タグ別アーカイブ: 電圧の原因

電気抵抗のエネルギー論

「電気抵抗のエネルギー論」などと言うと大げさな事と顰蹙(ヒンシュク)を買いそうだ。しかし、電気物理は『電荷』がその論理全体の根本を支えている訳だから、その『電荷』概念を否定する意味を解説するには、単純な電気抵抗の意味とそのエネルギーに関する現象をひも解くのが分かり易かろうと考えての標題である。電気抵抗と言っても、その回路要素としての機能は深い意味を兼ね備えている事を理解する必要があると思う。一般に抵抗が示すエネルギーに関する現象を理解しようとすれば、抵抗以外の電気導体から成るコイルや電気絶縁体から成るコンデンサ等のエネルギーに関わる現象を合わせて考えることで、より深く抵抗の機能が理解できるだろうと考える。

単純な電気回路の例。

①コイルと抵抗 ②コンデンサと抵抗 ③導体と絶縁体と抵抗体の混成回路 の三つの回路でエネルギーと電圧の関係を考えてみよう。

①コイルと抵抗回路。 コイルが示す電気現象はそのエネルギーと電圧の関係で不思議だ。導線は電気導体である。その導体をコイル状に巻くとそのコイルの内側の空間にエネルギーが貯蔵される。導体の中にエネルギーが蓄えられる訳ではない。あくまでも導線のコイル状に巻いた巻線で囲まれた空間にエネルギーが蓄えられるのである。その電気回路でエネルギーが変動しない、定常状態ではコイルにはエネルギーが蓄えられているにも拘らず、全く回路的には電圧には無関係の独立したエネルギー貯蔵器になっている。

②コンデンサと抵抗回路。 この場合は、抵抗には全く電圧が掛らない。すべて絶縁体のコンデンサに電源電圧が印加される。丁度回路を開くスイッチと同じ意味をコンデンサが担っているのだ。

③立体模型での導体、抵抗体と絶縁体回路。 ②と同じくコンデンサで電源電圧が保持される。抵抗体はエネルギー、電圧には何の機能も持たない。導線全体には定常状態に達するまでの過渡現象でのエネルギー(電圧時間積分)の導線周辺周りのエネルギー貯蔵が微かになされていよう。しかしそれは電圧には無関係であるのは、①の場合に同じである。

①コイルと抵抗回路のエネルギーと電圧。

抵抗体周りのエネルギーと電圧の関係を示す。『電流』が流れる訳ではない。電源が供給する『エネルギー』が電気回路全体の空間を通して、その電線路電圧の保持に対応するために光速度で充填される。そのエネルギー密度δ[J/m^3^]で光速度に近い速度のエネルギー流が抵抗体表面から侵入する。エネルギーの流れが光速度に近いということが重要な意味を持っている。如何にエネルギー密度が小さくても僅かな時間でさえ、その間に流れるエネルギー量は途轍もなく大きな量になり得る訳だ。そのエネルギー流がポインティングベクトルSi[J/m^2^s]である。抵抗体はエネルギーをその内部空間に取り込み、定常状態では、入射エネルギーと平衡してその同じエネルギーを熱・光エネルギーとして放射している。抵抗体は内部空間構造がエネルギー貯蔵、変換そして放射するエネルギー変換器の機能要素と考えるのが分かり易かろう。さらに電源電圧を抵抗体が担う訳であるが、それは抵抗体の表面の空間エネルギー密度δの電気技術評価概念の『電界』√(δ/ε)[(J/F)^1/2^]=[V/m]に基づいた意味だと解釈すれば良い。エネルギーで観る線路電圧 にその意味を記した。電気抵抗Rの意味は『オームの法則』で電流との関係で理解することで十分であり、便利である。しかし、例えば大学で電気物理として抵抗を意識する場合には、それだけでは電気現象を理解したことには成らないと思う。エネルギーを運動エネルギーと位置エネルギーで解釈しようとする物理学的論理には、そこに潜む矛盾を取り除けないだろうと思うからである。自然は如何に基本が単純であり、それ故に現象の複雑な姿に戸惑うかを考えるのにこの抵抗体のエネルギーの意味は示唆を与えるだろうと考える。ただその空間のエネルギー分布を数式で表現しようとしてもなかなか困難である。数学が自然を完全に表現することには成らないから。数学や式は一つの理解の方便と心得るべきであろう。さて、この抵抗体のエネルギー機能を考えるに、コイルの貯蔵エネルギーについてもその意味を考え併せることで役立つだろう。コイルの巻線内部空間に貯蔵されるエネルギーはどのようなものと考えるか。決して空間のエネルギーは静止した状態ではないだろう。コイルの磁気はそのコイルの軸方向には磁界が生じている。図の方向に磁極のNが現れる。磁極、磁気とは何かを磁界・磁気概念の本質 に述べた。磁極N極の方向に対して、その軸性ベクトルに左ねじの向きにエネルギーが回転する方向性で解釈すると考えた。その方向性が電磁気現象の全体像を捉えるに極めて重要である。その方向への確信を得るに長い年月を要した。コイルのエネルギー貯蔵の形態と次に考えるコンデンサのエネルギー貯蔵の形態は、同じエネルギーを貯蔵する意味でありながら、状況が異なる訳も考える必要があろう。回路からの切り離しによるエネルギー貯蔵の可能性で異なる意味を持つ。

