タグ別アーカイブ: 電圧の正体

エネルギー流が電圧・電流

電圧・電流の物理的正体(2020/09/29)。

長い電気回路の解釈を通して、感覚的に納得できたかと思う。『電荷』概念を捨てて、電気磁気学の科学論の常識から離れて遠い道を辿ってきた。パワーエレクトロニクスと言う新しい電力制御技術に出会い、その回路制御技術を通して『エネルギー』の実在性を感覚的に身に深く刻むことが出来た。様々な過程を経て、理論と『エネルギー』の間の不協和を謎として追究してきたように思う。電気回路は電圧と電流なしには解釈できない。その電圧と電流が回路の線路空間を流れる『エネルギー』の流れとして捉えて良いとの結論を得た。

直流回路のエネルギー流。

電池などの電源からランプを点灯する回路。それは最も基本となる直流回路だ。その電気回路は二本の電線で囲まれた空間を『エネルギー』がほぼ光速度で伝送される機能設備と言えよう。電線路はその空間が電気的特性、コンデンサとコイルによって特徴付けられる機能回路である。電線路の単位長さ当たりの持つ静電容量 C[F/m] とインダクタンス L[H/m] によってその空間の特性が特徴づけられる。その C L によって電気『エネルギー』の電線路特性が決まる。電源の特性は電線路に供給する『エネルギー』の供給能力で評価できる。電源端子の線路容量 C で供給する『エネルギー』の分布が決まる。それがそのまま電圧と言う技術量を表すことになる。電源の電池やその他の直流電源は技術的な電圧規定値、定格値でその能力を評価できる。電源から送出される『エネルギー』は線路特性に因る伝送速度 c で次の式で決まる。

c=1/√(LC) [m/s]

電線路の分布した『エネルギー』がδ[J/m] なら、その伝送速度が c となる。この伝送特性は、高周波伝送であろうと商用電源であろうと全く違いはない。直流回路も同じ基本特性にある。

直流回路の反射現象。

直流回路のエネルギー反射現象と言う認識は無いと思う。ここで述べる解釈は、おそらく科学論としては評価されないかも知れない。何故なら、全く科学的手法の原則である実験的検証による説得力のある論ではないから。しかし、電気現象が全て『エネルギー』の光速度伝播であるとの認識に立てば、その伝播空間と『エネルギー』の関係から電磁波の周波数に因る差異がある筈が無いとしか考えられない。となれば、伝送回路の空間特性により、特性インピーダンスの意味も負荷の整合性で直流回路においても全く同じ筈と考える。伝送エネルギーが負荷に到来しても、整合性の執れていない負荷では、その内のある分の反射現象が起きる筈だ。

反射現象で、反射エネルギーはどの電線路側を戻るか?ここにその判断の鍵があるようだ。プラス側を戻るか、マイナス側を戻るかに判断を下さなければならない。

反射エネルギーは負側の伝送エネルギーの到来側をそのまま反転して戻る。そう結論を付けた。

負荷の反射は回路の特性インピーダンスZoと負荷抵抗Rとの関係で整合が採れているかどうかに因る。今負荷抵抗が回路のZoのα倍とする。図のように負荷で伝送エネルギーδpの内のδrが反射するとする。負側電線路のエネルギー分布量δは二つの合成となる。負荷で反射して、電源に到来する『エネルギー』分布波δr分だけ電源から送出する『エネルギー』δpは少なくなる。電線路エネルギーギャップはδ=δp+δrと、電圧保持分布量に成っているから。

模式図。上の関係を模式図にまとめる。

負荷が整合に在れば、α=1である。『エネルギー』の反射は無く、電源供給の『エネルギー』δ分布で、そのまま負荷に吸収・変換される。

【実験的課題】α<1の時。特性インピーダンスZo より負荷抵抗が小さい場合に当たる。この時、電源の供給能力があれば、あくまでも電圧を規定値に保つべくδpを増加するかと言う問題になる。一つの実験的検証の課題が浮かぶ。プラス側を反射波δrが電源に戻る。その分多く電線路エネルギーギャップがδ=δp-δr、V=√(δ/C) となるように、δpが多く送出されれば解決となる。実験的に確認したい未解決問題。

