダイオードのエネルギーギャップが解消されてスイッチオン状態となる。こんな単純な解釈しかできないのである。難しい『電荷』概念での解釈ができないので止むを得ないかと覚悟した。

半導体とエネルギーギャップ

  1. ダイオードの機能 (2016/09/17)
  2. 電気回路とスイッチの機能
  3. 物質のエネルギー準位
  4. 問答実験
  5. 半導体とバンド理論の解剖
  6. トランジスタの熱勘定 (2013/01/30)

電圧とエネルギー

  1. 電圧ーその意味と正体ー (2016/05/15)
  2. 電池と『エネルギーギャップ』
  3. 電池の原理を問う
  4. 電圧ー物理学解剖論 (2011/12/14)

 

 

電気回路とスイッチの機能

電気回路に欠かせないものにスイッチがある。エネルギーを負荷に供給したり、遮断したりする役割を担うのがスイッチである。一般には電線路に流れる電流を切ったり、流したりする役割として理解しているだろう。その考え方で『オームの法則』を理解するには十分である。しかし、電流とは何か、電子とは何かと電気現象の本質を物理的に理解しようとすると、単に電線路のオン、オフというだけの捉え方では十分その意味を捉え切れていないと言わなければならない。前回電圧ーその意味と正体ーで電気回路の電圧の意味を捉え直した事により、電気現象の本質に迫れ、より感覚的に納得できるようになった。その空間のエネルギー分布からスイッチの機能を考え直してみたい。多寡がスイッチと言うけれども、その奥には深い意味が隠されているのだ。そこにこそ、科学技術と自然現象との間に横たわる人間を理解する哲学的真理が垣間見えると思う。

『エネルギー』の空間実在性の認識 『エネルギー』とは決して『運動エネルギー』と『位置エネルギー』だけではない事を認識すべきである。ややもすると、科学論の基礎認識としてエネルギーは『運動エネルギー』と『位置エネルギー』であるとの認識から論説が始るように思える。それは、現代物理学の教科書的教育の現状に原因がある。私はその自然科学論にとても違和感を抱くのである。例えば「空間のエネルギー」と検索する。そこには驚くような意味不明の精神論と関係付けるような記事まで現れる。科学論を論じる方は、電気磁気学にも十分精通しているものと思う。電気回路でコイルを思い描けば、そのコイルの巻線内の空間に『エネルギー』が蓄えられるというのが電気工学では常識となっていると思っている。しかし『空間エネルギー』がそのコイルに存在しているとの認識が無いなら、その『エネルギー』はどこに在ると考えるのだろう。どうも理論物理学では、『運動エネルギー』と『位置エネルギー』の二つのみで『エネルギー』を解釈していて、空間に存在する質量無しの『エネルギー』の実在性を認識していないからであると考えざるを得ない。そうでなければ空間に『エネルギー』が存在すること位は日常生活で、感覚的に分かる筈であろう。このコイルのエネルギーには『質量』はない。『運動エネルギー』と『位置エネルギー』は必ず『質量』をその拠り所としている。『質量』の無い空間の『エネルギー』を認識しているかどうかの問題である。その『エネルギー』認識のために、この電気回路のスイッチとその機能と言う視点で考えてみたい。

電源から負荷へのエネルギー供給 乾電池などの電源から負荷(懐中電灯など)に『エネルギー』を供給する。それは懐中電灯を点けることになる。スイッチを閉じて(オンして)、そのままにして置けば、いずれ電源(電池)の『エネルギー』を使い切ってランプは暗くなる。その時何を使ったのかと言えば、それは電流でも電圧でもなく、『エネルギー』を使い果たしたのだ。その時の『エネルギー』とはどんなものかを電気回路の中で理解しているかという問題である。電気回路のスイッチとは、『エネルギー』を取り扱う機能だという事である。電気回路のスイッチの機能を『エネルギー』との関係で考えてみよう。