②コンデンサと抵抗回路。 コンデンサもコイルと同じくエネルギーを貯蔵する。しかしこの場合は抵抗は電圧を担わず、すべてコンデンサが受け持つ。コンデンサのエネルギー保存機能は電極版間の誘電体・絶縁物によってその特性が決まる。絶縁物が空気では殆どエネルギー貯蔵の意味で、その機能を考える程の特性を意識できない。直流の電気回路としては電源電圧を負荷から遮断するスイッチの機能素子に見える。

エネルギー貯蔵と等価回路。 コンデンサは絶縁体内にエネルギーを貯蔵し、回路から負荷抵抗を切り離す役割に見える。①のコイルの場合も併せて考えれば、コイルにエネルギーを貯蔵し、そのコイルを回路から切り離すように、コイル端子をスイッチオンした回路に等価と見える。コイル内で損失が無ければ、空間にエネルギーを放射しなければ、図のような等価回路と看做せる。この回路ではコイル電流を仮定したとしても、電源とは無関係のものとなる。

電源からの切り離し。 エネルギー貯蔵器にエネルギーを貯蔵したまま、回路から切り離すことを考えてみよう。②のコンデンサの場合は既に回路が遮断された状態だからコンデンサを回路から切り離すことは問題なく可能だ。切り離したコンデンサには、エネルギーが貯蔵されたままであると考えて良かろう。特に電解コンデンサではその意味が顕著である。①のコイルの場合はどうだろうか。この場合もコイル端子をスイッチで短絡しても電圧が掛って居ないのだから基本的には問題ない。その状態であれば、既にコイル端子はスイッチで閉じられているから、電源回路からは切り離された独立の状態にある。従って、もう一つのスイッチで、抵抗を電源に直接つないでも回路としては変化が無いから、ネルギー貯蔵したコイルを切り離せる筈である。しかし、②のコンデンサと異なり、実際にコイルのエネルギーを長く貯蔵したままに置くことは難しかろう。エネルギーが空間を通して放射され易いからと考える。それをコイル内の抵抗損失がある故と看做すのが普通である。磁気材料の鉄心を利用すれば、鉄心の永久磁石としてエネルギー貯蔵が保持される事もまた事実である。様々な電磁気現象は、その基本に『エネルギー』と言う空間に実在する物理量が関わっていることを理解すべきである。

