タグ別アーカイブ: 電圧時間積分

物理学理論と磁束

はじめに 物理学あるいは物理学理論は、自然の深い仕組みを解き明かす特別の論理的思考能力を持った専門家集団が唱える真理と考えるだろう。それは科学技術の更にその奥に隠れている深遠な自然世界を解き明かし、科学技術の理論的拠り所としての学問分野が物理学と思うだろう。その自然世界の基本の描像は電子の周回する原子構造論と電子の流れる電線路電流、更にその電流によって定義される磁束などが電磁界の論拠としての物理学構成概念である。それが世界の物理学であろう。しかしそんなに多様な基本構成物理量が世界の根源であるとは理解できないし、信じられない。最近、磁気概念や磁束の物理的意味を解剖してみた。それは物理学でなく、電気技術の知見をひも解くことによって様々な科学技術用語の本質が明らかに成って来た。物理学が科学技術の技術概念を深く追究してこそ本当の自然世界が明らかになることを認識すべきという結論になる。電荷や磁束の空間像を示す事が、それらが自然世界に実在するかどうかを判断するに欠かせない筈だ。その空間像が物理学に問われている。世界は抽象ではなく具象世界だ。磁束について、アメリカのNASA宇宙技術開発の成果の一つと聞いているロイヤーインバータ回路の原理から具体的な例で、電圧が一義的なその発生起因であることを示し、アンペアの法則による電子流で磁束が発生するという誤解を解いて欲しい。
磁束の物理概念
マグネットは何処にでもある日常生活に密接な磁気製品でもある。物理学を教える先生方は教科書の中味である物理量などすべて明確に捉え切っている筈だと考えたい。しかし現実は、変圧器の磁束について励磁電流が発生原因であると殆どの方が考えているように思う。それは間違っている。変圧器や電磁コイルの物理現象を解きほぐせば、少なくとも励磁電流がなければ磁束が生じないということは無いのであり、磁束はそのコイル端子に印加する電圧によって一義的に決まってしまうのである。その意味を物理学では馴染みがないであろうが、インバータ回路を使って具体的に示して解説したい。それはファラディーの法則の科学技術論の理解の為でもある。磁束という物理量が、実際に実在するという解説ではないから。自然世界の本質は磁束さえ、エネルギー流に纏まるのであるから。しかし少なくとも、まず一段階としての誤解を解いて欲しいのだ。

磁束と電圧 右の具体的回路例を基に説明したい。AとBの二組のトランジスタスイッチを直流電源と組み合わせて、変圧器に繋ぐ。AのスイッチとBのスイッチを交互に半周期ごとに断続的にオンする。その時磁束は図のように階段状に変化する。その磁束は励磁電流が流れようと流れまいと関係なく、電圧値と時間だけ(即ち電圧時間積分)で決まる。この解釈は変圧器だけでなく、一般のコイルにも当てはまるのである。コイル端子に印加される電圧値と時間で磁束は決まると考えるべきである。理論の統一という事の大切さは、広く基礎概念によって無駄な思考を省き、分かり易くするということにある。図のようなスイッチングモードでは、半サイクル(T/2)の内4/7の間電圧Eが印加されることになる。その間に磁束は最大磁束の2倍 2Φm の増加をすると考えられる。ファラディーの法則は E=n(dφ/dt) および φ=∫(E/n)dt と表される。その法則から、電圧Eが時間T/2(8/14)=2T/7の間印加されて、磁束が 2Φm だけ増加するとなれば、次式が成り立つ。

2Φm=E/n×(2T/7)

従って、  E=7n(1/T)Φm [V=(J/F)^1/2^]

が得られる。このように、印加電圧とその印加時間だけで磁束は決まると考えるべきだ。その磁束発生原因として、励磁電流などの複雑な解釈概念を介入させるべきではない。この磁束は、すべてのコイルや電気回路全般に言えることである。その意味は電線内の電子流という『電流』概念の物理的解釈の論理性が問われているということである。『磁束』という物理量も『電流』と同じく、その物理量の実在性が物理学理論として検証されなければならない筈だ。その具体的な空間像が。

むすび

電流と磁気の概念矛盾について述べなければならない。それは自然世界を理解するに欠かせない思考作務である。電気論では電線内を電子が流れるという。何故電子(電荷と質量)が金属導体内を通ると、金属導体の外に磁束が発生するのか。電子は磁気を持つと定義されているのか。電子のスピンでは磁束の発生の解説にはならない筈だ。その電子と磁束の関係の疑問に答えるのが物理学である。電流という科学技術概念の正体を明らかにしてこそ物理学である。物理学は科学技術現象を詳細に検証すべき学問分野の筈だから。それは子供達に教えるという責任が有ることに通じると思う。数式で説明する事では済まない基本が有る筈だ。身に背負い切れない重力を感じながらも。

 

変圧器の技術と物理

はじめに
ファラディーの法則が変圧器と言う電気設備の動作原理としての基礎となっている。それは技術理論であると同時に物理学理論でもある。電圧、電流および磁束という概念によって目に見えない電気現象を解釈し理解できれば、それで変圧器に関しては立派に電気技術者となる。決して磁束がどのような矛盾を抱えているかなどを問うことがなくても。200年以上に亘る歴史を踏まえて、ファラディーの法則が変圧器の自然現象の全てを捉えた真理と思われてきた。正弦波交流電圧実効値V[v]と変圧器鉄心最大磁束値Φm[Wb]の間には V=4.44fnΦm (ただし、fは周波数、nはコイル巻数) なる関係が厳密に成り立ち、それだけを理解していれば十分である。ならば磁束という概念は磁界の世界を支配する自然の実在量であると考えても当然かもしれない。しかしながら、磁束はあくまでも変圧器の動作を解釈するために導入した技術的評価概念量でしかないのである。自然の世界に磁束は電荷と同じく存在しないのだ。ここでは鉄心中に何が起きているかを、世界に実在する『エネルギー』一つの物理量からの解釈を示す冒険の旅に出かけよう。それは常識外れの異次元の世界かもしれない。

変圧器の技術理論
磁束量が基礎となる。鉄心に巻いた二つのコイルで変圧器の基本構造が出来上がる。鉄心中に磁束φが発生し、その時の巻数nのコイルには電圧 v = n dφ/dt が誘導される。だから磁束φが変圧器動作原理の基本概念になっている。磁束φがあるから変圧器の動作理論が成り立つ。その図表現や構造も分かり易い。巻数n1と n2で巻数比a=n1/n2を使えば、1次、2次の電圧、電流の関係が簡単に決まる。①の回路図のように表現出来る。②に構造を示す。鉄心に2次コイルを巻き、その外側に1次コイルが巻かれる。電源側の1次コイルが2次コイルを巻き込む構造に構成される。鉄心中には電源電圧の時間積分値で磁束が発生し、印加電圧波形とその時間に因って磁束値が決まる。磁束が励磁電流で発生するという解釈は、変圧器の動作の基本原理を複雑化し、分かり難くする無駄な解釈である。ものの考え方を統合する習慣の機会さえ失う。ファラディーの法則は v=n dφ/dt [v]である。φ=(1/n)∫vdtと書き換えられるから、電圧の時間積分以外磁束を表現できない筈だ。励磁電流など意味が無いのだ。もし磁束を励磁電流で評価しようとすれば、同じ変圧器で、電源電圧波形を変えたとしたら、どのようにその磁束に対応する電流を表せるというのか。電圧がどのような波形であろうと、その磁束波形は電圧値と波形から決まっているのである。全く励磁電流など考える必要が無いのだ。鉄心の性能が良ければ励磁電流など流れなくて良いのだ。だから教科書の励磁電流に因って磁束が生じるという解釈が採られているとすれば、その教科書はファラディーの法則の式の意味を捉え切れていないからだと考えざるを得ない。おそらく教科書検定基準がそのような励磁電流を要求しているのだろう。教科書検定基準がそのように書くように強制していることなのかも知れない。変圧器動作原理は磁束によってその技術理論は構築されている。しかし、その磁束は現実にはこの世界に存在するものではないのだ。そのことは電気技術論でなく、変圧器の物理理論として解釈を構築しなければならない事になる。それが次の問題になる。

変圧器の物理現象
空間エネルギーの挙動をどう認識するかが変圧器の物理現象の要である。磁束の空間像を描けますか。電荷の空間像を描けますか。物理量は空間に実在している筈である。その科学的論理に矛盾がなければ、本当に納得して捉えているならば、素直にその姿を描ける筈である。数式でない日常用語で語れなければならない筈だ。変圧器は鉄心にコイルを巻き付けて、全く繋がっていない二つのコイルの間で『エネルギー』が伝送できる機能の電気設備である。空間に存在する『エネルギー』を先ず認識して頂くことがここから述べる旅の理屈に必要である。コンデンサに蓄えられたエネルギーの姿を。コイルの中のエネルギーの姿を。常識外れの夢の世界に、本当の意味を探す旅であるから。しかし不思議なことに、div B = 0 であることを知っていながら、即ち磁束密度ベクトルB=φ/ [Wb] の発散が0であるということを。その意味は日常用語で表現すれば、磁束を→での表現は使えないという意味なのだ。磁束の発生源が無いという意味を表現しているのだから磁束が増加する→(矢印)は使えない理屈の筈だ。これは磁場空間に対する現在の物理学理論の解釈である。何故その意味を統合して捉えないのかが不思議なのだ。この磁束概念の不明確な曖昧さがそのまま放置されていては、理科教育特に物理学の論理的な考え方を育てるという意味が観えないのだ。自然の真理と科学技術の関係を明らかにするのが理学の目的と理解する。理学では、『エネルギー』を根本に据えた議論が重要な点になる筈だ。図2として空心コイルと鉄心を示した。変圧器は二つのコイルであるが、一つのコイルと鉄心の関係を論議すればそれで変圧器の物理的な(現在の教科書の物理学的という事ではなく、本当の自然の)現象の意味は分かる筈である。空心コイルはインダクタンス値もそれほど大きくない。そのコイルの中にカットコアの鉄心を組み込むと、とたんに変圧器の機能要素となる。インダクタンス値がほぼ無限大になる。いわゆる技術的な意味での磁束飽和という状態(電源短絡状態)にならなければ、殆ど電流は流れない筈だ。それは変圧器の2次巻線側に負荷が無い無負荷状態での電源側の電圧、電流の関係の話である。いわゆる磁束飽和にならない範囲での正常動作時の、その時に鉄心がどんな物理的機能を発揮するのかがここでの論題になる。電源からコイルに掛るのは電圧である。その電圧の意味は前の記事電気物理(コイルの電圧)で述べた。その電気物理という言葉は現在の物理学教科書の技術論的な意味とは違う。ここで論じる内容は教科書の内容より深く踏み込んだものであることを理解して頂きたい。磁束概念に代わる新たな解釈を求めた論議である。その上で進める。コイルにエネルギーが入射し、端子間にエネルギーギャップがある限りは正常なコイル機能を発揮すると。空心では無理であったのが、鉄心が挿入された時そのエネルギー入射が時間的に長く継続できるということである。コイル間に分布する空間エネルギーが何らかの形で鉄心の中に入り続けると考えざるを得ない。図3.コイルのエネルギーでは、電線が巻かれた部分のある状態を表した。一つのコイルとも見做せる。電気回路は金属導体、空気あるいは誘電体および磁性体など空間を規定する材料によって、その構造が制限された空間規定の形態によって構成されたものである。そこに電圧というエネルギー空間規定源である電源が支配するエネルギー場を作る訳だ。電源の負側がエネルギー供給源となって、電線路全体のエネルギー分布を光速度の速さで規定し、支配する。電線をコイル状に巻けば、その電線のコイル空間にも電圧に支配されるエネルギーや負荷に流れるエネルギー流などの影響が表れる。交流電源の半周期ごとに変わるエネルギー分布となる。インダクタンスというコイル空間もその電源の電圧というエネルギー分布の支配に従う。図2のコイルに鉄心が挿入された回路空間も同じくそのエネルギー分布に対するエネルギーの受け入れ対応が継続する限り、電源電圧をコイル端子で保持できるのである。それは鉄心がそのコイル空間にあることによってエネルギーを吸収する機能が高まったからである。(∫vdt)^2^ [HJ] のように電圧時間積分の2乗のエネルギー量が関係しているのだ。変圧器巻線のインダクタンスは殆ど無限大とも見られる。そのインダクタンスでエネルギー量に関係する電圧時間積分の2乗を除すれば、変圧器の電圧保持エネルギー量が得られ、それはとても小さな値で賄えるのだと理解できよう。そのエネルギー量に関わる量を変圧器技術概念では磁束として捉えている訳である。