直流回路の空間エネルギー

回路とスイッチ回路とスイッチ  スイッチ二つの単純な回路である。この回路を見てどのような事を思うでしょうか。先ず二つのスイッチがオフの時。考えて欲しい事はどこに電圧が掛っているかです。当然スイッチの間の空間に電圧が掛っている筈です。何故そこに電圧が掛っている事に成るのでしょうか。その意味は『電圧』とは何かと言うことです。それは空間のエネルギー分布によって決まる技術的評価量である。

写真298等価回路とエネルギー分布 スイッチがオフのときの電気回路の状態は回路導体で囲まれた空間にエネルギーが分布しているのである。

その静止したエネルギー分布は電気回路としては、スイッチを含め、空間にコンデンサが分布し、それぞれそこにエネルギーが保有されているとも見做せよう。その様子を表現すれば、色付けしたエネルギー分布の図のようになろう。あくまでもおおよその分布表現でしかなく、正確な分布を書き記すことなど出来ない。このスイッチオフの状態から、スイッチ投入したらどのようなエネルギーの流れが生じるだろうか。回路空間の様子を考えてみよう。

写真299スイッチS2投入 回路導体で囲まれた空間全体が『エネルギー』の流れの過渡状態に成る。回路空間全体がコンデンサとコイルの分布した過渡現象状態を経る。 直ちに定常状態に入り、普通の抵抗の回路になる。

交流回路のスイッチ

交流回路とスイッチ交流電源電圧をスイッチでオン、オフ制御する場合を取上げて考える。正弦波交流電圧に対して一定周期でスイッチを制御するとする。次の記事への橋渡しの意味も込めて、『半導体素子』のスイッチング機能を含んだ動作を取上げた。

上の制御はスイッチをある位相αでオンし、電圧値が零でオフするものとする。しかし負荷が誘導性負荷の場合には、誘導性リアクトルの貯蔵エネルギー分の処理に問題が生じる。即ちスイッチを切って接点が離れても、負荷の保有するエネルギーがある限り負荷を切り離せない。その為スイッチの接点間に火花が発生し、少し回路のオフが遅れる。その遅れ分の角度βを消弧角と言う。

交流回路の空間エネルギー分布 直流電源の場合と異なり、電線路空間のエネルギー分布はその電圧周期に従って常に変動し続ける。その空間のエネルギー変動はほぼ光速度に近い即応性で対応する。スイッチ接点間の電圧も電源電圧とは周期の遅れと値で異なるだろう。

スイッチ機能のまとめ 『オフ』は接点間で『エネルギーギャップ』を支える。『オン』は『エネルギーギャップ』を零とする。

ダイオードの機能 (2016/09/17)

トランジスタのオン・オフ機能と理論の間に (201705/23)

電圧ーその意味と正体ー

電圧とは何か? 電気工学や電気物理に関わる仕事に携わっている人はこんな疑問を抱かないだろう。電圧100ボルトあるいは3ボルトなどと日常用語としてありふれて使っていることだから。常識の言葉だから。こんな常識の科学技術用語を理解できないと言って、その正体をあばこう等と考える事を仕事にするとすればどんな仕事に成るのだろうか。全く経済的な利益を生むどころか、科学技術関係社会に反逆的な伝統破壊の行為と看做される。反発を食う研究である。そんな業務を仕事として受け入れる環境があるのだろうか。科学研究社会は、特に学術研究に属する分野では『客観性』を持って研究を進める事が要求される社会であろう。過去の先人の業績を踏襲してこそ仲間として受け入れられる社会である。それが常識の世界だ。学術研究機関に所属していれば、大いに常識に挑戦する機会もあろうが、最初から所属の無いものには不可能な事であろう。世界で誰も挑戦しない研究、「電圧とは何か?」と問う事も有意義な筈である。学術論文にも成し難い研究ではあるが。自然の本質を明らかにする重要な研究ではある。