関連記事。

電流と電圧の正体 (2013/05/16) 。電気の真相(3)-電圧と負荷-(2015/09/25) 。電圧-その意味と正体- (2016/05/15) 。エネルギー伝播現象 (2020/06/27) 。『電圧』という意味  (2020/07/04) 。電圧とエネルギー (2020/07/10) 。技術概念『電流』とその測定 (2018/09/24) 。などの解釈を経てきた。

 

定在波の発生原理

定在波とは(2020/09/22)。ここで解説する内容は『電圧』と『電流』と言う技術概念で定在波を論じている。しかしその『電圧』と『電流』の意味は、深い『エネルギー』伝送現象を含んでいるので、一般的な電気回路の『電圧』『電流』とは少し異なる意味かも知れない。それは測定法に関わるので、その点も含めてご理解いただきたい。この定在波測定回路については後の記事に示したい。

電気現象はその基本が『エネルギー』一つの振る舞いである。しかし商用周波と高周波あるいは直流とそれぞれ回路解析法は異なる手法が適用される。高周波回路は電線路長に対して電気信号の波長が短いために、その電気現象は特異なものに観えることになる。それが定在波と言う波についてであろう。定在波は電線路終端短絡の場合に顕著に、そこからの反射波と伝送波の間に起こる現象として強く現れる。負荷終端の場合は、様々な影響が定在波分布に現れる。専門的な解説が多く示されている。しかし、とても内容が複雑で筆者には難しい。それも波動と言う波形が何を表現したものかが分からない。ここでは伝送波も反射波も全て『エネルギー』の分布密度波として捉える解釈について論じたい。

インピーダンス整合。

負荷インピーダンスが電線路の特性インピーダンスと整合して居れば反射波はない。すべて負荷に伝送エネルギーが吸収されて反射するエネルギーは生じない。それがインピーダンスマッチングと言う状態なのだろう。

電線路電圧の概念。

電気現象は『電荷』を否定して初めてその真相が見えてくる。高周波であろうと直流であろうと、電源は電線路の空間を通して、『エネルギー』を負荷に供給する回路技術である。二本の電線a と b の間に高周波電圧を掛けるとする。その電圧を掛けるという物理的意味をどのように解釈するかと言う難しい話になる。まさか電線に正の電荷と負の電荷を交互に電源から送出するなどとは考え難いだろう。①には、『エネルギー』の波の伝播で示した。電線路に電圧測定装置、オッシロスコープ等を繋げば②の様な電圧波形が得られるから、電圧と言う物理量が自然世界に存在すると誰もが考え易い。しかしその電圧と言う物理量は、人が科学技術に依って獲得した測定技術の賜物であって、簡単に電線路に電圧が在ると理解するには、それはとても深い物理的意味を知らなければ分かり難い概念なのである。

定在波とエネルギー流。

終端短絡の定在波とは。電線路の位置によって、電圧や電流と言う概念の分布を測定すると、測定値が正弦波状の分布になる。その分布波形を定在波と言う。終端短絡の時、『エネルギー』は電源から伝送され、終端ですべての『エネルギー』が反射する。その往復の『エネルギー』の波動が重なり合い、その密度分布の大きさが電線路の位置によって決まった脈動をする。図の電圧の定在波をVで示し、電流の分布をIで示した。電圧定在波Vは常に零の位置がある。『エネルギー』は電線路を光速度で流れるから、電線路の位置によって流れが違う訳はない。それなのになぜ測定値が異なる正弦波分布になるかと言う疑問が沸く。そこに『定在波』と言う意味が隠されているのだ。

今、図のように電線路の長さが電源電圧波長の2倍の長さとし、その終端を短絡する。電線路を短絡するなどという事は普通は短絡事故と考える。しかし、高周波電圧波形の場合は、『エネルギー』密度がそれほど高くなる前に極性が反転して、高密度にならないため、短絡しても事故とならずに済む。極性の切り替えが早く高密度エネルギーにならずに済むためである。短絡終端に到達したエネルギー波はすべて反射して電源側に戻る。その反射伝送は到来『エネルギー』波の反対側の電線近傍を、即ち反対側電線を戻る。