図4.鉄心と軸性エネルギー流  図にはコイルの切断面の図とその平面図を描いた。鉄心を取り巻くコイル導体の間の空間はエネルギー流に満たされている。そのエネルギーが鉄心の中に流れ込むと考えざるを得ない。ここからの鉄心内のエネルギー貯蔵機能についての解釈は科学論と言える検証できる世界の話からかけ離れた別世界の話になる。鉄心の中のエネルギーの流れる様子など観測出来る訳が無い。導線の銅Cuと鉄心の鉄Feの同じ金属でありながらのその特性の差が何故生まれるかの物理的原理も分からない。しかし、マグネットに観られる力の意味を心のエネルギー感覚(磁気の軸性エネルギー流感覚)に照らし合わせたとき、そこにはエネルギーの回転流即ち軸性エネルギー流しか共感出来ないので、その軸性エネルギー流を鉄心のエネルギー貯蔵機能の原因として考えた。全く証明も出来ないお話で、科学論とは成らないかもしれない?それは原子の共有結合論否定の話と同じことであるが。この軸性エネルギー流は鉄心内の磁極即ちNとSという意味も消えてしまうことになりそうだ。その意味は隣同士の磁区間でのエネルギー流は流れが逆転するかと想像されるから。それはマグネットを近付けると、そのギャップ空間の砂鉄模様がマグネット周辺部に移動して、マグネット中心部は磁気空間という状況が無くなることを確認しているからである。同一マグネットを多数接合したとき接合部の砂鉄模様がどのようになるかの実験をしてみたい。科研の申請をするまでもなく出来る基礎研究だ。教室で授業をするには、本当に多くの分からない原理がある筈だが、教科書通りにその教育手法を伝達するだけでは、子供達も楽しくないだろう。

1ターンコイル電圧eu[v]  ファラディーの法則も物理現象として見れば、それは遠隔作用の法則である。変圧器巻線コイルに誘起する電圧の原因の磁束は鉄心中にあるから、鉄心から離れたコイルに作用するという遠隔作用である。アンペアの法則も電線電流と空間磁気の関係だから遠隔作用の法則である。変圧器の1次と2次巻線の間で伝送される電気エネルギーも磁束による解釈であれば、遠隔作用の法則である。しかし、空間にエネルギーが実在するとの概念を基本に据えれば、変圧器のエネルギー伝送も近接作用で捉えられる。コイル巻線の周りには同じようなエネルギー分布空間が存在し、そのコイル1ターン当たりのエネルギー分布量が1ターンコイル電圧eu[v]になるとする。巻線の1次、2次に関係なく、1ターンコイル電圧が同じであれば、その電線路の算術和として各巻線の端子には巻数に応じた電圧が現れる。n1×eu=v1 n2×eu=v2として。これは空間エネルギー分布による近接作用の考え方である。以前実験した変圧器の奇想天外診断の話の続きとしての結論でもある。

(遠隔作用と近接作用について) 物理法則では力が遠隔作用力である場合が多い。代表例が万有引力の法則である。それは質量の間に直接接触する物がなく離れた質点間に生じるという力である。それに対して近接作用力とは、具体的な例を挙げれば、水の流れで二つの流れが合流する時その流れの接触する水同士が力を及ぼし合い、どのような流れになるかを考えればそれが一つの例となろう。エネルギー流を考えれば、それは近接作用になる。風も空気の近接作用となろう。太陽系も全体はエネルギーの回転流として統一されて考えられるべきとは思うが。そのような解釈は質量に関わらない空間エネルギーの実在性を余り認識していない物理学理論には無いかもしれない。

むすび
空間エネルギーは実在しているが、その物理量を測定できない。そこに物理学理論の実験的検証を前提とした理論構築に限界があるのではないかと思う。電気技術理論の中の矛盾をどのように読み解くかに掛り、それは哲学ともなろう。ここで特に指摘したかった点は、変圧器の磁束が少なくとも励磁電流で発生するという考え方だけはやめて欲しい点である。この点は昔のことであるが、長岡工業高等専門学校で助教授の申請に研究・教育業績として3点の論点を書いた。その一つが、ロイヤーインバータによる研究成果としての点で、変圧器磁束が励磁電流で発生するという解釈は間違っていると指摘した。それは教科書検定基準を否定したことになったのかもしれない。

誘導エネルギーに観る技術と物理

はじめに
電気回路現象を理解するにはその回路内でのエネルギーの振る舞いを感覚的に捉えることが大切である。この記事もロイヤーのインバターの記事の準備として書いている。誘導電動機の運転などでは、その誘導性のエネルギー処理の問題を理解して置かなければならない。インバーターは直流電源を交流電圧波形に変換する技術であり、変圧器と誘導負荷のエネルギーの物理的意味を、電気技術概念の更に深い処の意味で捉えて置きたいと思った。基本的な方形波電圧波形と純誘導負荷のエネルギーの特質を捉えて置く必要があるからである。

単相インバーターと基本動作
最も簡単な基本回路を取り上げ、その負荷が純誘導負荷、リアクトルだけの場合についてまとめておく。物理量のエネルギーをどのように認識しているかが理科教育特に物理学において極めて重要に思える。誘導エネルギーと言う用語は一般的ではないが、コイルに蓄えられるエネルギーの技術的表現である。空心コイルでなく、鉄心に巻いたコイルのエネルギー量が大きく、その電気回路動作に強い影響を及ぼす。鉄心も含めて、コイルの中の空間に蓄えられる貯蔵エネルギーをここでは誘導エネルギーと言う。正弦波交流電圧より直流電圧の一定値を切り替えた方形波電圧波形の方が、そのエネルギーの意味を感覚的に捉え易いだろうと思う。技術的な電流や電圧の意味とエネルギーの関係について、方形波交流電圧源によって考える中身が明確になるだろう。筆者自身の経験で、初めて電気の回路動作を知ったのが方形波電圧源に関わったからである。正弦波電圧では意識しないものが観えて来るからである。

方形波電圧と誘導負荷電流 上の図のように、トランジスタとダイオードを逆向きに繋いだ一対で一つのスイッチを構成する。それを4個使って、負荷Lを電源につなげばトランジスタのオン、オフで方形波電圧が得られる。この方形波電圧で初めて、コイルの電流はどのようになるかを知ることが出来る。コイルの電圧voはLと電流ioの時間微分の積で得られることは知っていても、電流ioが電圧の時間積分となることは意識していない。コイルの電圧時間積分は磁束になる。磁束[Wb]をL[H]で割れば電流[A]になる。このような計算は科学技術理論であり、物理理論(現在の物理学は科学技術理論である)ではない。

科学技術理論と物理論あるいは自然論 科学技術論は電圧、電流などの計測量に基づいて理論を組立てたものである。当然現代物理学理論もその同じ概念に基づいて組み立てられているから自然論とは異なる。自然は人間が創り上げた自然観察手法ほど複雑な原則には無い。磁束も電荷も無い。原子構造もすべての素粒子と考えるものもたった一つの『エネルギー』の世界像である。磁束、インダクタンスおよび電流の単位間で、磁束[Wb]=インダクタンス[H]×電流[A] が何故成り立つのか?自然感覚としてその意味を捉え切れるか。せめて、磁束[(HJ)^1/2^]=インダクタンス[H]×電流[(J/H)^1/2^] なら、次元解析も容易であろう。如何に世界は『エネルギー』が根源を成しているか。エネルギーを論じない物理学は自然を論じているとは言えない。まだ、科学技術論からの要請で取り入れられた空間概念の空間容量ファラッド[F]と誘導容量ヘンリー[H]の時空論の曖昧性は残されたままのように思う。それは哲学的な思考によって解決されるべきものと思う。電流も電圧もそれらがエネルギーと関係付けて捉えられるには、それぞれ2乗によって初めて観えて来る筈だ。もう一つ触れておこう。トランジスタのnpn積層構造でも、ダイオードで表記すれば、ベース端子に対してエミッタもコレクタもダイオードの背向した構造体の筈である。コレクタ側からベースへ電流が流れないダイオードの構造の筈である。何故か不思議にもダイオードの逆向きの電流を制御していることになる。これも実際の製造現場では、単純なnpn積層構造ではない事が分かっているのだろう。考えても単純な頭では理解できない。これも何とも言えない不思議な科学技術論である。トランジスタにはエミッタに電流の方向が示されているが、量子力学論では電流ではなく、逆向きの電子の流れで論じられる。何故電子がコレクタ側に流れるかの明快な解釈は見えない。何しろダイオードの逆向きであるから。それも質量でもなく電荷でもないエネルギーの流れとして捉えなければ真の物理学にはならない筈だ。この辺に対する過去の悩み論を記した記事謎(p n結合は何故エネルギーギャップ空間か)がある。標題に技術と物理としたので少し脇道に逸れてみた。

