タグ別アーカイブ: 近接作用力

鋏の磁気?

はじめに

急に気付いた、今まで珍しい現象が有るものだ位にしか思わないでいたことを。見ても気付かない事が有るという、その意味は自分の意識の有り様を理解し、考えるに充分な価値のあることだ。過去の電気工学論で、絶対的実在量と確信していた電流(電線金属内を負電荷の電子が逆向きに流れるという科学論の電流。そんな電荷が導体内など流れる訳がなく、電線路空間内をエネルギーが流れる現象を電気技術論として捉える概念として構築したものが電流計で計測する電流技術概念なのだ。)が自然世界に存在する物理量でなかったと気付いたことから見ても、何も不思議な事でなく日常的に有り触れた人間の意識の姿であったかも知れないと気付いた。物理学理論の根源的「原子像」も原子核の周りを電子が周回しているという科学的、社会的常識の標準理論で世界が支配されている。誰もその「原子構造」を疑いもしない。それを理解できない原子像と否定するのは筆者が常識外れの素人か、偽科学論者として排除されるかも知れないが。『電荷』を否定した筆者には、原子構造論を疑う事は至極当たり前の自然科学論の心算で在る。そうであっても、何年先、何十年先になって皆さんが気付くかと考えれば、それも気付きの人の意識の問題として不思議な事でないのかも知れない。今回は高が鋏の磁気現象でしかないが、とても大事な意味が含まれている。

それが右の砂鉄模様である。コンパスで確認した結果が写真に示した磁極N Sである。今回改めて気付いたことは鋏中央部が何故磁極 N になるのかという事である。磁気はマグネットのように、磁性材料の両端に在るものだ。金属の真ん中に磁極がある等と言う磁界はあり得ない。直ぐにそんな訳が無いと気付いて当然だ。しかしそのことに気付かないで過ごしてきた。今回の気付きの、その切っ掛けとなった事に、『ハルバッハ配列』の磁気現象の存在を知った事があるかも知れない。この鋏の磁極 N はどのようなエネルギー流によって生まれるのかという疑問に気付いた。磁極を磁束描像で認識することには論理的な説得力に成らない基本認識からの疑問である。この写真に示した砂鉄模様は、今までの物理学理論への認識を新たな捉え方に切り替えなければならない実験的証明の意味を示している。鋏が何故磁気を帯びるのか?ほとんどの鋏をコンパスで調べれば、何等かの磁気を帯びた結果を示すはずだ。そこに隠された意味が有る。その意味を解き明かしたい。

磁場とは何か?-物理学の命題– (2016/03/29) で鋏に磁気の極性が生まれる事を取り上げた。何故鋏に磁極 S-N-S の配列が生まれるのか?磁極は『軸性エネルギー回転流』に依る物理的現象である。磁束も自然界には存在しないもので、科学技術理論・電気磁気学理論の構築に有効な概念として仮想的に創作した物理概念である。ファラディーの法則として電磁気現象を解釈する極めて有効な概念が磁束量である。磁石のように離れた物同士の間に働く力を、解釈するにはその空間に変化をもたらす何かが存在すると考えざるを得ない。その創作概念が磁束である。しかし、もし磁束があるとしたら、その磁束の何が『力』の基として空間で機能すると考えるのか。磁束が空間で太くなるとか、本数が増えるとか、力が強くなるにはその磁束にどのような空間の状況の変化を生むのかを説明しなければならない筈だ。しかもどんな磁束の式で表現されるのかを。磁気のクーロン力には磁束がない。それは距離の長さが変数である。磁界の原則を説明したdiv B = 0 は空間に磁束を発生する基の磁荷 m[Wb] は存在しないことを説明した式である。理解して欲しいことは、空間に『エネルギー』が実在するという事である。『磁束』と『エネルギー』との関係である。光は『エネルギー』である。光を観ようとしてもその姿は見えない。空間には『エネルギー』が、その代表として「光」があるが、それを見る事はできない。物の姿は「光」によって見る事はできるが、「光」を見る事はできない。電気コイルは『エネルギー』をその空間に貯蔵、保持すると解釈するが、その『エネルギー』があるとは解釈しないで、『磁束』で代用して解釈しているという事ではないのか。空間の電磁場を電界や磁界で解釈するとき、その空間の『エネルギー』を意識しているのだろうか。結局磁界や『磁束』もその空間の『エネルギー』の代用概念として使っているのじゃないか。電池は電気の『エネルギー』の貯蔵器だ。電池が何を貯えるものと考えるのか。『電子』を貯えるものではない。電子など『エネルギー』じゃない。電子が負荷を流れたからと言って、負荷がどのように『エネルギー』を使うと言えるのか。電子は『エネルギー』を背負って移動する訳ではなかろう。電池の『エネルギー』をどうして意識して解釈しないのか。電線で囲まれた空間を流れる電気の『エネルギー』を何故考えないのか。電磁気現象の本質はすべて空間の『エネルギー』の現象なのだ。目に見えない『エネルギー』や『光エネルギー』の空間場なのだ。