電線路電圧の意味の追加説明。この事は別の記事にして示したい。短絡終端は当然電圧は零である。電圧零という意味は二本の電線路の両方が同じエネルギー分布であれば、その電線路間の電圧は零である。電圧とはエネルギー分布ギャップを評価するものである。それは乾電池電圧の『エネルギー』の意味と同じものである。二本の電線間にエネルギーの分布差が無ければ、如何にエネルギーが大きかろうと電圧は零である。エネルギーギャップ零は電圧零である。

この記事は

金澤:分布定数線路実習に対する一考察。新潟県工業教育紀要 第3号、(昭和42年)。に載せた定在波分布波形の意味が良く分からずに、改めて考えてみた。実験での測定データなどは他にあまり見当たらない。その意味でとても貴重な資料と考える。正直に当時を振り返れば、よくこんな実験をして、報告記事にしたと驚いている。その訳は今でもそのデータの意味が良く理解できないのだ。その意味を少し掘り下げて理解してみたい。その第一報として定在波と『エネルギー』の関係だけを論じた。一般の解説には『エネルギー』の観点はほとんど示されていないように思う。

電圧-その意味と正体-

(2022/02/21) 追記。時々この記事が読まれている。この時、6年ほど前の思いが今漸く実を結んだ。例えば、瞬時電力の具象解剖 (2022/02/03)などになった。科学技術概念『電圧』と電気回路現象の物理的認識としての新しい捉え方即ち『エネルギー』の流れとして認識する事との意味の違いを示すことが出来た。

電圧とは何か? 電気工学や電気物理に関わる仕事に携わっている人はこんな疑問を抱かないだろう。電圧100ボルトあるいは3ボルトなどと日常用語としてありふれて使っていることだから。常識の言葉だから。こんな常識の科学技術用語を理解できないと言って、その正体をあばこう等と考える事を仕事にするとすればどんな仕事に成るのだろうか。全く経済的な利益を生むどころか、科学技術関係社会に反逆的な伝統破壊の行為と看做される。反発を食う研究である。そんな業務を仕事として受け入れる環境があるのだろうか。科学研究社会は、特に学術研究に属する分野では『客観性』を持って研究を進める事が要求される社会であろう。過去の先人の業績を踏襲してこそ仲間として受け入れられる社会である。それが常識の世界だ。学術研究機関に所属していれば、大いに常識に挑戦する機会もあろうが、最初から所属の無いものには不可能な事であろう。世界で誰も挑戦しない研究、「電圧とは何か?」と問う事も有意義な筈である。学術論文にも成し難い研究ではあるが。自然の本質を明らかにする重要な研究ではある。

総合科学・基礎科学・純粋科学の意義 本質を明らかにすることの意味は、誤ったり誤解した研究や方向性を質す判断基準として、総合的な評価を下すに重要なのである。経済的効果が無いと言うが、間違った高額の投資を避ける意味で経済性は大きい。それが総合科学、基礎科学、純粋科学なのである。科学研究の内容を市民が理解でき、賛同できることで初めて研究費を使う権利が得られるのだと認識すべきである。数式でなく、日常用語で高度な研究内容を説明し納得を得る事が必要になる。そこに、専門家だけの内部了解ではなく、市民社会との関わりが大切になるのだ。その時に科学の基礎概念が誰もが理解でき、疑念の無いもので初めて市民との意思の疎通ができ、健全な科学社会への安全が担保できるのであろう。そこに総合的な広い基礎科学の重要性が狭い専門性を超えて必要になるものと考える。ここでは前の電池電圧と『エネルギーギャップ』を受けて少し電圧の解釈の意味を深めてみようと思っての記事である。