誘導エネルギーの回生 誘導負荷エネルギーはその処理を的確にしないと、スイッチング素子が破損する。貯蔵されたエネルギーは回路から突然切り離そうとすれば、無限大のエネルギー放射源となり、回路内で炸裂する。だからと言ってそのエネルギー量が多いとは限らない。量は少なくても、そのエネルギーの流れを瞬時に止めることはできない。無理に止めようとすれば火花を放ってエネルギーを放射する。そのエネルギー感覚が電気回路解釈における筆者の感覚の基になっている。コンデンサのエネルギーにはそのような凶暴性を持った回路への危険はない。コンデンサの貯蔵エネルギーは簡単に回路から切り離せる。半導体回路のその誘導エネルギー処理の優れた機能に感心させられた。

リアクトルエネルギーの貯蔵と回生 ここでも技術論である。本来の電圧は電位が高い方がエネルギーの分布が少ないのである。負側がエネルギー源である。然し技術論では如何にも電圧の高い電位がエネルギー供給側のように解釈される。だから電流が流れて、負荷にエネルギーを供給すると理解する。本当は逆なのであるが、如何に科学技術論で頭が飼いならされたかは、電流と電圧の意識が手っ取り早い理解に結びつくかを思い知らされる。実に電圧、電流の技術概念が使いなれると便利であることか。しかしその物理的根本原理を明らかにしようとすれば、並大抵のことで解き明かせるものではない。だから電流が電線導体の中を電子が逆向きに流れる現象だなどと、実しやかなウソで誤魔化す事になる。質量の無い電子は定義されていない。電線の中を質量を移動させるにはどのような力が必要かは知っている筈だ。運動力学論で質量は電界では動かない。だから電荷と電界の関係で力を想定する。一般導線の中に電界をどのように想定できるか厳密に論理を展開出来るか考えてみれば分かろうと思う。無理なのである。それでも巷の電気解説論では堂々と電子が電線内を移動すると解説されている。しかし、だからと言って電流、電圧と言う概念を不要と言って切り捨てる訳にはいかないのだ。これ程実用的な便利な技術概念も無いから。その物理的実像を明確に捉えることは本当の自然の深い真髄を理解する上で大切な事でもある。それはトランジスタの内部あるいは近傍空間をどのようにエネルギーが流れるかを極めることに繋がる話である。技術論と自然の眞髄はどこかで明確に論理的に繋がる筈であるから。エネルギーの回生については何も述べずに来てしまった。一定周期でのスイッチングで、定常状態になった場合の負荷電流ioは三角形状に変化する。その各状態でコイル内にエネルギーが貯蔵される区間と放射(それが電源にエネルギーを回生)する区間とに分かれる。エネルギーの流れと電流値とは同じくはないが、コイルのエネルギーを電流で捉えるのが分かり易いという実に慣れという常識習慣の恐ろしさも感じながらの論理に従って理解する。本当のことは、エネルギーは電流の2乗で捉えられる筈だ。

半導体スイッチ回路をダイオードとスイッチSで書き換えてみた。二つのスイッチSを同時にx 側かy 側に投入すれば、電圧は方形波となる。スイッチの切り替えごとに打点のダイオードが電流の帰還回路を形成し、エネルギーの電源回生動作となる。なおコイルのエネルギーは電流の2乗だから放物線状に変化する。

むすび 電圧、電流と言う技術概念が如何に便利であるかは慣れるに従って益々離れがたい価値を意識する。しかし、自然にはそんな概念は無く人が創りだした技術概念でしかないのだ。実に不思議なことである。こんな事を書くことが社会的な混乱を来たす元になるようで実に気が重い事でもある。社会的組織の中では許されない論議になるかも知れないことから、孤独の世界を歩くことに成ったとも考えられる。過去の電気技術の仲間や工業高校時代の仲間とも全くの繋がりのない世界での思考の論考である。5,6年前に住所録も消えて無くなっていた。日本物理学会での発表も所属欄が書けない無様で今は止めた。学術に関する処に参画するには所属欄の記載がなければ、参画資格が無いようだ。時どき昔のことの闇の声が聞こえる。竹下内閣の『約束』が有ると。地方創生資金配分の関係かとも思うが、何の『約束』かは知らない。

今回の記事で、単相インバーター回路を取上げたが、電流が電気エネルギーの流れを示していると電気技術者ならそう理解する。しかし直流電源のエネルギー放射・伝送は実は負側のマイナス側から送られるのだ。だからトランジスタのスイッチングによるエネルギー伝送機能も負荷に印加する電圧のマイナス側がエネルギー高密度空間の基になっているのだ。大学の電気工学・電子工学の教育上の『参照基準』はその辺に照準を合わせるべきと所属の無い身ながら恥ずかしさを忍んで提言する。残念ながら教科書が間違いあるいは矛盾に気付かない内容を広めているのだ。理論がもっと実学・技術の学びの上に基づくべきだ。何々の法則が矛盾に耐えない筈だ。

政府機関なのかどうかは知らないが、裏で何か決めているようで、実に気味の悪い精神的ストレスの毎日である。正に人権侵害の連続だ。人の繋がりのない断絶した過去の上の浦島退屈論ではあるが。

 

電気物理(電圧時間積分とエネルギー)

はじめに
物理学の中で電気現象を取り扱う科目は電気磁気学になろう。その電気磁気学の中味を確認すると、電気工学の内容と殆ど変りはない。電圧と電流がその電気回路現象の解釈の基本概念となっている。微視的な現象を論じる量子力学などは原子・分子構造やバンド理論の抽象的な理論が主体となって、少し電気磁気学と言う分野からはかけ離れてもいる。しかし、電界・磁界と言う電磁場とその中の電子の振る舞いと言う意味で見れば、電気科学技術の基本理論がそのまま基礎概念として電気物理の基本になっているように思える。専門用語には、簡単に理解できないものが多くある。π電子等と言われると、電子の『電荷』の実像さえ理解できない処に、πとは何じゃ?と狐に抓まれた気分になる。磁界と言えば『磁束』で解釈される。磁場空間に磁束が通っていると言う科学の常識概念も、教育の場ではアンペアの法則に因る電流概念との関係で理論構築されている。電流原器の定義からもアンペアの法則が電気現象の物理的真理であるかの如く威厳をもって説かれる。一方ファラディーの法則も電磁誘導現象の解釈の基本を成している。電圧と磁束と時間の関係で電気現象の理解に欠かせない法則となっている。一般に電線路周辺空間にも磁場があり、その空間にも磁束が関係していると看做すであろう。磁束はアンペアの法則の電流によって発生すると解釈すべきか、あるいはファラディーの法則に因る『電圧時間積分』で発生すると解釈するべきなのか悩ましい意味を含んでいる。『磁束』と言う空間に実在するとは理解仕兼ねる概念が、科学技術の解釈に有用なものとして長く理科教育によって基礎共通科学常識となっている。『電荷』と同じく『磁束』と言う物理概念が如何なる空間的実在性を持っているかを明確に示す事が電気物理の命題であると考える。具体像として認識できない抽象性ではこれからの科学の社会的理解が得られないと危惧せざるを得ない。電気物理はそれらの基礎概念を明確にする事から取り組まなければならない筈だ。今回は拙い電気回路現象の知り得る範囲から、電圧時間積分と言う電気工学の考え方で、『磁束』と言う意味を取上げて電気コイル周りのエネルギーを考えてみたい。電気技術ではリアクトルと言い、理論ではコイルと言う電気エネルギーの空間貯蔵回路要素の話になる。電圧時間積分と言う技術用語を初めて知ったのが、ロイヤーインバーターの不思議な電気回路現象であった。それ以降磁束はアンペアと言う電流では捉えるべきでないと確信してしまった。もう50年も前のことである。現在はその延長として『電流は流れず』と言うところに居る。とても金属導体中を流れる『負の電荷』の逆流等と言う物理概念が電流だなどと言ってすまし込んでいる訳にはいかないのだ。この記事を書く意味は、理学と言う理論に偏り過ぎた意味を科学技術と言う現実的な応用の中に隠れた真実を見直す事によって理解して欲しいとの願いからであった。教育の中に間違った真理らしき内容が多く含まれている現実を修正しなければならないと思った。ロイヤーインバーターで洗濯機用の単相誘導電動機を運転した頃の『電圧時間積分』の意味を磁束との関係で取上げようと準備しながら、その前にコイルの基本的意味を別に解説したいと考えてのことである。理学と技術の意味を考える例題として有用と思ったから。

コイルと電圧時間積分

 電気回路にコイルが含まれると、そのコイルはエネルギーを貯蔵する働きでその機能を特徴付けて解釈される。このような電気現象のエネルギーに因る捉え方が電気物理として特に考慮して欲しい点だ。コイルの中の空間にエネルギーが実在すると言う感覚的認識が必要なのだ。二分の一にインダクタンスと電流の2乗の積の式で覚える数学的な電気知識でなく、コイルの電気導体で囲まれた空間内にある『エネルギー』の空間物理量を認識して欲しい。コイルに掛る電圧とは何か?その電圧がエネルギーとどのような関係にあるかをこの記事を書きながら、考えてみたい。ただ電圧と電流で回路を解析するだけでは、それは電気技術論でしかなく、電気物理と言う自然現象の奥深さを知る自然観には程遠いと言う意味を理解して欲しい。電圧も電流も電気技術解釈用の技術概念でしかないと言うことを。然し、その電圧、電流と言う科学技術概念が如何に実用性で優れたものであるかを知る為にも、電気回路現象の真の姿を理解して初めて可能になることを知らなければならない。電線路で囲まれた空間に磁界とか、電界とか理論付をする意味を考えれば、その空間に何かがあるからそのように捉えるのだと言う意味位は察知出来よう。電線路導体で囲まれた空間に『エネルギー』が存在し、また流れているからなのである。その『エネルギー』は光速度と言う途轍もない速度で空間のエネルギー分布の欠損が生じれば補う。実験的にそのエネルギーの流れを計測など出来る筈もない。その『エネルギー』を科学技術概念の電圧と電流と言う計測量で捉えて、実用的理論に構築した意味が如何に偉大であるかを知らなければならない。しかし電線の金属導体内を電子や電荷が流れている訳ではない事は自然現象の真理として理解することと科学技術概念の意味とは異なることも知らなければならない。電圧時間積分についてコイルの端子電圧vとした時、積分 ∫vdt [Wb] は磁束の意味になる。ファラディーの法則の積分形である。このコイルに印加される電圧の時間の長さが何故磁束になるのか。コイルに掛る電圧とはどんな物理的意味を持っているのか。それらの疑問を解くには、すべてエネルギーとの関係で明らかにしなければならない問題だ。しかし、磁束もその次元は[(HJ)^1/2^](単位換算表を下に示す。)、電圧の次元も[(J/F)^1/2^]とエネルギーの単位ジュール[J]とは異なる。電気技術単位もエネルギーのある観方の解釈概念で有れば、最終的にはエネルギーとの関係を明らかにして、理解する必要があろう。その事をコイルのエネルギー貯蔵機能と言う点に的を絞って考えたい。ここで、別に電気物理(コイルの電圧)として先に纏めて置くことにした。追記。前に記した記事:LとCと空間エネルギー (2017/08/02) も参考になろう。