解析結果

磁極とエネルギー流 鋏の腹に当たる中心部が磁極Nである。鋏の鉄金属の中心がN極になる訳を磁束では説明不可能であろう。図解のように、丁度二つの磁石が N 極で向き合った磁気結合の構造をなしている。結局その結合がN極周りの図解のような、鋏のどの方向から調べても全ての面で軸性エネルギー回転流の磁極 N の指向性を示す。腹部のN極の鋏のどの方向でもコンパスを近付けると、そのエネルギー流がコンパスのS極のエネルギー流と同じ流れとなる。そのエネルギー流の合成分布が磁極の向きを揃える力を生む。鋏のN極のエネルギー流とコンパスの磁極 S のエネルギー回転流(その密度流ベクトル S [J/㎡s])に直交した方向に、二つの磁極の間での近接作用力

f = rot (S/v) [N/㎥]

が発生する。磁極周辺空間内を通して金属同士(コンパスと鋏)の間に作用力が生じることになる。

むすび

何故鋏が磁気を帯びるか?鋏の使いの機能、即ち2枚の刃を擦り合わせる事によって摩擦のエネルギーが原因かと考えた。しかし、その点の確認はできなかった。感覚的には、製造加工時の加圧ネルギーが原因かとも思える。今のところ不確かではある。

他の鋏でもその磁気分布を調べた。鋏によって、その模様も異なる。左上はその例だ。磁極が端に在る訳でもないことを示す。

 

 

 

マグネット 摩訶不思議-ハルバッハ配列-

はじめに(2020/02/21) 久しぶりに楽しい時間を過ごさせて頂いた。ものづくり・科学フェアinアオーレ長岡、2月1日。普段は全く科学や伝統技術に触れる機会がなく、ひきこもりのブログ投稿で過ごす。今回の催しに参加し、科学の雰囲気に触れられ、話ができる満足を楽しませて頂いた。その科学技術で、少し勝手に質問等させて頂いた展示部門に「ハルバッハ磁場」がある。お相手頂いた方(学生さん?)にはありがとう。久しぶりに『磁気』の専門的な部門の不思議を味わった。展示された先生には感謝です。改めて、今回もう一度「磁力」の物理的現象の意味を考えてみたくなった。自然現象、物理現象の解釈を学問とした物理学は、ややもすると簡便な伝統的解釈手法に拘泥したまま、その理論に不思議とか疑問とかを抱かなくなっている。所謂「考えない」伝統論が支配してしまった。筆者が取り上げる内容は、それらの伝統論の矛盾を拾い出し、新たな市民が理解できる易しい科学論(数式を使わない日常用語あるいは空間図形表現で解説する科学論)を目指すため、専門家の皆さんからは顰蹙を買う内容となろう。教科書批判ともなる訳だからなお更ややこしいことになる。ご容赦の程お願い仕ります。今日ダッシュボードに、関連した古い記事が読まれて、コイルの電圧時間積分と角周波数 (2016/03/21) が挙がっていた。この記事を書きながら、もう一度磁束の意味を、その概念に自然現象としての物理的な論理性が有るかどうかと自身で確認した。それが電流と磁気と空間の哲学 (2020/02/24) である。