電圧とは何か?電圧とは何か 電圧Eボルトの直流電源がある。銅板と銅線が図のようにつながっている。 

電圧問答電圧問答 

電圧問答 直流電圧源だから、各電圧計の指示値はすぐ分かる。ただ電圧計の繋がる位置が色々だ。電圧計は何を計るかと考えて、その電圧値に成る原因を何に因ると解釈するかを尋ねている。もし『電荷』を原因と考えると、その分布を考えなければならなくなる。さてどう考えるか?こんな問答は禅問答の部に入るようで、科学論の部門では毛嫌いされる問答である。しかし科学理論は論理性を持ってその真価と尊厳を勝ち得ている訳であるから、こんな易しい日常的な質問には朝飯前と答えられる基盤の上に成り立っている筈だ?そこで答を書こうとすれば、学校教育で教えられる教科書の内容から考える事に成ろう。どんな教科書も文科省の『学習指導要領』によって教育内容は決まっており、『電子』あるいは『電荷』による解釈しか許されていないから、その指導要領に従わざるを得ない。そこで『電子』で考えようと試みる。

電子と電圧電子と電圧 回路の一部を取り出して電圧計V1の意味を『電子』に因って考えてみよう。鉛蓄電池や燃料電池の電池機能原理は水素原子の『電子』が陰極端子から外部配線、負荷を流れて陽極に戻り、『エネルギー』供給源としての電池の役割を果たすと専門家の解説に在る。それが負荷への『電流』の電気磁気学理論に基づいた教科書的標準理論である。しかもそれは世界の物理学理論でもある。その時の電気現象の電圧には『プラスの電荷』は電池の外部回路に関与する解釈は無いようだ。すべて『電子』だけで理論的な解釈が成されている。そのような世界標準の電気論に従って、電圧計V1の『電圧』をどのように解釈すべきかを考えてみた。①電荷分布(電子)?と電圧として銅板間にどのような『電荷』分布を描けば良いかと苦心した。『電子』同士は好きではないが、有名な『クーロンの法則』に従えば、お互いが反発しあって、集合するのはいやだ、いやだと纏まらないのではと考えると、『電子』の分布予想も出来ないのでお手上げだ。理論とは不思議なもので、後生大事に守られている『クーロンの法則』があっても、そんな法則などお構いなしに『マイナス電荷』の集団と『プラス電荷』の集団同士が向き合って対峙する構図が理論の伝統的な常識・思想に成っている。しかしこの電池の場合には『プラス電荷』は出る幕が無いのが不思議だ。だから教科書に従って電池電圧を『電荷』で描こうとしたが無理だった。それでも思い直して、マイナス側の銅板に『電子』が分布したとして、電圧計を繋いでみた。それが②電圧計である。電圧計は中味の回路を見れば、単に高抵抗rとコイルlの直列につながっただけの物でしかない。電圧と評価する部分はコイル内に貯蔵されて『エネルギー』を指針の回転に利用しているだけである。特に電圧と言うような感覚的に予想する様なものを計っている訳ではない。陽極側と陰極側の銅板の間に電気回路のrl要素を繋いだ事に成る。もし陰極側の銅板に最初『電子』が集合していて、電圧が掛っていたとする。電圧計を繋ぐ前後で銅板間の電圧にどのような同じ電圧を発生・保持するかの訳を考えられるだろうか。また、図のように電圧計(負荷)を繋いだとしたら、『電子』はどのような力を何によって受けて運動すると考えれば良いだろうか。大まかな概略論でなく、厳密な基礎理論に基づいた合理的で論理的な解釈が求められる。日常用語と基礎的な科学用語での説明なら、誰でもが理解でき納得できると思う。しかしこの『問答』にはなかなか納得できる論理的な解釈が出来ないジレンマに陥るのだ。結論を言えば、『電子』や『電荷』では電池電圧の発生原因を説明できないという事である。宇宙の話や五次元空間の話は話の実体が目の前に無いから高度な数式で論じられると煙に巻かれたような気分でうんともすんとも言えないもどかしさが残る。しかし乾電池や蓄電池の話なら、電磁気学の理論検証には十分分かり易い筈だ。この電池電圧の意味が『電荷』概念では自分が納得出来ないので、『エネルギーギャップ』の電圧発生理由で解釈する様子を示す。