考察回路2例 電源は直流電圧とする。抵抗とインダクタンスの並列回路、回路(1)と直列回路、回路(2)の二つの回路例を取上げて、そのコイルLの動作機能を考えてみよう。電源電圧を直流としたのは交流電圧よりも電圧値が一定であることから、電気現象の意味を理解し易いだろうとの事で選んだ。コイルに直流電圧を掛けることは一般的には考えられない事例であろう。回路例(1)ではもろにコイルに直流電圧を掛けることになるから結果的には危険な電源短絡事故となる。一応保護ヒューズを電源に入れて配慮した。

空間の電気量 物理学では時空論と言う言葉が使われる。物理現象は空間の中に展開される電磁現象とも言えよう。光は空間世界の王者でもある。それは空間に描く時間とエネルギーの営みでもある。そんな意味で、光が描く空間長と時間の関係は『エネルギー』と言う実在物理量に因って理解できる筈だ。1990年(平成2年)の秋頃に、完成した自然単位系がある。措置と言う強制牢獄への穴に落ちる少し前のこと。自然現象を理解するに科学技術概念だけではなかなか複雑過ぎて難しい。空間とエネルギーだけで電気用語の意味をまとめた表を載せる。すべての電気量がエネルギーのジュール[J]との関係で算定できる。電気量の次元を換算するに使うに便利である。余り物理学では、空間の意味にファラッド[F]やヘンリー[H]を意識していないようであるが、時間の次元も[s=(HF)^1/2^]で関係付られる。光の速度を決めるのもこの空間の物理的関係に因る。この空間の誘電率、透磁率の物理的意味合いを明確にする課題がまだ残されている。それはどうしても哲学の領域にもなるかと思う。科学と哲学の課題でもある。空間で『エネルギー』がどのように共振現象で伝播するかの解答が。何方かの挑戦を期待したい。

回路(1)の電気現象 スイッチによって二つの場合を考える。

(a) S1:on 、S2:off の抵抗負荷。電源スイッチ S をオンする。回路解釈は直ちに一定電流i=E/R[A]になると理解する。技術論としてはそれで十分である。然し物理現象としては、負荷抵抗に供給されるエネルギーは電線内を通って供給される訳ではなく、電線路で囲まれた空間を通して供給されることを知らなければならない。厳密には突然スイッチの周りのエネルギーギャップの空間が閉じられるのだから、複雑な空間の動揺を伴った後オームの法則通りの平常状態に落ち着くのだ。電気技術で負荷電力P=E^2^/R [W]と計算される。ワット[W]=[J/s]である。電圧の単位は[V]で抵抗の単位は[Ω]である。[V]と[Ω]で、どのように単位換算されて電力が[J/s=W]となるのか。その物理的意味をどのように解釈するのか。このことに関連して、やはり別に電気抵抗体の物理として考えをまとめた。

(b)S1:off 、S2:onでSオンする。実際はスイッチSオンすると同時に、電源短絡事故となろう。コイルのインダクタンスがL[H]であれば、電流はi= E/L∫dt [A]で直線的に増加する筈だが、そこには空間的な別の意味が関わっている筈だ。コイル空間が真空であったとすれば、エネルギーの空間貯蔵に空気中と異なる意味が含まれるかも知れないと言う疑問はある。コイル内の空間にエネルギーが貯蔵されると言う意味は、その空間のエネルギー貯蔵限界があると言う点を知らなければならない。ただ空気中の磁束量の限界と言う空間破壊の解釈は聞かない。電界の空間破壊は高電界30kV/cmと良く聞くが。それも磁場と電場と言う違いはあるが、空間のエネルギー貯蔵限界に因る物理現象の意味である。コイル電流i[A]に因って、コイル内に磁束[Wb]が生じると言うのがアンペアの法則に基づく解釈である。次元を考えれば、電流[A=C/s]からどのような物理現象として、磁束[Wb]が発生すると言うのだろうか。電荷には磁束を発生する物理量的な次元の意味が在るのかを問わなければならない。電気技術論として1800年頃に発見された知見が現在の物理学概念として本当に有用なのか。電荷と磁束の間の空間に起きる次元変換の物理的見解が必要と思う。そこには『電荷』の物理的空間像が示されなければ、答は得られないと思う。なお、電圧時間積分は電流i=(∫Edt)/L の中に含まれている。磁束φ=Li と同じ式ではある。

回路(2)の電気現象 R-Lの直列回路で、やはりLの機能を考えてみよう。既に、電気物理(コイルの電圧)としてまとめたので大よその意味は分かろう。コイルのスイッチS’:off で電圧を掛ければ、指数関数的に電流i がE/Rの値まで増加し、コイル電圧はエネルギー貯蔵した状態で零となる。

『問』 その状態でスイッチ S’ をオンとしてコイル端子を閉じるとする。その後の電流はオンしたスイッチ部を通るか、コイルL内を通るか。

『答』 尋ねたいのは、コイル端子を閉じたときコイルの貯蔵エネルギーは電流 i に因るのか、それとは別にコイル内の空間に貯蔵されたものと考えるのか、どちらで理解するかを答えて欲しいのだ。電流 i が電源に繋がった導線部 S’ を流れずに、わざわざコイル内を流れるとは考え難かろう。然しコイル内にはエネルギーが貯蔵されていると解釈しなければならない。そのコイルのエネルギーは電流に因るのか、コイル内の空間に貯蔵されたものと考えるのかを問うのである。ただ時間と共にそのコイルエネルギーも空間に放射あるいは抵抗で熱化されて無くなる。

回路の電流 回路(1)と回路(2)の電流値の様子を考えてみよう。

電流値 電圧が 100V 、抵抗値10Ω、 インダクタンス10[mH]として図に示した。回路(1)の(b)の場合で、コイルに電圧を印加した時、電源投入後何[ms]で電源短絡となるかは分からない。? 記号で示した。その状態をコイル内の磁束が飽和した為と技術的には考える。物理的には、コイル内の貯蔵エネルギーの受け入れが出来ない限度を超えたからである。また、回路(2)では、スイッチS’ を投入した瞬時にコイル端子は回路から切り離された状態になり、抵抗のみの回路となる。その時コイルのエネルギーはそのまま分離されてコイル内に留まり、時間と共に消えることになる。

むすび 記事の内容を見ると、電気物理と言いながら数式が全く無いことに気付いた。電気現象はその技術概念電圧と電流が解析の要となっている。然し、その電圧とは?電流とは?と殆ど疑問に思われてはいないようであった。30年前に『電荷』概念の空間像を描けないと疑問に思って、何か世間の囃したての中に揉まれながら、人生意気に感じて頑張っている内に、とうとう浦島退屈論の仕儀となってしまった。やっと御蔭さまで、電圧と電流の物理的空間像が描ける境地に辿り着いたようだ。電圧の2乗が次元[J/F]、 電流の2乗が次元[J/H]でその空間の空間エネルギーを捉えたものであると。電気回路の空間構造のコンデンサ機能の[F] とコイル機能の[H]とでその空間のエネルギー貯蔵量を捉えることが出来ると安堵の境地。やっと技術概念の物理的意味が理解できた。電圧-その意味と正体ー (2016/05/15)ではまだ疑問との格闘にあったようだ。然しその記事の文末に導体近傍のエネルギー分布を確信した記事が記してある。その実験的検証が在ったことで、ここまで来れたと感謝する。

電気物理(コイルの電圧)

はじめに
考えるということはどう言うことかと思った。分からないこと、疑問に思うことは突然頭の中に浮かび上がる。しかも、その内容は至極当たり前で、今まで特別気にも留めないものである。しかし、不図気付くと何故か答に窮してしまう。それが標題の『コイルの電圧』の意味である。電気物理(電圧時間積分とエネルギー)を書きながら、コイルの電圧の意味だけ確認して置かなければと気付いたのでここに纏めたい。

統合するということ
電線路は空間を通してエネルギーを供給する設備であると前から述べ理解していた。電流と言う負の電荷の電子など電線を流れていないと理解していた。そこにコイルの機能を物理的にどう理解すべきかと考えたときに、磁束を電圧時間積分として納得していたにも拘らず、磁束飽和とコイルエネルギー貯蔵の関係を統合して理解していない事に気付いた。解った心算でいただけで、本当は分かっていなかったのだと。ここで、この難問にどう始末を付けるかと気分が暗闇に落ち込む。様々な電気現象の中からパズルの組み立てのような、何か忘れている駒札が無いかと探る。考えることは忘れものを拾って結びつける作業のようだ。その仕方は決して理屈で考えるというものと違い、自分の感覚に馴染むものを探し出すような精神的作務のようである。何か特別にどう研究するという事ではない。ただ「ボー」と思い悩むだけのようだ。今回の経験はそんな感じの答えへの道であった。

納得したこと コイルの電圧とはどんな意味を持っているのだろうか?と一瞬思い直した。『電圧時間積分』と言う意味を大切なことと理解していながら、電圧が線路の空間エネルギー分布の解釈技術概念であるという事との繋がりで意識していなかった。磁束が物理的実体でないことを唱えながら、磁束飽和現象と言う意味とエネルギー貯蔵の意味との統合に失調していたことに気付いた。