周期律表と抵抗率で、上の抵抗体でのエネルギー変換現象を考える上での根拠に元素構造と抵抗率の関係を取上げた。外殻電子の周回運動としての元素構造論ではなかなかエネルギーの変換現象を理解し難いとの思いから、抵抗体の内部空間構造を考えてみたい。抵抗の次元が[Ω]=[(H/F)^1/2^]である認識からの空間構造が大切であろう。それは光の色調を決める color cell の構造にも通じるものである。

電池の原理を問う

電気の不思議に魅せられて、自然の意味を説き明かす科学技術の大きな足跡として、ボルタの電池を挙げて良かろう。電池について、電池・電気分解に良く解説されている。しかし、残念ながらその解説では私は満足できない。理解できないのである。電圧ー物理学解剖論ー に乾電池の電圧は何故1.5ボルトなのかと疑問を呈した。マンガン乾電池は塩化アンモニュームや酸化マンガンを澱粉で練り合せて、炭素棒(+極)と亜鉛(-極)の電極材で構成されている。そんなうまい組み合わせを見つけた技術に感服する。1.5ボルトと言う標準電圧に決めた過程も中々興味あることだ。設計者・発明者はその電池構成が1.5ボルトになる事を理論的に認識していた訳ではなかろう。今、何故1.5ボルトになるかを問うても明確に答えられないのじゃないかと思う。乾電池の練り物が1.5ボルトと成る意味が分からない。これは日常生活の中の極めて科学技術の本質を問う『問答』のように思う。難しい一般相対性理論等の学問に対して、より市民科学のあるべき姿を問う問題であろう。一つの解決の道のりとして、乾電池の使用済みの電解質練り物の状態が初期状態と何がどのように変わっているかを調べる事かも知れない。しかし、決して利益を生まないかもしれない事には、現在の科学研究体制は許さない窮屈さに縛ららている。しかし、理科教室の場合はできるかもしれない。乾電池1.5ボルトの意味を探る実験。学校の理科教育・科学教育の在り方を問うのである。化学式で解説されるが、少し疑問に思うと、本当の事が分からなくなる。教える先生方は、その内容を深く理解しているなら、当然応えられる筈だ。電子が流れて化学式のように巧く説明され、実に世界の真理のような印象を与えるに十分な説得力を持っている。はじめて学習する子供達に対しては。その子供たちが学習すべき世界標準の教育内容が整っている訳である。その事がとても多くの学習すべき、記憶すべき負担を強いているとは考えないのだろうか。むしろ疑問を提起することで、より印象強く記憶に残るとも言えよう。

金属のイオン化傾向 これは化学の学習内容になるのだったか。金属元素にはイオンになり易いものとなり難い物があると言う。しかし『電荷』を否定する立場からすれば、原子のイオン化と言う意味さえ理解できないのだ。しかし、実際に原子の間にはイオン化と言う或る特性において、決まった序列が発生している訳である。その意味をどのように解釈するかの『問答』である。『熱エネルギー』で解釈したい。金属が溶液内で変化する溶融と析出の現象をどのように解釈するかである。物理学、化学では電子のやりとりで解説される。電子と言う意味を何で捉えるかと言うと決して『質量』では考えず、『電荷』だけで理解するだろう。全く『質量』のやりとりの意味を説明できないから。それなら電子等と言わずに、『電荷』と言えばそれで良かろう。物理学では、『質量』が無いと論理を展開できないジレンマを抱えているのだ。『電荷』だけが独立の世界の実在とは言えないのだ。