総合科学・基礎科学・純粋科学の意義 本質を明らかにすることの意味は、誤ったり誤解した研究や方向性を質す判断基準として、総合的な評価を下すに重要なのである。経済的効果が無いと言うが、間違った高額の投資を避ける意味で経済性は大きい。それが総合科学、基礎科学、純粋科学なのである。科学研究の内容を市民が理解でき、賛同できることで初めて研究費を使う権利が得られるのだと認識すべきである。数式でなく、日常用語で高度な研究内容を説明し納得を得る事が必要になる。そこに、専門家だけの内部了解ではなく、市民社会との関わりが大切になるのだ。その時に科学の基礎概念が誰もが理解でき、疑念の無いもので初めて市民との意思の疎通ができ、健全な科学社会への安全が担保できるのであろう。そこに総合的な広い基礎科学の重要性が狭い専門性を超えて必要になるものと考える。ここでは前の電池電圧と『エネルギーギャップ』を受けて少し電圧の解釈の意味を深めてみようと思っての記事である。

電圧とは何か?電圧とは何か 電圧Eボルトの直流電源がある。銅板と銅線が図のようにつながっている。 

電圧問答電圧問答 

電圧問答 直流電圧源だから、各電圧計の指示値はすぐ分かる。ただ電圧計の繋がる位置が色々だ。電圧計は何を計るかと考えて、その電圧値に成る原因を何に因ると解釈するかを尋ねている。もし『電荷』を原因と考えると、その分布を考えなければならなくなる。さてどう考えるか?こんな問答は禅問答の部に入るようで、科学論の部門では毛嫌いされる問答である。しかし科学理論は論理性を持ってその真価と尊厳を勝ち得ている訳であるから、こんな易しい日常的な質問には朝飯前と答えられる基盤の上に成り立っている筈だ?そこで答を書こうとすれば、学校教育で教えられる教科書の内容から考える事に成ろう。どんな教科書も文科省の『学習指導要領』によって教育内容は決まっており、『電子』あるいは『電荷』による解釈しか許されていないから、その指導要領に従わざるを得ない。そこで『電子』で考えようと試みる。

電子と電圧電子と電圧 回路の一部を取り出して電圧計V1の意味を『電子』に因って考えてみよう。鉛蓄電池や燃料電池の電池機能原理は水素原子の『電子』が陰極端子から外部配線、負荷を流れて陽極に戻り、『エネルギー』供給源としての電池の役割を果たすと専門家の解説に在る。それが負荷への『電流』の電気磁気学理論に基づいた教科書的標準理論である。しかもそれは世界の物理学理論でもある。その時の電気現象の電圧には『プラスの電荷』は電池の外部回路に関与する解釈は無いようだ。すべて『電子』だけで理論的な解釈が成されている。そのような世界標準の電気論に従って、電圧計V1の『電圧』をどのように解釈すべきかを考えてみた。①電荷分布(電子)?と電圧として銅板間にどのような『電荷』分布を描けば良いかと苦心した。『電子』同士は好きではないが、有名な『クーロンの法則』に従えば、お互いが反発しあって、集合するのはいやだ、いやだと纏まらないのではと考えると、『電子』の分布予想も出来ないのでお手上げだ。理論とは不思議なもので、後生大事に守られている『クーロンの法則』があっても、そんな法則などお構いなしに『マイナス電荷』の集団と『プラス電荷』の集団同士が向き合って対峙する構図が理論の伝統的な常識・思想に成っている。しかしこの電池の場合には『プラス電荷』は出る幕が無いのが不思議だ。だから教科書に従って電池電圧を『電荷』で描こうとしたが無理だった。それでも思い直して、マイナス側の銅板に『電子』が分布したとして、電圧計を繋いでみた。それが②電圧計である。電圧計は中味の回路を見れば、単に高抵抗rとコイルlの直列につながっただけの物でしかない。電圧と評価する部分はコイル内に貯蔵されて『エネルギー』を指針の回転に利用しているだけである。特に電圧と言うような感覚的に予想する様なものを計っている訳ではない。陽極側と陰極側の銅板の間に電気回路のrl要素を繋いだ事に成る。もし陰極側の銅板に最初『電子』が集合していて、電圧が掛っていたとする。電圧計を繋ぐ前後で銅板間の電圧にどのような同じ電圧を発生・保持するかの訳を考えられるだろうか。また、図のように電圧計(負荷)を繋いだとしたら、『電子』はどのような力を何によって受けて運動すると考えれば良いだろうか。大まかな概略論でなく、厳密な基礎理論に基づいた合理的で論理的な解釈が求められる。日常用語と基礎的な科学用語での説明なら、誰でもが理解でき納得できると思う。しかしこの『問答』にはなかなか納得できる論理的な解釈が出来ないジレンマに陥るのだ。結論を言えば、『電子』や『電荷』では電池電圧の発生原因を説明できないという事である。宇宙の話や五次元空間の話は話の実体が目の前に無いから高度な数式で論じられると煙に巻かれたような気分でうんともすんとも言えないもどかしさが残る。しかし乾電池や蓄電池の話なら、電磁気学の理論検証には十分分かり易い筈だ。この電池電圧の意味が『電荷』概念では自分が納得出来ないので、『エネルギーギャップ』の電圧発生理由で解釈する様子を示す。