空間のエネルギー分布空間のエネルギー分布 エネルギーにはプラスもマイナスもない。光のエネルギーと同じく、空間に金属導体に因って束縛された状況で分布する。その分布密度を予測して図に描いて示した。その密度分布を実験的に測定する方法を見つけられるかどうかは疑問だ。『電子』の分布を描く場合に似ている結果である。プラス、マイナスと言う金属導体間にそのエネルギーは分布し、マイナスからプラスまでのエネルギー分布密度の線積分がその『電池電圧』となる。エネルギーで観る線路電圧に交流の場合を示したが、直流でも同じ事である。

交流電圧 電圧は直流も交流もその本質は同じである。主に金属導体間に掛かる電気の”何か圧力”のようなものと感覚的に捉えられる。その姿・本性を認識し難い訳は実験的に測定することが出来ない「空間エネルギー」だからである。電気の眞相(2)-電圧とは何かーに述べた。科学技術の電気工学では空間エネルギーなど観測できない物理量であるから、『エネルギー』の利用と言う眼目から、実に優れた計測量として、『電圧』を考えだした訳である。『電圧』と『電流』で電気工学の基礎を創り上げたのだから、その技術的感覚は素晴らしいと先人の業績に感謝しなければならない。交流電圧によって送配電線路が構築され、『エネルギー』利用が可能になった。その交流電圧は発電機と変圧器での発生原理に新たに「磁束」と言う概念を創り上げた事により、理解し易い『電磁誘導則』で誰でもが理解し易くなった事は科学技術の意味を理解する上で大切である。「磁束」で交流電圧を理論付ける技術感覚の意味を理解すべきであろう。さて、科学技術とその基礎概念は自然世界の『真相』と成るかと言う点で改めて考えなければならない歴史的転換点に居ると思う。電気現象の物理学的解釈は自然世界の眞相を捉えるに重要な基本認識と成っている。その自然現象・自然世界を『電圧』、『電荷』、『電流』の科学技術概念で論じようとしたとき、その論理の先には混迷の未来が待ち受けている。同様に『電界』『磁界』も自然世界に実在する『真相』ではなく、科学技術の『エネルギー』利用手段としての便利な構築概念でしかないのだという事を認識することが未来への安全の思考の基盤である。

科学技術と自然世界と教育 先人が築き上げて来た科学技術と自然世界の眞相を混同しないように理解して欲しい。『電荷』など世界には存在しないのだ。今、この事の中に見える複雑な人間意識と科学的競争社会の間に立って、未来への子供達に対する教育を考え、根本から再構築すべき時に立っている。未来への教育問題は教育機関、教育者に課せられた喫緊の課題である。過去を踏襲し、先人の業績を尊重してなどと拘泥している時ではない筈だ。

『電圧』と『エネルギー』その実験的検証 昨年は物理学概念に(『電荷』への)疑念を抱き、旅立って30年程たった時に不思議な実験を手掛けた。これも予測できた訳ではなく、何かに誘われて手掛けたような実験である。変圧器の奇想天外診断で『電圧』の意味を考える切っ掛けを得た。続いて、コイルと電圧とエネルギーおよび天晴れ(コイルと電圧とエネルギー)の実験的検証、そしてまとめとしての電気の眞相(3)-電圧と負荷ーによって『電圧』と『エネルギー』の関係を捉えることが出来たと考える。

電流と電圧の正体

(2017/09/13)追記。2013年頃から電気回路の電流や電圧の意味と計測を考え始めたようだ。2015年に変圧器の奇想天外診断に始まり、電気の眞相(3)-電圧と負荷-コンデンサ型配線のエネルギー伝送等の記事で、ようやく電圧と空間エネルギーの関係が分かった。