電圧とエネルギーギャップ コイルの回路解釈は電流iと電圧vで解釈する。コイルのインダクタンスL[H]とすれば、コイルの貯蔵エネルギーはW=(1/2)Li^2^[J]と流れるコイル電流の瞬時値[A]の2乗で評価する。この数式による解釈が電気磁気学、物理学の世界の常識である。この式で理解するということは、そのエネルギーはどこにどのように分布していると考えるのだろうか。一方コイルはその特徴を磁束で解釈する。磁束とエネルギーの関係をどのように理解しているのだろうか。磁束が直接エネルギーと同じとは理解していない筈だ。結論は上の図のように、電圧の極性の負側の導線近傍にエネルギーの高密度分布が存在し、そこからコイル導線近傍にエネルギーが入って行く。コイルの導線同士の間の空間にエネルギーが分布し、そのコイル全体にエネルギー分布が行き渡った時、コイル内のエネルギー分布が平衡し、エネルギーの貯蔵余裕が無くなった時コイル端子間のエネルギーギャップが零となる。その状態がコイル端子電圧零の状態である。電圧から見れば、コイルにはエネルギーが貯蔵されているにも拘らず、コイル端子がスイッチで短絡された状態になる。これがコイルの端子電圧の物理的意味である。電気回路におけるスイッチの物理的意味が、そのスイッチの端子間のエネルギーギャップの有る、無しの意味と同じようなことである。実際はこのようなエネルギーギャップの意味をスイッチ端子間の『電荷』分布で解釈している訳である。その『電荷』は自然界に実在するものではないのだ。

コイルの電圧時間積分と角周波数ω

(2016/10/20)追記。読み返して恥ずかしい。何も怒ることはないのに。ただ、電気磁気学で、物理学として教育するに、アンペアの法則やファラディーの電磁誘導則を本当に矛盾を感じないで皆さんが授業をされているのかと信じられない思いが強い。『物理学』の参照基準は『電荷』と『磁荷(この概念は既に存在しないとの科学常識に成っている)』の実在性を否定することであろう。変圧器などの電磁誘導則では、磁束と電流の関係は何も関係付けられていない。パワーエレクトロニクスの学習の最初で、衝撃を受けた電気磁気学の理論的矛盾がその電磁誘導則であった。1970年頃である。それ以降磁束は『電圧時間積分』で解釈して来た。1985年に「電気磁気学」の授業を担当して、アンペアーの法則との関係をまとめて、理論的矛盾を確信した。理解できないことが『物理学』という自然科学のそれこそ参照基準と看做すべき基本の電気磁気学で、論理性が成り立たない事が今も相変わらず生徒・学生に教育されている事である。実際の教育の制度で、文部科学省が諮問して審議会が取りまとめる方式はおそらく戦前からの行政手法として伝統なのであろう。その方式に従った『報告』であるから尊重すべきと言われようが、本当に役にたつ教育行政なのか。誠に見苦しい記事ではあるが、今教育に携わって居られる皆さんが『学習指導要領(高等学校)』の検定内容に矛盾を感じていないのか。少なくとも電流で磁束が発生するなどという矛盾は教育現場から排除して欲しい。『電圧時間積分』についてはロイヤーインバータの動作原理が簡潔に示している。G.H.Royer:A Switching Transistor AC Inverter Having an Output Frequency Proportional to the DC Input Votage (AIEE,July,1955,p.322) この回路はNASAの研究成果の一つと理解している。静止電力変換回路の基礎(2)、新潟県工業教育紀要第8号に実験結果(稚拙な記事ですが)を載せた。

私は怒りを禁じえない。生徒、学生に教育する日本の教育制度を思うと。この度、日本学術会議の報告 「大学教育の分野別質保証のための教育課程編成上の参照基準 電気電子工学分野」がある事を知った。その電気電子工学分野の一部を読ませて頂いた。3.電気電子に特有の特性 (1)電気電子工学に固有な視点と役割 と言うことで縷々(ルル)報告されている。電気電子工学の基礎となるのは、電磁気学や量子力学の物理学ならびに数学である。・・電気電子工学の特質は、物理学と数学の原理・原則から一歩一歩着実に理論を積み重ね、その厳密な体系化のもとに簡略化・抽象化がなされて・・。と言う様に記されている。この報告をどれだけの大学の関係者が参考にして、教育課程編成上の参照基準として参考とすると考えているのだろうか。誰のための誰による誰に向けた報告書なのか?報告書を作成した本人は自分でその報告内容を常に読みながら過去、現在そして未来を考えるのだろうか。電気電子工学と言う意味が解っているのかと、誠に残念ながら疑わざるを得ない。本当に物理学が電気電子工学の科学技術教育の参照基準になると考えているのだろうか。元を質せば、文部科学省の行政上の思惑に因った報告書作りの形式的体制保持事務仕事に原因があるのだろう。『学習指導要領』の内容が古くて、学生・生徒の為に成らなくてもその内容に従わざるを得ない教育制度が支配している日本の国定教育制度なのだ。間違った、役に立たない応用のきかない古い法則にしがみ付いている伝統教育内容に問題があるのだ。具体的例題を上げて、あるべき考え方を述べたい。物理学は、電流、電子あるは磁束とは何かを考えるところにその存在が生きる筈だ。

コイルの電圧時間積分 コイルの電気特性を語るには、その磁束を一つの考察量として取り上げるだろう。物理学では、アンペアの法則で磁束は発生すると解釈するから、コイル電流が磁束発生の原因と解釈する。そんな電流で磁束が発生するなどと言う無駄を教育する時ではない。ファラディーの法則には、磁束と電圧の関係しかない。電流など不要である。コイルが空心であろうと、鉄心コイルであろうと、磁束は電圧だけに起因して発生するのである。磁束の時間微分が誘起電圧だと言うことは、電流など無関係なのである。コイル内の空間の状況で、電流と言う技術概念量は変わるのである。少なくとも『学習指導要領』の電流による磁束発生原因の考え方は破棄しなければなるまい。

周期電圧波形と最大磁束量 電圧波形にもいろいろある。正弦波、方形波および三角波の各コイル電圧波形の場合の最大磁束は次のようになる。

電圧波形と磁束電圧波形と磁束 電圧の最大値が同じ場合で磁束の最大値を比較して示した。電圧の三角波形は実際にそのような波形がある訳ではないが、電圧時間積分の意味を説明する為に比較として示した。電流による磁束発生の解釈を改めて頂かなければならないと思って。

正弦波電圧の場合 コイル電圧と磁束最大値の計算。

正弦波と磁束最大値Vm=nωΦm

電圧・磁束と角周波数電圧・磁束と角周波数

鉄心がある場合は変圧器と同じ現象で、鉄心の磁気特性によりコイル特性、特に電流は変化する。しかし磁束量が基本的に電圧波形だけから決まる点は鉄心コイル、空心コイルには無関係である。

コイル機能の物理的課題(追記) (付記)変圧器設計で使用鉄心の選定にあたり、V=4.44fnΦm ,Φm=Bm×S, 電源電圧実効値V[V],鉄心磁束密度Bm[Wb/m^2],鉄心形状の断面積S[m^2]が使われる。4.44=2π/√2である事を付記させていただく。一つ物理的課題として挙げておきたい。空心コイルの印加電圧限界はどのように解釈すれば良いか?コイルに掛ける電圧を高くすると、コイル内空間のエネルギー密度が空間の保持限界を必ず超える。その時コイルは機能できなくなる。所謂短絡現象になる。その理由は当然空間のエネルギー密度限界があるからだ。空気の絶縁破壊現象は静電界などではほぼ30[kV/cm]で解釈できよう。しかし磁界強度についての絶縁破壊現象の捉え方は無い。エネルギーは電界とか磁界と言う解釈概念では弁別できない筈である。コイルの機能限界はその捉え方に一つの解釈法を与えるものであろう。この事と関連して浮かぶ事がある。時代に消えそうな運命にある「白熱電球」の事である。科学技術としての『二重コイルフィラメント』も低空気圧下におけるコイルである。タングステンフィラメントが使われるが、高温度材料としての有用性からである。二重コイルの空間内にエネルギーが効率良く貯蔵され、高温度空間を作り出せるからの科学技術である。二重コイルも考えて見れば、愉快な電気回路の仲間たち として見られよう。電球フィラメントはコイル機能限界を超えて、エネルギーの発光放射を利用する物理現象である。

静止電力変換回路の基礎

新潟県立新津工業高等学校の電気科で16年間(昭和39年4月1日~昭和55年3月31日)、子供達に電気関係の教科を教えて来た。電子工学から始まって、電気機器、発変電および送配電と主に電力関係を受け持った。それらの教科指導に当たって、具体的に理解するには、生徒の実習・実験が重要である。その為の準備を通して実際に回路・設備を作り、勉強した。その内容を、『新潟県工業教育紀要』に投稿して発表した。それらの内容は手元になかったので具体的には確認できなかった。この度、新潟県立図書館にある事を知り、複写で手に入れた。なかなか良く出来ていると、自己満足した。それらの内容の一端を示しておこう。
第3号:分布定数線路実習に関する一考察(p.122~127)
第7号(昭和45年度):静止電力変換回路の基礎(1)~第16号(昭和54年度):同(6)である。その中の電力変換回路の基礎の一部を参考に示す。
第7号:電力用半導体整流回路

電力用整流回路単相半波整流 電気回路における回路要素、特にリアクトルの特性を理解するにはとても良い教材である。エネルギー感覚を会得するに良い。正弦波では、その回路要素の機能を知るには物足りない筈だ。

直流偏磁現象直流偏磁現象 電気回路には変圧器が繋がっている。その変圧器を含む回路では、時に複雑な動作波形が観測される。その中に、鉄心の磁気特性との関係で、直流偏磁現象が起こる。その波形が複雑であるので、その特殊な例として三相半波整流回路を組み、その偏磁現象の解析を波形で示した。ここで取上げた電力用整流回路は電気回路を学習するにはとても良い教材であるから、基礎実験として誰もが経験すべき回路であると思う。当時時代の先端である整流回路の基礎を実際に電気科の生徒実習に取り入れていた。今では実際の日常生活でも、インバータ何々と言う様に半導体制御が当たり前になっている。時代は正弦波では役に立たない学習内容である。現在に至るも当時から電気理論で、磁束が電流によって発生すると言う極めておかしな基本解釈を教育現場で採られている事に大きな問題である事を知るべきである。コイルに掛かる電圧の時間積分で磁束は生じる事を認識すべきである。その事の意味を次の記事が示している。
第8号:トランジスタインバータと単相誘導電動機の速度制御