摩訶不思議(2020/02/20) 非常に不思議だという意味で魔訶が付く。解けそうもない永遠の謎に思えるのがマグネットの磁気エネルギーの保存原理だ。電気器具の電池が切れるような、マグネットのエネルギーが切れることに遭遇する経験がない。何故マグネットは幾ら力によってエネルギー消費の物理現象を辿ってもマグネットの機能がなくなることが無いのか。エネルギーの永久保存則など有るのだろうか。それは地球が自転・公転する原理が理解できないと同じ位不思議だ。

マグネット 

今回会場で頂いたマグネットの寸法と形状を示す。

「ハルバッハ配列」と言うマグネットの利用技術が有ることを教えて頂いた。リニアモーターカーの浮揚磁石として使われるとか?のお話であった。

そのマグネットを磁気力で、側面接合させたら、図のようにズレて接合した。このマグネットの磁極は赤丸のN極と青色のS極が図のような側面にある。図のように接合面がズレた珍しい向きになっている。図のように半分ずれた位置で安定する。その位置で安定する訳は何故か?マグネットの一つの現象の表れである。その意味をどう解釈するかが物理学の意味であろう。磁束や磁界の物理学概念でどう解釈するかである。このズレを無理に押し付けて平板型の一体マグネット構造にすると、下側のマグネット面が NSSSN の磁気の並びの磁場構造面となり、この下側面が「ハルバッハ配列磁場」となる。上面は NSNSN の磁気配列で、「ハルバッハ」とは無関係だ。「ハルバッハ配列磁場」は強烈な磁場面となる。何故そのような磁場となるのか?「磁束」概念で解釈できるのかを論じてみたい。それは電気磁気学の全貌に関わる内容になる筈だ。『静電界は磁界を伴う』の実験結果が示した『磁針・マグネット』の静電界中の磁界検出の意味の確認ともなるから。

マグネットが呈する現象は電気磁気学の神髄を秘めている。マグネットのことが理解できれば、それは電気磁気学の学理を習得したと見做してもよかろう。こう断言する訳をここで論じてみようというのである。それは『電荷』と同じく『磁荷』及び『磁束』も自然世界にはないという基本的立脚点に立っている事からの断言でもある。電気磁気学という科学技術に欠かせない科学論の根幹が、今こそその深い基本で検証されなければならないところにある。

磁気・磁束とは
マグネットの解釈では、必ず磁束や磁界が専門用語として使われる。磁気、磁束の関係した科学技術の代表は変圧器であろう。二つのコイルを鉄心と言う構造体に巻き付けると、その巻き数の比率に従って、二つのコイルの電圧が決まる。その電圧は鉄心内の磁束によって決まる。ファラディーの法則の式には励磁電流など一つもない。電圧と磁束の関係しかないのだ。励磁電流など流れなくても、理想の変圧器は立派に動作する。鉄心の物理的特性に依るのであり、励磁電流など不要なのだ。理科教育・物理学はもっと技術の意味を学習し、考えてほしい。旧い伝統踏襲の「考えない教育」から脱却してほしい。教える方も法則や基礎概念のその意味に疑問を抱く程深く認識し、自己問答をしてほしい。と『磁束』の概念が電圧時間積分によると言いながら、その『磁束』はこの自然世界にある訳ではなく、それも科学技術の一つの解釈概念でしかないと言わなければならない切ない論法になる。

磁力、その解説。
マグネット間には「磁気のクーロン力」と言う式で表される力があると解説される。式は磁束φでなく、存在しない磁荷+m 、-m[Wb] で表現されている。その理論式に論理性があるとは考えられないにも拘わらず、見過ごされている。実際にはマグネットの磁力の特徴、意味を図解では磁束φで表現される。そこには残念ながら、磁束で磁力を納得させる説得力は見当たらないであろう。