空間のエネルギー分布空間のエネルギー分布 エネルギーにはプラスもマイナスもない。光のエネルギーと同じく、空間に金属導体に因って束縛された状況で分布する。その分布密度を予測して図に描いて示した。その密度分布を実験的に測定する方法を見つけられるかどうかは疑問だ。『電子』の分布を描く場合に似ている結果である。プラス、マイナスと言う金属導体間にそのエネルギーは分布し、マイナスからプラスまでのエネルギー分布密度の線積分がその『電池電圧』となる。エネルギーで観る線路電圧に交流の場合を示したが、直流でも同じ事である。

交流電圧 電圧は直流も交流もその本質は同じである。主に金属導体間に掛かる電気の”何か圧力”のようなものと感覚的に捉えられる。その姿・本性を認識し難い訳は実験的に測定することが出来ない「空間エネルギー」だからである。電気の眞相(2)-電圧とは何かーに述べた。科学技術の電気工学では空間エネルギーなど観測できない物理量であるから、『エネルギー』の利用と言う眼目から、実に優れた計測量として、『電圧』を考えだした訳である。『電圧』と『電流』で電気工学の基礎を創り上げたのだから、その技術的感覚は素晴らしいと先人の業績に感謝しなければならない。交流電圧によって送配電線路が構築され、『エネルギー』利用が可能になった。その交流電圧は発電機と変圧器での発生原理に新たに「磁束」と言う概念を創り上げた事により、理解し易い『電磁誘導則』で誰でもが理解し易くなった事は科学技術の意味を理解する上で大切である。「磁束」で交流電圧を理論付ける技術感覚の意味を理解すべきであろう。さて、科学技術とその基礎概念は自然世界の『真相』と成るかと言う点で改めて考えなければならない歴史的転換点に居ると思う。電気現象の物理学的解釈は自然世界の眞相を捉えるに重要な基本認識と成っている。その自然現象・自然世界を『電圧』、『電荷』、『電流』の科学技術概念で論じようとしたとき、その論理の先には混迷の未来が待ち受けている。同様に『電界』『磁界』も自然世界に実在する『真相』ではなく、科学技術の『エネルギー』利用手段としての便利な構築概念でしかないのだという事を認識することが未来への安全の思考の基盤である。

科学技術と自然世界と教育 先人が築き上げて来た科学技術と自然世界の眞相を混同しないように理解して欲しい。『電荷』など世界には存在しないのだ。今、この事の中に見える複雑な人間意識と科学的競争社会の間に立って、未来への子供達に対する教育を考え、根本から再構築すべき時に立っている。未来への教育問題は教育機関、教育者に課せられた喫緊の課題である。過去を踏襲し、先人の業績を尊重してなどと拘泥している時ではない筈だ。