トランジスタインバータロイヤーのトランジスタインバータ この回路(本当のロイヤーの回路とは同じくはないが、鉄心の飽和特性を利用した電圧ー周波数変換原理でそう呼んでいた)はNASAの宇宙関連技術の一つの成果として開発された回路と聞いた。トランジスタ2個でトランスとの単純な回路構成で、印加電圧を変えると周波数が比例して変化する自走発振回路である。この回路の意味を知って、パワーエレクトロニクスの魅力の虜になった。変圧器の鉄心磁束が印加電圧(直流電圧)の時間積分で決まる事を示す象徴的な回路である。洗濯機用コンデンサモータがあったので、その周波数による速度制御特性を調べた実験記事である。この研究は財団法人 産業教育振興中央会の補助を受けたものであった。
第9号:サイリスタによる電動機速度制御

サイリスタ電動機制御サイリスタ回路構成 サイリスタ6個で幾つかの回路構成に適用できるように工夫した。

サイリスタ電動機制御ー2-ゲート回路 実験するには、その制御回路の制作が主になる。しかも全部自己開発である。今見てもその意味が理解できない程忘れ去ってしまった。特にこのゲート回路で、制御用三相変圧器の制作は良く出来たと。この実験が1年間で完成したのは感心だ。思い出した。この制御回路をどのように作ったかを考えたら、思い出した。大切な本があった。神田の古本屋で購入した、Transistor Circuit Design  TEXAS INSTRUMENTS,INC International Student Edition McGRAW-HILL KOGAKUSHA が手元に残っていた。この書籍によって、トランジスタ回路を学習したのだ。
第11号:サイリスタインバータによる単相電動機の速度制御

サイリスタインバータサイリスタ単相インバータ トランジスタインバータと違って、サイリスタはoffする為には逆バイアス電圧を掛けなければならない。

サイリスタインバーター2-ゲート回路と実験波形 主回路はインパルス転流並列インバータで、開発者の名をとってマクマレー・ベットフォードインバータとも呼ばれる。動作も少し複雑な為、記事のp.44には動作波形も詳しく説明してある。ゲート回路(マルチバイブレータとフリップフロップの組み合わせ)をどのように設計したか覚えていない。
第12号:サイリスタチョッパ

サイリスタチョッパ回路と波形 スイッチのオン、オフで負荷の直流電圧の平均値を制御する方式。スイッチをサイリスタ2個で構成した回路である。

サイリスタチョッパ‐2-ゲート回路と波形 主回路は極めて単純であるのに、ゲート回路はなかなか工夫した回路である。我ながらこんな回路を組んでいたかと驚いた。電圧は15V位か。
第16号:三相サイリスタインバータによるかご型誘導電動機の可逆加減速駆動

三相サイリスタインバータ主回路とゲート論理回路 この論理回路を組んだ事はかすかに記憶にある。IC回路を組んだのは初めての事だ。しかし間違いなく正確に回路制御、電動機の可逆加減速運転が出来た。

三相サイリスタインバータ‐2‐回路素子定格等

三相サイリスタインバータ‐3‐電動機運転特性 運転特性で、プラッキングによる逆転時間に7秒ほどかかった事が最後の電磁オッシログラフに示されている。この装置だけは使うかとの思いで持ち込み、長岡技術科学大学のパワー研の実験室の棚の上の奥に置いた事を思い出した。

この最後の標題だけは氏名が金沢でなく、金澤となっていた。時には毎年回路を組んで発表したので、お正月は原稿書きで徹夜が多かった。研究と言うより、変圧器造りや回路組立てで、ペンチ、ボール盤、鋸、金槌と半田付けの手作業が殆どであったように思う。そんな中での回路解析を通して、パワーとか「エネルギー」および電流波形解析から感覚的なものが身に付いたようで、それが現在の『電荷』否定や『電流は流れず』に繋がったと思う。

変圧器ー物理学解剖論ー

技術法則としての原理 電気エネルギーの利用が可能に成り、急速に技術革新が進んだ。その送配電が交流方式という事で、便利さが格段に電気事業の拡大を進め、そのエネルギー無しの生活は考えられない時代となった。その電気エネルギーの送配電には「変圧器」が欠かせない主要な機器である。電気現象を科学的に捉えたのは、1831年頃の『ファラディーの電磁誘導の発見』に遡ろう。その電磁誘導の法則が変圧器の動作原理として、物理学の教科書の基本を成している。標題でー物理学解剖論ーと副題を付けた。ここで解説しようとする事は物理学教科書の内容を説明するのではない。ファラディーの電磁誘導則の矛盾解説である。変圧器の動作原理を深く突き詰めて、その意味を解剖して明らかにしようとするものである。従って、受験のための学習者即ち受験試験成績の得点には極めて不都合で逆効果の、効率の悪い解説である。教科書が間違っている事は自然科学全体の未来への大きな課題である。しかし、『真理は安易な学習では到達できない』事の意味をも含めた解説ではある。先ずは、技術法則として有用である事に変わりはないので、『ファラディーの電磁誘導則』から変圧器の意味を考えてみよう。二つのコイルを近付けておく。その一方のコイルに電圧を印加する。ここで、教科書では電圧を掛けたコイルに「励磁電流」と言う磁束を作る為の電流が流れると解説される。しかし、技術法則としては、原理的には電流で磁束が出来ると言うのは、論理的に説得力に欠ける説明である。

電圧時間積分の意味 ①図で、コイル巻き数n_1_、磁束φ_1_および印加電圧e_1_として、その関係を表したのがファラディーの式である。その式には電流の値(変数)は入っていない。電圧と磁束の二つの変数の関係だけを表すのがその式である。ならば、式を変換して積分形式に表現しても同じ事である筈だ。それが①図の右下隅に示した表現式である。この式も当然のことながら、励磁電流と磁束の関係等何処にも示されていない。ファラディーの電磁誘導則から、途中に無駄な概念を追加する曖昧性の介在なしに、直接導かれた式である。説明の為に、新しい概念を追加して広げる事が現代物理学理論を迷走させた原因になっていると考える。そのような意味が、この「励磁電流」と言う不要な概念にも見えると言えよう。最後の結論としては、「磁束量」と言う概念さえも破棄しなければならない矛盾に論点が進むのであるが。しかしそこまで行く過程で、今は「磁束」の意味を取り入れて論を進める。ファラディーの法則は、電気磁気学の基礎理論として、変圧器の動作原理の解釈に長い間揺ぎ無い足掛かりを提供して来た有り難い法則である。電気理論で少なくとも変圧器の解釈に磁束概念を使うなら、励磁電流は使うべき概念ではない。①図は変圧器概念の説明の為、一次巻線と二次巻線で示した。しかし、空間に一次巻線のみが単独にある場合は、単にソレノイドコイルと言う普通のコイルになる。そのコイルに電圧を掛ければ、何となく電流が流れ過ぎて、コイルが焼け切れると心配になる。その疑問・心配が電気を扱う上での重要な感覚なのである。その疑問が感じられる事により、次の深い意味を知る切っ掛けに繋がるのであろう。『問答』とは『問う事』が次の事初めに大切である。問わない人に『答』は用意されない。電圧時間積分と言う意味が少し理解出来る事に繋がると思う。コイルに電圧を印加した時、磁束量は電圧の大きさ、およびその電圧の時間的に変化する周期や波形で決まるのである。もし交流電圧のサイクルが極めて短い時間で、正負に切り替えられるならば、相当高い電圧でもコイルが焼け切れるような事はない筈だ。1万サイクルなどの高周波なら、多分コイルは有効な回路素子のインダクタンスとしての機能を発揮する事になるだろう。当然印加電圧がバッテリーのような直流なら、電源投入と同時に電気事故になる。直流電圧の時間積分でコイル内の『空間』はエネルギー貯蔵の限界を超える結果となる。空間定数値、空間透磁率μ=4π×10^-7^[H/m] の許容限界を超える自然の掟に逆らった行為であるから、許されないで、事故となる。ファラディーの電磁誘導則はそのまま、微分形式と積分形式で受け入れる事が重要である。励磁電流等に煩わされる学習上の無駄は不必要である。教育は、教科書初めその無駄が多くて、既存の教育業界を「考える教師像」から程遠い業界団体にしている。 写真400

磁束とリサジュー図形 技術法則として、鉄心磁束と電圧時間積分の関係の認識は重要である。変圧器の鉄心中の磁束がどの様に変化するかを観測する事で、その概念を理解する。一つの例として、インバーターが動作波形の理解に役立つだろうと思う。どんな方法で磁気特性を観測するかを参考に示しておこう。①-1に直流電圧e_1をスイッチ(トランジスタ)で切り替えて、コイルに印加すると、その磁束波形Φは直流電圧の時間積分として、一定勾配の直線状に変化する。切り替えで、磁束波形は結局三角状の波形となる。一応無負荷電流i_0(これが励磁電流と言う物になる)を示す。励磁電流は鉄心の磁気特性で決まると解釈されている。図では鉄心が省いてある。電流波形が磁束の変化に対応していない事を一定の電流値で殊更強調してある。スイッチングの切り替え点で電流が少し飛び出して、増加しているように赤く示した。それは後程鉄心の磁気特性で、起磁力(i_0)と磁束(Φ)の関係を示す『ヒステリシスループ』のリサジュー図形の説明のための準備である。ここでどのように磁束波形を観測するかを示そう。写真397変圧器の入力側に電圧時間積分検出の為の積分回路を追加する。コンデンサと抵抗の直列回路を電圧端子に付加すれば良い。抵抗R[Ω]の値とコンデンサC[F]の値で電圧の時間積分の周期、「時定数」と言う技術用語τ=RC[FΩ]が決まる。切り替えのスイッチング周期に対して、十分長めに、大きく取れば積分回路の役目をする。単位が[FΩ]=[sec(時間の秒)]になっている事はとても重要な単位系の認識を喚起するものである。単位について、エネルギー[J(ジュール)]とJHFM単位系をご参照ください。起磁力は電流が流れる回路にシャント抵抗SH(抵抗値殆どゼロ)を挿入して検出する。アース点G、yとx点をオッシロスコープの信号として観測する。その結果の波形が右図のように得られる。オッシロスコープの入力信号で、横軸の掃引信号にxを縦軸信号にyを選べば、鉄心の磁気特性が観測出来る。図の『ヒステリシスループ』で、鉄心の磁束レベルが丁度飽和する限界状態に在るものを示した。①ー1で、電流値が終端部で跳ね上がるように示したのは、磁気状態が飽和限界でスイッチングされている事を示した。それがヒステリシスループの赤い横にはみ出した部分に相当する。後で破棄する磁束概念を、ワザワザこんなに詳しく解説する意味があるかとお叱りを受けそうであるが、技術の現場の常識である事を考えれば、一応その点まで踏み込んでおかないと「磁束棄却」の意味が深く認識されないと考えたからである。以上で「磁束と電圧積分」の関係の解説は終わる。上のトランジスターインバーターのスイッチング動作については、ファラディ電磁誘導則・アンペア周回積分則の物理学的矛盾に述べてある。