上のマグネット接合の訳。それはマグネットがエネルギー流による現象だから。

図3.エネルギー流と反発力 図のような配置にマグネットを持ってくると、平板状に並ばず、図のようにズレる。それはマグネット間に力が働くからである。マグネットの不思議な磁力は磁極近傍の空間のエネルギー流の為せる業であるからだ。エネルギー流が接合面で、逆流によって反発の近接作用力となるからである。実験的な証明ができない解釈である。空間に実在する『エネルギー流』など計測できない物理量であるから。それは光と同じものである。

ハルバッハ配列の磁場 図3.のマグネットのズレを強く押して、平板状にすると磁極がNSSSNのハルバッハ配列面が得られる。裏面は磁極配列がNSNSNとなり、その面はハルバッハ配列ではない。その磁場の磁力は強くはない。

図4.ハルバッハ磁場 とても強力な磁場が発生する。その訳は何故か?(1)磁束描像 と(2)エネルギー流描像で表した。磁束描像では特に磁力が強くなる物理的意味が説明できない。磁力発生原理になる磁束量の式が無いから。

(2)エネルギー流描像 中心の広いS極面のエネルギー流が存在し、その側面配列のS磁極とのエネルギー流が強め合う方向に合流すると解釈できる。残念ながら、この解釈も空間エネルギー流を観測する実験的手法を筆者は知らない。表式化するだけの科学的根拠を示せない。

磁場の砂鉄模様

図5.砂鉄模様。磁場の様子は砂鉄では観測できる。マグネットの上に紙を載せ、そこに砂鉄を振りかけた。(1)はハルバッハ配列面の模様。(2)はその裏面の模様。

(1)ハルバッハ面。砂鉄模様からは特別磁場が強いという様子が見える訳ではない。ただ、全体が一つの磁極の磁場模様を呈していると見える。(2)ハルバッハの裏面模様。明らかに磁気N極とS極の間に断裂が有る。

図6.ハルバッハ配列砂鉄模様。もう一度砂鉄量を増やして、模様を取った。指で砂鉄表面を均した結果の模様である。この模様は磁極S面の大きな磁場模様で、周辺部に強い磁気が集中した広い磁場の様子を呈しているとみられる。単独の磁極の磁場ではこのような広い模様は得にくいと思う。

むすび。

側面に張り付けたマグネットの磁気エネルギー流も中心の磁場と同じ方向の流れとして、それを強める方向に流れる。図6.はその結果によって生まれた磁場模様と解釈する。それが「ハルバッハ配列」の磁気の強度をなす原因と解釈する。

 f = rot S/c [N/㎥] の磁気力の意味について。模様の外周部が広く一様であるので、磁気周辺部におけるエネルギー流の急峻な分布模様とは異なる。しかし、中心のS極周辺部ではゼロから急峻なエネルギー分布量に立ち上がっているとも観られることから、そこにおいて表式の意味が成り立つと解釈することは出来よう。

【附】ハルバッハ裏面砂鉄模様。

①の模様は砂鉄を撫でた結果のもので、砂鉄の分布が4列にハッキリと分かれている。中心の2列は磁極Nの幅の模様である。また、両端の2列は側面のSN磁極の幅に模様である。中心の磁場Nと隣の磁極Sの間は磁束表現で捉えれば、砂鉄模様に断裂が発生する理由はない筈で、ここにも磁束評価解釈の矛盾が表されていると考える。電磁界解釈の基本理論で、磁場はNS極間では磁束を通して強くつながる筈である。この付図のような磁極間に断裂は発生しない筈だ。どのように解釈すべきか付議したい。

参考記事。磁界・磁気概念の本質 (2010/11/16) 。から始まって、既に9年が過ぎた。新世界―科学の要ー (2015/03/05) に磁界とか電界とかの概念も一つの『エネルギー流』の下で理解したいとしてまとめた。