『電圧』と『エネルギー』その実験的検証 昨年は物理学概念に(『電荷』への)疑念を抱き、旅立って30年程たった時に不思議な実験を手掛けた。これも予測できた訳ではなく、何かに誘われて手掛けたような実験である。変圧器の奇想天外診断で『電圧』の意味を考える切っ掛けを得た。続いて、コイルと電圧とエネルギーおよび天晴れ(コイルと電圧とエネルギー)の実験的検証、そしてまとめとしての電気の眞相(3)-電圧と負荷ーによって『電圧』と『エネルギー』の関係を捉えることが出来たと考える。

天晴れ(コイルと電圧とエネルギー)

自分で言うのも変だけど。我が感性に『天晴れ』と。やっぱり嬉しいもんだ。自分で分からずぐずぐずしている姿を辿って、不図気付いた解消には特別の高揚感を感じる。それにしても、気付くのが遅かった。

コイル3つコイル3

コイルの①が今までの実験で利用したものだ。それに対して②と③のコイルが追加したものだ。みんなポリラップの芯の紙筒に巻いたコイル。電気回路技術者の端くれとして、不可解な実験結果に悩んでいた。その不可解な現象の原因はすべてコイル①の巻線の3本の内の1本1-1’の電線が特別の電線を使っていた事に有った。奇想天外実験の最初の電源電圧印加時にヒューズ切れを起こした。それでコイル絶縁に問題があるかと、コイル1-1’だけ難燃架橋ポリエチレン線1.2mmを使った。結論はその絶縁材料の空間エネルギー分布の高密度化に因る平行電線間のエネルギー流の不平衡が原因であった。架橋ポリエチレンのエネルギー伝送特性によるものであった。電線導体内に電流が流れる訳でないから、エネルギーは金属導体表面の空間を伝送するのであれば、その導体近傍の空間特性・誘電率や透磁率によって影響を受ける。ポリエチレンが導電性を持つという意味(ここで言う導電性と言う用語は誤解を受けそうだ。意味は例えばコンデンサ内の絶縁体がその誘電特性で電気エネルギーを蓄えると言う時の、その電気的なエネルギーの出入りに対して決して絶縁ではないと言う意味で使った。液晶テレビの材料も絶縁体だか導電?体だかどう区別するか?)はこの実験結果にも現れていた。コイルと電圧とエネルギーの実験結果には、鉄心コイルを含め全て架橋ポリエチレン絶縁電線を一本の巻線だけ利用していた事に依る現象が測定結果に示されている。コイル②(30ターンの3本線を別々に分けて巻いた分接巻)、③(32ターンの3本線を揃えた合接巻で、コイル①と同じ巻き方)の場合はすべて、ポリウレタン銅線0.4mmを使った。

実験の意味と結果 現代物理学の最先端研究は、その専門的細分化と実験・計測装置の設備が大掛かりである。然るにここに示す実験内容は、不思議な現象ではあるが、その内容は極めて単純な子供もできる器具のものである。電圧測定だけの結果でしかないので、その実験を行う思い付きがむしろ面白かろうと考える。そこで、疑問と改良実験、その結果の失敗の繰り返しで、結論に辿り着く過程が面白かろうと思う。その過程を含めて実験結果の報告だ。

実験Ⅰ コイル②を新たに巻いて実験した意味。それはコイル①の測定電圧の不平衡な違いが気になったので、コイルを分けて巻いた場合、巻線1-1′ と2-2′ に対する巻線3-3’との間の電圧値にどのような違いが出るかを確認したかった。そこで今までと同じように、巻線1と2端子に電源電圧をかけて見た。その結果が次である。

実験Ⅰ実験Ⅰ

結果評価 この結果にも巻線3との間の電圧値で、離れた結合の少ない巻線1との電圧が大きい。測定電圧値で、一つ注意すべき点がある。それは他の場合にも言える事であるが、電源電圧値は全く調整していないから、配電線路電圧の負荷変動の影響があるので、数ボルトの差は意味がない。この場合は、20Vほどの差があるが、その意味が理解できない。未解決の疑問だ。