硫酸銅に亜鉛板を入れた時の現象 イオン化傾向と言う金属特性の解釈法。原子量の小さい原子程、一般的にイオン化傾向は強い。亜鉛Znと銅Cuでは、亜鉛がイオン化の力が強い。だから亜鉛が融け、硫酸銅の銅が固体金属として析出すると言う風にイオン化傾向で解釈される。何故金属にイオン化傾向と言う差が生じるかは問わない。イオン化傾向と言う順序を覚える事を要求される。イオン化傾向と言う金属元素間の物理現象の意味は、熱エネルギーのやりとりの問題なのである。亜鉛が融解し、銅が析出するのは銅から『熱量』が亜鉛に移動する現象である。電解液の温度の環境下で、銅と亜鉛の保有エネルギーの余剰と不足の関係から起こる金属元素間の物理現象と観る。固体の状態がその元素の保有エネルギーレベルのより低い状態に在ると観る。融解するには熱などのエネルギーを吸収する必要がある。分子より原子の方がエネルギーレベルは高い。燃料電池は水素(高圧エネルギー)と酸素のエネルギーレベルの高い元素が結合する事により、水分子のエネルギーレベルの低い状態になるから、余剰熱エネルギーを放出し、動力源として利用できるのである。金属だけではない。水の沸騰も気体になるには蒸発熱を吸収する現象である。元素には特有の熱エネルギーに対する特性差が潜んでいると解釈したい。原子と分子の妙 を書きかけのまま結論がまとまらない。物理・化学の基本問題に素人が意見を書く失礼をご容赦ください。燃料電池は水素が燃料だ。エネルギー問題で、自動車の排気ガスはなくなり、水だけを排出するから空気汚染は解決される。しかし水素製造には電気エネルギーを使わなければならない。その社会システム構築に費やすエネルギー消費問題は、経済成長と言う美名の基に隠されてしまう。地球温暖化の問題が燃料電池自動車で解決される訳でない事を科学技術社会の基本問題として捉えた置かなければならない。水素を創るエネルギー消費と燃料電池の社会的エネルギー消費問題。

鉛蓄電池 1859年、フランス人プランテの発明とある。鉛蓄電池は今も使い続けられている優れた発明だ。150年以上使われ続ける科学技術製品だ。驚くべき歴史を踏襲した製品だ。そんな意味も意識したい。鉛蓄電池も『熱エネルギー』で原理を解釈したい。

鉛蓄電池の解釈鉛蓄電池と陰極

『電荷』否定の新しい蓄電池の解釈を図に示す。鉛蓄電池の電極は陰極の鉛と陽極の酸化鉛で構成される。硫酸が電解液で、陰極の鉛が溶融して、硫酸鉛となると、蓄電エネルギーが消費され減少する。陽極の酸化鉛(二酸化鉛PbO2で上の図に誤りあり)は教科書的解釈では、水素による阻害を抑える減極剤としての働きを兼ねていると。もし陽極も鉛Pbなら電池にならない。鉛蓄電池の原理は陰極と硫酸との境界面に全てが組み込まれていると観る。イオン化傾向で、PbとHは隣接する。硫酸に亜鉛を使えば、激しく反応して、やはり電池にならない。穏やかに蓄電エネルギーを放出できるのは、隣同士のエネルギー保有差が小さいからと考える。鉛が融解して硫酸鉛PbSO4になる時、保有熱エネルギーを放出する。この保有熱エネルギーと言う意味も分かりにくいかもしれない。それは、原子構造が電子概念を否定したうえでの解釈でなければ分かりにくいと言う事になろう。上に挙げた『原子と分子の妙』のエネルギー流の磁気模様で捉える必要がある。磁気エネルギー流は、その量的増減は自由に変化しうると考えれば良かろう。その環境自身がエネルギーの空間だから、エネルギー吸収・放射も変化しうる自由にある。鉛の外界へのエネルギー流の影響と希硫酸の電解液のエネルギー環境との間の何らかの干渉がエネルギー不均衡の修正として関係づけられると解釈する。それが鉛の融解現象の意味との理解である。更に水素も酸素と反応して(燃料電池)更にエネルギーを放出する。その合成分が陰極から負荷に供給される電気エネルギー(熱エネルギー)である。この解釈では、陽極は殆どエネルギー放出に関わらない。その為、鉛蓄電池の『電圧』は陰極と電解液の接触面に、その全ての原因を秘めていると観る。図②にその意味を示した。熱と電気の関係は雷は熱爆発に於けるものに同じである。