電流と磁気と空間の哲学

哲学とは(2020/02/23)。「明解 国語辞典 改訂版 金田一京助監修 (三省堂)昭和29年4月5日。これは高校1年生の時から、今でも大切に使っている大事な辞書だ。そこに哲学:あらゆる仮定を排して根本原理を扱う学。とある。

電流とは何か?『電荷』とは何か?電子とは何か?磁気とは何か?その空間事象は如何なるものと解釈すべきか?それは自然科学の最も根源的即ち哲学的課題だ。電気工学理論では自然の真相は説明できないのだ。電子は流れず (2019/06/06) 。

科学への不信。 最近こんな言葉が有るようだ。誠に我ながら情けない。初めは電気工学の勉学の役に立てればとの思いもあって、己の認識を確認しながら時を重ねてきた。日本物理学会に参画させていただき、日頃の思いも発表させて頂いた。しかし辿り着いてみたら、そこには初めの思いと異なる結果に次々と遭遇し、己自身を題材にして知らず知らずに「哲学」の深みにはまってしまったかも知れない。何か深く考究を積み重ねているうちに、科学への不信などと言う風潮を生み出すような結果になってしまったのかと申し訳ない思いもする。筆者本人が信じられない程、物理学理論の矛盾の多さに困惑している。それも電気回路現象の本質が見えた結果としての結末でもあった。実は今ある磁場の意味を考えて、新しい磁気現象・マグネット磁場の記事を書き始めた。しかしどうしても、電気磁気学理論の根本法則である「アンペアの法則」についてもう一度その根本原理の意味をかみ砕いで自身で整理しておこうと思った。科学への真の信頼を取り戻すためにも。

アンペアの法則と磁気の概念

図1.直線電流と磁界 アンペアの法則を直線電流 I[A] によって表現してみた。電流ベクトルを直交座標 r = xi+yj+zk  で表現する。単位ベクトルをそれぞれ ij および k とした。p 点の座標 r の方向単位ベクトルは r/r となる。無限長直線電流による電流周辺空間に磁場が生じる現象を数式によって評価する基本概念として、アンペアの法則を捉えて良かろう。実際の技術的認識には極めて理解しやすい表現の法則である。その現象の物理的意味を考えるとき、何故電流の位置から離れた空間に磁界が発生するのかと言う疑問が浮かぶ。なお、電流は少なくとも往復2本の電線で囲まれた空間回路でなければ、電流概念も成り立たないことを付け加えておく。実はまたこの電流と磁界のことを考えると昔を思い起こす。昭和61年春のこと、高専の電気科4年生の電気磁気学の授業中に、電流の磁界Hの空間磁場模様を rot H [A/㎡] = J の電流密度空間として計算例題に選んでいた。と記憶している。その時廊下の窓から黒板の板書内容を写真に撮って行かれた。それは中曽根臨教審の関係の出来事と後で理解した。

電流はアンペアで、電荷の時間微分の概念である。それはあくまでも『電荷』の流れが離れた空間点の『磁束』即ち磁束密度(μH[Wb/㎡])の発生原因となる意味である。「クーロン[C]」が「ウエーバー[Wb]」を発生することになる、基本的に「次元変換」の自然現象解釈となる。『電荷』が『磁束』の意味を内包しているとは定義されていない。『電荷』は、その存在空間に如何なる物理的空間像で表現されるのかと言う疑問に答えていない。それは空間に描く『磁束』の空間像と結び付く『電荷』概念像でなければならない筈だ。物理的な基本概念で、その理解し易い物理的空間像が明示されなければならない筈である。それが論理性を基礎にした科学論を展開する場合の基本姿勢でなければならない。離れた空間座標点に何故『電荷』の運動で、『磁束』が発生するのか?磁束密度B=μH[Wb/㎡] は電流が磁界を発生すれば、自動的にそれは磁束と解釈する。空間は透磁率μ[H/m]の場と捉えている。何故か?と疑問を抱くこと、その疑問を子供たちに伝えることが教育の姿勢であるべきだろう。そんなに自然のことが解っている事ばかりではない筈だ。殆ど分からないと考えるべきじゃなかろうか。