(ヒステリシスループ観測上の留意点) 変圧器1次側、電源側に積分回路を設定する。変圧器2次側は無負荷で、負荷電流零である。積分回路のR,C等の定数の選定について。電源の周波数fサイクル。その1サイクルの時間、いわゆる周期TはT=1/f[s]となる。積分回路時定数τ=RC[s]は電源周波数fから、τ>5×T位で良いかと思う。コンデンサは無極性のコンデンサで、たとえばC=1[μF(マイクロファラッド)]を選んだとすれば、抵抗はR=100[kΩ]を選べば、τ=RC=100×10^3^×1×10^-6^=0.1[s]となる。もしf=50サイクルなら、T=20[ms]=0.02[s]であるから、τ=5×Tとなり、何とか積分値の磁束は得られるだろう。また、無負荷電流、いわゆる励磁電流と称する値ioは分流抵抗器で抵抗値が殆ど無いものでなければならない。分流器が無い場合は、1オーム以下の抵抗を何本か並列にして、出来るだけ小さい抵抗値を使えば測定可能と思う。電源周波数について、普通の交流電源のf=50,60サイクル等の場合には、上の設定値で巧く行くだろう。しかし、インバーターなどのスイッチング回路で、周波数が1[kHz]等と高い場合には、その周波数に合わせて、積分時定数τ=RC[s]を小さくする必要がある。以上蛇足かも知れないが、昔を思い出して追記する(2013/5/23)。

鉄心とコイル巻き数 さて、変圧器は空間に二つのコイルを配置しても、その機能を発揮できない。何が必要かと言うと、磁性材料の鉄心である。近年はレアメタルがとても貴重で、貿易問題にも発展している。携帯電話にも、その磁気特性が優れているため、無くてはならない素材と成っている。二つのコイル間の電磁結合を強めるにはコイルの中に鉄系の鉄心と言われる材料が必要だ。実際には、下手な図であるが、右の(ロ)のように一次と二次のコイルを出来るだけ密接に巻くのである。初めに、内側に二次コイル、その外から電圧を掛ける1次コイルを巻く。図に古いE,I鉄心を使って巻いた変圧器の概形を例示した。今はカットコアが有り、簡単に作り易くなった。この鉄心がどの様な意味を持っているかは、変圧器を作ると良く分かる。鉄心材料の磁気特性で、最大磁束密度と言う材質の特性がある。その値以上の磁束は受け付けられないという限界値である。設計式に、正弦波電圧の実効値Vボルト、周波数fヘルツ、コイル巻き数N、鉄心の断面積S㎡および最大磁束密度Bm[Wb/㎡]とすれば、V=4.44fNSBm(参考:4.44の係数は正弦波の積分による2π/√2=4.44の値である。その係数はインバーター等の方形波電圧では単に 4 で、V=4fNSBm となる。)がある。この条件を基準にしてコイルを巻けば変圧器として動作する事に成っている。(注意)変圧器の電源電圧を印加する1次コイルの巻数Nは上の式(V=4.44fNSBm)の巻数値Nより多ければ安全に動作する。その限界値が上に示した式である。その点を付け加えておく。さて、この鉄心がどの様な役目をするかと言う点は、技術論で論ずるならば特段説明を加える事も無いだろう。しかし、物理学解剖論としてはなかなか奥の深い事になるのである。磁束概念矛盾

磁束概念の棄却 上の③図は、学会の説明に使った資料かも知れない。変圧器の電磁誘導現象と同じように、磁石をコイル近傍で動かせば、コイルに電圧が誘導される。永久磁石はエネルギーの貯蔵体と見做せる。コイルにエネルギーを送り、コイルに繋いだ負荷でエネルギーを消費しても、磁石のエネルギー量は減らないようだ。先日不図不思議に思った。磁石(マグネット)はその磁極の近傍空間に、エネルギーを保持している。しかし、その空間のエネルギーはコイルの負荷にエネルギーを供給しても、無くなると言う事はないようだ。物理の基本に、『エネルギー保存則』がある。一通り理屈を付ければ、磁石を移動するにはそこでエネルギーを供給する事になる。その磁石移動のエネルギーの一部が負荷に供給されると解釈すれば良いのだろう。と言う事で今のところ納得する事にしている。自転車のランプはこんな磁石発電機(磁石を回転させて、周りのコイルに回転動力のエネルギーを伝える発電方式)だから、それで辻褄が合うだろうと。供給エネルギーが光のエネルギーに変換されるのである。エネルギーはさまざまなかたちで人の気付かない姿を演出しているのだ。磁束の破棄とその意味。図③で訴えたい事がそれである。その図に「磁束がコイルに鎖交する」が矛盾とある。他の投稿でも説明しているが、 div B = 0 [Wb/㎥] の意味が、磁場の基本的条件を規定している事である。磁束が通過する面積密度の量を磁束密度 ベクトルB [Wb/㎡] と言い、その距離微分を3次元空間全体で計算すると、どんな微小空間であっても、 B の微分値即ち磁束が微小空間当たりの体積から発散するものは無い。即ち磁場空間の何処でも、磁束の発散・発生する源は無い。即ち磁束量を表現する矢印の様な磁束に『頭』も『尾』も無い。と言うのが磁場、磁束密度の基本的に定義された概念なのである。磁束を使うなら、矢印で書き表せませんよと言う事を定義しているのである。div B =0 は磁界に対する基本的規定である。磁束を矢印で書き表す人は、磁気の基本概念(div B =0の意味)を理解していない人と言わなければならない。そこで考えるなら、コイル内に磁束がどの様に入り得るかと言う『問答』になる。頭の無い磁束はコイルを横から切って入り込む道は残されている。それはフレミングの右手の法則として知られている『発電機』の速度起電力を表す事になる。電磁気現象で、磁界とコイルの間の『起電力』に関するものには二つある。『速度起電力』と「変圧器起電力」の二つである。「変圧器起電力」は教科書ではコイルと磁束との間の『相対運動』に伴う電磁現象は無い事になっている。だからコイルを磁束が横から切りながら、コイル内に入る速度起電力の解釈はされていない。速度起電力も変圧器起電力も、本当は区別するべきものではないので磁束がコイルを切って入ると解釈すれば、一応磁束の面子も保たれてよいかも知れない。しかしそれだけでは、問題の解決には成らない。コイルと磁石間には『力』が働く。コイルに磁石を近付けると、負荷にエネルギーを供給するのだから、コイルが逃げようとする力が起きる。その力に抗して、コイルを抑えておく事で、初めて負荷に仕事が出来るのである。このコイルと磁石間の『力と仕事』の関係を合理的に解決する『問答』の『答』を出さなければならない。

磁石近傍のエネルギー流 さて、磁石の磁極近傍空間にエネルギーが在ると述べた。磁束概念を棄却するには、その代りになる何かを唱えなければならない。それが『エネルギー』である。磁束があるから空間にエネルギーがあるのではない。エネルギーが空間にあるから、そのエネルギーを磁束と言う仮想概念で、仮に解釈したら便利であると言うだけの理由で「磁束」を使っているのである。エネルギーの一面を捉える手法として磁束概念がある。物理学を学ぶと、電気磁気学と言う分野では、磁界の解釈に、解説に「磁束」が無ければどうにも収拾が付かない事になるのである。それでは磁束とは何かと『問答』を始めて見れば、何か良く分からないとなって、『答』が出ないのである。『電荷』と同じ不可解な闇に迷い込むのである。解決は、空間に実在する『エネルギー』しか他には無いのである。そのエネルギー流を④図に示す。

電磁力とエネルギー流 磁界の特色は磁石で示される『電磁力』の強さであろう。電動機と言う強力な機械的『動力源』にその特徴が示されていよう。磁石同士の間に働く電磁力は誰もがその強さを実感して居よう。磁極のNとSで、同一磁極間では反発力、異種極間では近い程強い吸引力が生じる。その磁力は、磁束ではどうにも巧く物理的理由の説明が付かない。NとS極を近付けた時、磁束概念では、接近する程強力な電磁力に成る訳の説明が出来ない。磁束が近い程太い線に成ると言う訳でもないから、磁束の状態による力の変化を説明できない。磁力が磁気のクーロン力で、解説されているが、それもニュートンの万有引力と同じ『遠隔作用力』の物理学的力の概念を踏襲したものである。磁気と言う「点磁極」の仮定そのものが磁場概念の div B = 0 を否定した解釈である。点磁極の存在はN、S極が単独に存在するという『モノポール』の説に従うものである。広い磁極面の間の電磁力に、そんなクーロン力で解釈することが許される訳は無い。右上に示した電磁力の解釈は空間エネルギーの回転流に基づく『近接作用力』である。エネルギーとエネルギーの流れる間の分布流の絡み合いで力が生じると解釈するものである。決して力の原因は、離れた点の『何か』の間に生じる『遠隔作用力』では無いと解釈する。これは、原子構造論にも及ぶ概念である。電荷間のクーロン力と言う『遠隔作用力』をも否定する考え方である。この力の意味をコイルと磁石の間に敷衍してみよう。S磁極にコイルを近付けたとする。コイルは磁気エネルギーの流れの影響を受ける事を拒否する。即ち反発力を産む。反発に逆らって近付ければ、如何にもコイルに電流が流れる如くに、エネルギー間の逆流の反発力を産む。しかし、コイル内のエネルギーの消費と共に、コイル周りも磁石のS極のエネルギー流の中に入ると考える。次にそこから、コイルを引き離そうとすれば、今度は今までと逆に、コイル周りに在るエネルギー流の減少を拒むべく、引き離す力に逆らう吸引力を生み出すと解釈する。