今日は、自分の記念日である。『電流』『電圧』の正体を明らかに出来た。しかし肝心の自分の正体は不明である。電流計・電圧計訂正(2013/09/08)訂正追記。また間違いで済みません。上図の電流計内のエネルギーWiの表記に間違いが有りました。(訂正)Wi=(P/R)Li/(1+r’/ri)^2でした。 先ずは直流回路で考える。電源電圧V[V]に負荷電力P[W]、その抵抗値R[Ω]の負荷をつないだ。回路の『電流』は電流計で計る。『電圧』は電圧計で計る。その電流計と電圧計を回路に接続した。電流計も電圧形も共に「可動コイル型」であるとする。どちらもその内部構造は同じである。マグネットの中に、可動コイルを吊り下げて、そのコイル内の磁気エネルギーの量を計測するのである。コイルの磁気エネルギー量で、マグネットとの間の磁気力により、回転角が変化する。その角度の大きさをそれぞれの電気量として読み取るのである。だから計測原理は電流計も電圧形も同じ仕組みである。回路内部で異なる物は内部抵抗値とその接続の形だけである。 電流計は回路電流値が大きいので、コイルに流せないから、分流抵抗ri[Ω]に大部分の電流を流す方法がとられる。僅かなコイル抵抗r'[Ω]も考慮する。 電圧計は直列に大きな抵抗rv[Ω]をつなぎ、回路電流に影響を与えないような、僅かなコイル電流を流して、電圧値の測定をする。 上の図のWv[J]、Wi[J]はそれぞれ電圧計と電流計のコイル内の磁気エネルギーを表す。普通磁気エネルギーは(1/2)Li^2^[J]と計算される。しかし計器の場合は、コイルの磁気エネルギーでは係数の(1/2)はなくて良い。そのコイルのエネルギーWは結局負荷の電力と抵抗値で決まるのである。電流計も電圧形も共にそのコイルの貯蔵エネルギー量Wは負荷の値で決まることを示している。 電力P=V^2^/R=I^2^R[W]である。 電流値Iは I=(Wi/Li)^(1/2)^(1+(r’/ri)) [A] として、Wiと回路の定数値から算定している事になる。Wiは負荷の定数と計器内の定数から算定している訳だから、負荷のエネルギー消費量から、『電流』と言う概念の数値を算定しているのである。電線の中を流れる物など何もないのである。電流単位[A]は[(J/H)^(1/2)^]である。 電圧値Vは V=(Wv/Lv)^(1/2)^rv[V]として、電流と同じく、Wvと回路定数から算定しているのである。電圧単位[V]は[(J/F)^(1/2)^]である。 もう少し電圧計の計る値Vの意味を考えてみる。電圧計の意味? 電圧は余り負荷の状態に関係しないように直感的には思うかも知れない。冒頭の図は電源電圧そのものを測るだけであると解釈したい図だ。そこで、少し電源側にも電源インピーダンスがある場合で考えた方が良いかと思った。それが上の図である。電圧計の厳密な意味では、電流計の負荷(r_A_I^2^)も考慮するべきかもしれない。そんなことまで考えると相当難しくなりそうだ。負荷Loadにも誘導性のエネルギー貯蔵Wもある。しかし、直流電圧一定の場合では、電圧測定には無関係である。 電流計は何を計るか を投稿したのは2010年11月であった。結局負荷の電力を電流計という電気回路の組み合わせの中に検出する方法を技術として確立した。『電流』という実際は電線の中に流れてもいない、物理概念を技術で作り上げたのである。 (2013/09/08)追記。 無負荷時の電圧はどのように解釈するか?本論の電圧の計測値は無負荷時には意味を成さなくなる。無負荷とは、負荷電力P=0であり、負荷抵抗値R=∞と解釈できる。従って、電圧値Vは√(∞×0) と成り、本論での電圧の評価は不定と解釈すべきかと思う。確かに、電圧値は無負荷でも計測量には間違いない値が得られる。しかし、電圧と言う物理的概念を考えれば、電流との組み合わせで、はじめて意味を成すものと言う見方もできると思う。その事にはまだ不明確な点もあるようだ。 追記(2014/09/22) 付け加えて考えた事。電圧計が計るもの。(2014/10/29)追記。電圧の意味を考えた古い記事がある。電圧計の構造と電池電圧の不可解さを書いた。電圧ー物理学解剖論ー