電子と磁気。 

図2.電子と磁気 いろいろの解説記事で磁束の発生に電子スピンと言う用語が現れる。磁束の発生原因に電子スピンを唱える方は、電子のスピンと言う現象をどの様な空間像で捉えておられるのか?電子がスピンすると何故磁気が生じるのか。電子は空間的にどのような像で捉えているのか?電子は『電荷』と『質量』を備えた基本粒子となっている。『電荷』がどのような速度 v[m/s] の運動をするとそれが『磁束』に変換されると言うのか。

マグネット磁気。

図3.マグネット。マグネットの機能は磁束で解釈される。磁束は磁力の機能を何故発揮できると考えるか。実際マグネットはとても強力な磁力を発揮する。

 

図4.磁束と磁力 F(φ)?

何故磁束が磁力の基になると考えるのか?磁気のクーロン力には磁束は関係していない。磁気のクーロン力に表現される変数の『磁荷』は存在しないことで一般に解釈されている。マグネットは近付けると磁力が増す。磁束が変化するのか?磁束が磁力の機能を発揮するとの解釈はどこにも示されていない。それなのに何故磁束が磁力の重要な基の如くに考えるのか。

磁力の原因は何か?

何故マグネットは磁気を保持したまま、その磁力が弱まらないのか?磁性材料の代表が鉄である。何故鉄が強磁性体の特性を持っているのか。周期律表で、傍の銅は磁気特性を持っていない。原子構造の違いは電子の配列で解釈する。そんな違いが鉄と銅で生れる訳を、周回電子が発揮する程の物理的役割を持っていると考えられるだろうか?図2.の(2)鉄の磁気とは?で示したのは、鉄の電子スピンが磁束発生源だというような解説が有る。マグネットの磁気は本当に電子スピンによると解釈できるのだろうか。磁束が発生しても、何故その磁束が磁力を生じると考えるのか。昨年の記事 物理学理論と磁束 (2019/04/22) に重ねて、電子スピンを唱える方が、その具象像を御提示をされることを願い、求めて取り上げた。

『エネルギー』はどこにある。

図5.エネルギー流と磁力

マグネットや磁針の磁極 N 、Sの近傍空間にはエネルギーが流れている。そのエネルギーの回転流の方向は図5.の磁極間のようになる。この空間のエネルギー流の流速がどの様であるかは検証できない。空間のエネルギーは光速度に近いと考えるしかない。電線路の伝送エネルギー流からの推測である。そのエネルギー流が磁極NとS間で接近すると近接作用力として、周辺部に高密度の急勾配分布をきたす。磁力 f = rot (S/c) [N/㎥]はギャップ空間の周辺部単位体積当たりの力密度の解釈である。電気学会 電磁界理論研究会資料「資料番号 EMT-87-106」(1982) p.152 の(29)式である。

むすび

二つのマグネット間の砂鉄模様を観測すれば、ギャップを狭くするにつれ、砂鉄はマグネットの外周辺に集中し、マグネット中心部には砂鉄は無くなる。マグネットの磁力は周辺部のエネルギー流分布勾配の空間微分によって決まると解釈する。 電気磁気学の要-Axial energy flow- (2019/03/03) がある。また、コンパスと砂鉄の心 (2015/12/03) で砂鉄模様からエネルギー流を調べる意味を述べた。