エネルギー流から見る変圧器の機能 磁束と言う概念の矛盾から、その否定を論じてきた。それでは変圧器の動作原理・動作機能をどのように解釈すべきが問われる。どのような物理学理論の根拠概念であろうと、矛盾が排除できない限りは、その概念に正当性は認められない。最後に残り、否定できない根拠概念は『エネルギー』そのものである。上に解釈を示したように、磁場とはその空間に実在するエネルギーの回転流であると言う以外真理には到達できない。従って、変圧器もそのエネルギー流に基づく動作機能を利用した電力技術機器と解釈しなければならない。その考え方を解説する為の説明概念図を⑤に示す。鉄心である『磁心』に絶縁物を介して、2次コイルを巻き、その上に1次コイルを巻く。その磁心断面図が(ロ)である。この断面図を見て、磁束を否定、棄却したら、磁心の機能をどのようなものと理解すれば良いかが『問答』の要点になる。ここには載せてないが、マグネット面の磁場模様を砂鉄で観察すれば、磁場は一様ではないと見なければならない。参考:磁界・磁気概念の本質に磁場論。また、「磁力密度 f=rot(S/v) 」日本物理学会講演概要集第63巻1号2分冊p.310 (2008.3.25) で式の解説も示した。磁場で、重要な認識はマグネット間のギャップを狭めるにつれ、その磁場強度は磁石の周辺部だけに集中的に強まる事である。(2019/04/15)追記。以下の#~# の部分については少し訂正する。鉄心(磁心)部の中心部には磁気エネルギーの影響がないだろうという解釈は間違っていた。鉄心断面積が設計上重要な意味を持つ訳は、そこにエネルギーが入り込むからと解釈すべきである。1次巻線の電圧時間積分としての電源電圧保持機能は鉄心中心部までの軸エネルギー流の入射余裕が鉄心の断面積を要求するからと解釈する。しかし鉄心内に磁極のNSが生じるという訳ではなかろう。鉄心磁区毎に隣同士で極性が交互に入れ替わると考える。だからファラディーの法則のような磁束の意味は当たらないだろう。エネルギーの貯蔵機能として鉄心が重要な意味を持っている。だから鉄心断面積が重要になる。 #マグネットの中心部での磁界・磁場は、砂鉄模様から判断するに、殆ど意味を成さないと解釈する。その事が変圧器の『磁心』の動作機能を解釈するに重要と観る。磁心の中心部は変圧器動作に於いて、コイル近傍の磁心表面でのエネルギー流に対する電磁現象が、その本質を秘めていると解釈する。交流電圧積分から考えて、鉄心材料の磁気特性で、磁心中心部までエネルギーが到達して、出入りする程周波数応答に優れた対応ができるとは考え難い。この点は、実験データなしで論ずる事に科学論で無いと言われることは承知している。しかし、エネルギー流の挙動特性と言う面から解釈すれば、そう看做さざるを得ない。現在の解釈では、磁心が1次コイルからのエネルギー入力を絶縁体の空間を通して、2次コイルへのエネルギーの橋渡しに重要な意味を持っている訳だから、その反射体としての役割を果たしているのであろうと結論付けている。#どのような詳細な機能を発揮しているかは、巧い実験を通して結果を得るより方法が無い。実験をするだけの経済的、社会的環境の得られない私がそれ以上論じる事は無理である。

(2016/10/27)追記。上に巧い実験方法がないと言ったが、巧い方法があった。変圧器の奇想天外診断を思い付いた。その実験により電線路を含めて、導体内を『電荷』あるいは『電子』が流れているのでなく、導体の近傍空間に『エネルギー』が分布し、それが電線路電圧の意味であり、物理現象であることを示す結果を得た。天晴れ(コイルと電圧とエネルギー)にデータをまとめた。

ファラディ電磁誘導則・アンペア周回積分則の物理学的矛盾

自然世界は不思議に満ちている。それ以上に人間世界は不可思議に満ちている。今、現代社会は情報通信を始め、科学技術に支配された世界を人は生きている。その科学技術を支えている基本原理を『物理学』と言う学問として学び、その真髄に迫ろうと皆努めてきた。にも拘らず、その学問『物理学』に疑問を抱き、その矛盾を指摘してきた。私は世界の姿の奥底にはとても信じられない『矛盾・虚偽』が隠されている事を確信せざるを得ない状況に至ってしまった。『電気磁気学』は『物理学』の1つの分野であるが、その一握りの事柄が「現代物理学」の根幹を揺るがす事にまでなるとは信じられない。原子理論はじめ全ての基の『電子電荷』を考えた事が始まりであった。『電子が動くと何故磁界が発生するか?』が始まりであった。今まで、『電流計は何を計るか』『磁界・磁気概念の本質』に述べてきたことである。それを物理学の教育と言う面から、「教科書」の中身を考えてみたい。

『ファラディの電磁誘導則』も『アンペアの周回積分則』も共に技術法則としてはこの上なく有用な法則である。慣れ親しむ程捨てにくくなる。しかし物理学的にはその論理性から見れば、欠陥に満ちている。磁束概念そのものの矛盾と、更に電流による磁束発生論理の矛盾を指摘したい。挿入ファイル6枚によって説明したい。先ず①で、教科書の説明を取り上げて、その矛盾を示す。コイルの傍で磁石を動かせばコイルに電圧が誘導される。その解釈に磁束鎖交で説明する事が論理的に間違っている。これは変圧器の解釈でも同じことである。

磁場空間における、規定条件     div B = 0  に従えば、磁束表現が矛盾なのである。

その点は後で説明する事にして、変圧器の技術的解釈で、磁束が電流によって発生すると言うことは間違いである。図版②の1次コイルに印加する電圧e1および2次コイルの起電力e2における式がそれぞれファラディの誘導起電力の法則を表現したものである。その式は磁束φと電圧eの関係を表しているが、電流は含まれていない。その起電力の式を書き換えれば、図版③に示す通り、磁束は『電圧時間積分』として決まることを表している。この事はコイルのインダクタンスに対する電流の解釈も改めなければならない。直流電流に対しても、コイルに印加された初期過渡電圧の時間積分値として磁束量が決定されると解釈しなければならない。この『電圧時間積分』と言う解釈は電力技術の分野では当たり前のことであるが、電気理論の教科書では目新しい事であろうと思う。そこで、家庭電器の中に普通に取り入れられている「インバーター」を取り上げて、『電圧時間積分』を説明しておきたい。トランジスターとダイオードで一つのスイッチを構成し、4つのスイッチA,B,CおよびDの切り替えで直流電圧 E ボルトの方形波交流電圧を作る。その負荷の変圧器の磁束波形は一定直流電圧の時間積分として、一定勾配の直線状に増加する磁束波形φとなる。その磁束を発生すると解釈している「励磁電流 io」と言うものはほとんど変化せず、磁束の発生源とは言えないことを明確に示している。家庭用太陽光発電設備なども、このインバーター動作が基本技術として応用されている事を考えて、そのスイッチの動作モードも波形の下に示しておきます。インバータの電圧eが正の区間①は、スイッチAとDが「on」となる。次にスイッチの切り替えで、BとCが「on」する前に、AとDを「off」しなければならない。その時余分なサージエネルギーを逃がす必要がある。それが②区間のダイオードを通して直流電源にエネルギーを回生する。ダイオードの重要な役目である。その後③の区間に移行する。以上が「インバータ」の基本動作である。さて、今まで「磁束φ」そのものが矛盾概念であるという点を説明せずに来た。divB=0と言う磁場規定と磁束による電磁誘導の説明は論理的に整合性が成り立たない。その点について、図版⑤として纏めた。ファラディの電磁誘導則という電気磁気学の

基礎理論の根幹を成す「磁束」を論理性が無いと否定することは技術者として耐えられない思いでいる。しかし、そこを認めない限りは新しい『真理』に到達する未来を拓く事は出来ない。

自然科学と言う大きな学問の全ての基礎に成る物理概念は非の撃ちようの無い真の姿で捉えたい。無駄や間違いによる混乱を避ける近道になる。最後の図版⑥として、アンペアの周回積分則の矛盾を取り上げる。電流と磁場の関係は、国際度量衡会議の「電流原器」にも採用されていると思う。しかし、私にはその『フレミングの左手の法則』の測定値が正しいとは信じられない。そのことを図版⑥で示す。コイルに電流計を繋ぎ、その指示値が I アンペアとする。コイルの近傍で3箇所の磁気状態を考えてみよう。(イ)は直線状の導線部。(ロ)はコイルの内部。(ハ)はコイル側面の外部。それら各部の磁場状態がアンペアの法則通りであるかどうかを考えてみる。(イ)の電線周りの磁束は、元々無い訳なので測定出来ない。当然コイル内の磁束も測定できない。しかし、(イ)も(ロ)も、共にその近傍には『エネルギー』の流れが実在する。そのエネルギーを検出する時に、『電流計』もその測定器の一つである。磁石で検知する事もエネルギーの存在を或る一面で捉えているのである。さて、アンペアの周回積分則が『真』であるならば、コイル外側部(ハ)の磁場はどのようであろうか。コイルに流れる電流が磁場を作ると言うなら、(ハ)にも磁場が出来て当然である。しかし、そこには磁気、磁束は出来ないのである。コイル電線の傍で磁気が無いのは何故かと『問答』をしなければならない。結論は、電線の中に『電流』など流れていないのである。しかも電流の基が『電子』となれば、そんな電子が電線の中を流れたからと言って、電線の外に磁気を作りだす訳がありません。電子には磁性保有の特質は定義されていません。負の電荷と質量のみで定義されているのです。電子が電線内を直線状に運動したとしたら、金属の電線の外に、どのような訳で、磁場を作り出すと言うのでしょうか。空間で電子が加速されると、負の電荷に入る電気力線(電界)がどんな磁界を発生するのでしょうか。その解釈に疑問を抱いたのが『静電界は磁界を伴う』の実験的検証を実行した原点である。

アンペアの周回積分則 とは導線に流れる電流 I [A] とすると、その導線の周りの磁界を電線周りで一周積分を取ると、電線の電流値 I[A] に等しいと言う法則である。そんな電線周りの磁界を積分する実験的検証方法が有る訳で無い。しかし、昔の法則はどんなに新しい発見が有っても、古い法則は新しく正されることなく、教育の題材として大事に守られる。上のコイル外側部の場合で、その電線周りの積分を取ったら、どのように周回積分則が成り立つと言えるのだろうか。電流が流れ得ないのに、電線内を『電子』の『負の電荷』が流れて、導線外部に磁場を生じると言う極めて非論理的な解釈が、物理学世界を構築しているのである。『電荷』が導線内部に在って、その金属遮蔽に対して遮蔽の意味を無視した論理で、外部に磁界を創りだすという発想そのものが人間の論理と言う不思議な実情を示していると言わなければならない。科学論理の人間的奇妙な不思議さ、この法則を解剖してみると見えて来る。