(2015/09/26)追記 実験Ⅰの疑問の解決。当然のことであった。電圧を計ると言うことは、導線間の空間エネルギーを計ると同じ事であるから、コイル1と2に電源電圧を掛けたのだから、コイル1と2の間の空間にエネルギーが分布している訳である。従って、コイル1と3の間に電圧計を繋げば、コイル1との間のエネルギー分布を拾う。しかし、コイル2との間には電源によるエネルギー供給空間外であるため、コイル3との間で拾う量は小さくなる。その空間エネルギー検出量の差が20ボルトになったと解釈する。

実験Ⅱの1 実験Ⅰの結果を観て、再び元のコイル①で確認したい事が浮かんだ。電源電圧印加を巻線3に掛けたらどうなるか。その結果だ。

実験Ⅱの1実権ⅱの1

この結果の評価 コイルと電圧とエネルギーの実験結果と比較してみれば、巻線3と巻線2が入れ替わっただけで、巻線1に対する電圧が大きい事は変わりがない。

実験Ⅱの2 電源電圧印加端子を3から3’に切り替えた場合も示す。

実験Ⅱの2実験Ⅱの

(2015/09/26)追記。 実験Ⅱの1と2の結果はコイル1に関係した電圧が大きい。その意味は、最後に書いた実験全体を通した結果評価に述べてある。

実験Ⅱの3(215/08/15) 昨日はいわゆる終戦記念日。また不図気が付いた。コイル①で電源電圧印加端子を2と3としたらどんな結果になるかを調べていなかった。この場合は架橋ポリエチレン絶縁体のエネルギー伝播現象は起こらないだろうと気付いた。測定結果が次である。

実験Ⅱの3実験Ⅱの3

結果評価 巻線2と3はエナメル線と看做せる普通の平衡電線である。巻線空間エネルギー分布に偏りはない事を結果が示したと考える。予測通りと解釈したい。(2015/09/26)追記。僅かだが6Vの差がある。その訳は?実験Ⅰの解釈から見れば、逆に思える。

実験Ⅲの1 実験Ⅰの分接コイル②についても電圧印加を巻線3-3’の場合を確認した。

実験Ⅲの1実験Ⅲの1

実験Ⅲの2

実験Ⅲの2実験Ⅲの2

実験結果の評価 ところどころ測定値の欠落(測定忘れ)があるが特に問題無し。さて、ここまでの実験ⅠからⅢまでの結果を観ると、コイル①の巻線1だけが難燃性架橋ポリエチレン絶縁線で、他はすべてポリウレタン絶縁の銅線である。予想に反して、巻線1だけが全て電圧が大きめに計測される。そこで一つ気掛かりな点が浮かんだ。印加電源電圧の電位(この電位と言う概念は技術用語としての捉え方で、物理的意味は余りないと考えるのだが、配電線路の電圧には柱状変圧器からの二次側で、必ず1線は第二種アースで大地に落ちている。変圧器の故障事故による高電圧6300Vが配電線を通して家庭内に侵入する事による感電事故を防ぐ安全対策としての第二種アースがある。)の影響かと考えて、建物のアルミサッシを基準にして電源電圧を調べた。電源スイッチがコンセント型スイッチで、片側1線のみのスイッチである為かと考えた。しかしスイッチオフ時には、電圧が15Vや24Vで現れたが、スイッチオン時には影響がないように思える。ここで、また解釈できない壁として実験結果が精神的負担を掛けて来た。悩んだ!!

実験Ⅳの1 他に対策が見えなくなって実験結果が教えてくれた。まさかと言うことに気付いた。コイル①の巻線1だけが特別の電線を使っていたと。改めて、ポリエステル銅線3本を使ってもう一つ合接コイルを巻いて確認しようと考えた。それがコイル③である。三本の銅線を交差しないようにきちっと揃えて、巻上げたら32ターンであった。実験結果が鮮やかに出た。

実験Ⅳの1実験ⅳの1

実験Ⅳの2

実験Ⅳの2実験ⅳの2

実験ⅳの結果評価 電圧印加端子1と3および1と2のそれぞれの場合で、電圧印加されない浮遊巻線はそれぞれ2-2’および3-3’で、その巻線に対する測定電圧がほぼ同等の値を示した。この測定結果は今までの測定電圧値で初めての結果である。

実験全体を通した結果評価 最大の発見的事実として挙げたい点がある。合接コイル①の巻線1-1’に難燃性架橋ポリエチレン絶縁線を使った事によってコイルの電線路特性に『エネルギー流』の空間的ひずみを生むと言う現象の発見である。この事の意味は少し複雑でもあるから別に改めて詳しく説明をする(2017/12/12追記。電線路のエネルギー伝送の意味は電線導体内を伝送されるのでなく、その導体で挟まれた空間内を伝送される。絶縁被覆の銅線なら、エネルギーはその絶縁被覆内(コンデンサと同じ意味)で密度が高くなるため、その誘電特性に因って伝送速度などが決まる。光の屈折と似た現象で、その空間のエネルギー密度がその絶縁媒体の影響を受けるから電線導体の絶縁体で電気エネルギーの伝送特性が支配されるという事になる)。従来の電気回路論では説明がつかない筈だ。基本的認識は『電流は流れず』を理解する事である。もともと実験に供したコイルは電気回路としての実用的価値は全く無いものである。こんなコイルを巻くこと自体が電気技術者の発想には無い。正しく奇想天外な発想から生まれた偶然の発見かもしれない。不立文字の哲学的発想、東洋的『無』に通じるかも知れない。

平行電線路の珍現象(この項は削除2017/12/12)

電圧計が計るもの

科学技術を支える理論に電気理論がある。しかしその技術概念は物理的な意味を追究すれば、極めて曖昧なものである。技術と物理学理論との関係を明らかにすることが、明日への学問に必要であると考える。今回は『電圧』と言う科学技術の概念を、電圧計が何を計っているかについて考えることによって、少しでも明らかに出来たらと思う。電流と電圧の正体で述べた事であるが、少し補足の意味で追加する。電圧と回路

無負荷時の回路を示す。電圧計の内部は電気回路である。直流の電圧計は可動コイル型計器である。電流計が導線内を流れる『電流』等を計っていないと同じく、電圧計も『電圧』など計ってはいないのだ。電圧計にも図のように『電流』が流れているように表現する。電流 iv の値で電圧計の表示値が決まる。

可動コイル型電圧計とエネルギー流電圧計も電流計も内部の電気的回路構成は全く同じものである。磁石の中に回転する可動コイルが支持されている。その軸に制動バネ(コイルの回転を妨げるバネ)と電圧値の表示用指針が固定されている。軸受で、軸がコイルと共に回転する。その回転力がトルクτである。コイルに電流が流れるという意味は、コイル導体の周辺にエネルギーが貯蔵されることを表していて、そのエネルギー量を表現していると解釈すれば良い。アンペアーの法則やフレミングの法則で電気理論では解説されるが、本質は単にエネルギーの自然現象である。それを電磁エネルギーと言うインダクタンスLv内の貯蔵量として理論で説明されているのである。そのエネルギーの状況をどのように認識するかが重要なのである。磁石内の空間ギャップには磁石自身が造るエネルギー流が存在する。そこに可動コイルの貯蔵エネルギーが追加されれば、エネルギー流間での相互干渉が起こる。図にギャップエネルギー流とした。そのエネルギー流間の相互作用が力の『近接作用』と言うものである。水の流れで、互いに接する間の水流は相互作用をし合う訳である。それと少しも変わりの無い現象である。水の流れは目に見える。しかし、電磁エネルギー流(熱や光のエネルギーの流れ)は目に見えない。目に見えなくても、自然の現象は同じであるという極めて単純性がその本質なのである。人間が自然を解釈するのに、勝手に複雑に考えているだけなのである。ただ、空間を流れるエネルギー流の間の相互近接作用力をどのように数式で表現すれば良いかは、実験的に評価できないままである。電圧計指示値

電圧計が指示する計測量の意味を最初に挙げた無負荷回路との関係で、数式で示せば、ファイルのようになろう。

(2015/06/23)追記。線路電圧の新しい概念解釈を示しておこう。エネルギーで観る線路電圧 。