エネルギーと結合

はじめに

科学常識を逸脱した科学的検証の見込みもつかない論理の展開を試みる。ここに述べようとすることは科学理論や法則に基づくものでないから、とても科学論とは認められないかも知れない。その事をはじめにお断りさせて頂く。しかし自然界に『電荷』なるものが実在するとは到底考えられない。18世紀の科学論の始まりからその根底となって来た基礎概念である電荷を否定したら、そこに見える自然の姿は全く異なったものとして目に映ることにならざるを得ない。自然世界は何を以って形作られているか。眼で見たことも無いが、天体のお話から推論すれば、太陽系はじめ銀河や星座の形はすべて回転がその基本を成している。日々苦しめられる台風災害も、その基は回転現象である。地球だって回転している。回転が自然の構成原理でなくて、他に代わり得るものが在るだろうか。その回転は科学論の原理や法則には見えない。酸素と水素が結合すれば水分子となる。結合エネルギーで結合されていると高校理科の化学で解説されている。しかし、その真の意味を理解する術を筆者は持ち合せていない。どんな結合の力かは理解できない。マイナス電荷とマイナス電荷で手を繋ぎたいと思っても、多分断られるだろうと諦める。それは有名なクーロンの法則の原則に従えばである。しかし科学論では同種電荷の電子同士が手を繋ぐ不思議が許されている。実はこの記事を書く切っ掛けが、IT検索で初めて知った『結合エネルギー』の解説であった。その化学の基礎も知らなかった恥ずかしさがこの記事の基ともなった。せめて高校生が疑問に思うことに答えられれば良いかと、科学理論に拘らずに自由に結合エネルギーの意味に解釈を下してみたい。

エネルギー素量と極性

自然界では空間にエネルギーが実在していると考える。その姿の基本は光である。光は空間を光速度で伝播するエネルギーの縦波の波列である。光のそれぞれの最小単位は波長 λ[m]ごとの空間長のエネルギーch/λ [J]の分布波である。その空間のエネルギーの存在形態は光だけではない。ある点に留まる局所化されたエネルギーも存在する筈だ。電気回路のコイル内の貯蔵エネルギーもその一つに挙げられよう。その局所エネルギーの形はどのようなものが可能かと考えれば、軸性の回転流を思い描くことが出来よう。それが図1.である。

図1.エネルギー流と極性 p(有極性) wp(弱極性) np(無極性) 世の中にある身近な科学概念に関係する物にマグネットが在る。マグネットは日用品としてメモ止めの繋ぎ手の代表格である。物理学では磁束で解釈する。磁束が繋がると何故力を生むか、その理屈を考えても理解できない。マグネット同士を近付けると急に強い力になる。感覚的に誰もが実感できる。しかし磁束でその力の訳を理解しようとしても納得できないのではないか。近付くと磁束が太くなるという理論も無いようだから、力が距離の2乗に逆比例するという意味の理屈が見えない筈だ。結局磁気現象の理屈が分かっていないからであろう。理科教育では磁気のクーロンの法則として覚えさせるようだ。この記憶させる教育で、語学と違うのが理科教育であろう。覚えさせて、受験競争用の能力を鍛えれば、頭が固定概念により創造性の邪魔になるだけである。何故磁束で力が変化するかの理屈を説明出来るかである。電荷による繋ぎ手を否定すれば、磁気による繋ぎを考えたくなる。マグネットの力は自然の姿を映し出している筈だ。磁気現象はすべて空間エネルギー流の回転に秘められている。力の新しい解釈として空間のエネルギー流が有効と考える。エネルギー流が揃えば高密度化の方向に力が働く。磁極のN極がエネルギーの左向き回転流の方向を意味する。左ねじの回転方向がエネルギー流の回転方向で、ネジの進む方向が磁極のN極である。磁極の意味はエネルギー回転流の軸性を捉えた科学技術概念である。局所化エネルギー流の姿として考えられるのが図1.になる。磁場で影響を受けるのがpの有極性のエネルギー流である。影響を受けないのがnpの無極性エネルギー流の場合であろう。その間のエネルギー流の様態の変化もある筈だから、それが弱い有極性のwpと考えたい。このwpの小さなエネルギー流が何らかの原因で分離すれば、いわゆる電子という電荷の無いスピン流体となるとも考えられよう。このエネルギー回転流体が軸性を持つという意味で、軸性エネルギー流と言えよう。また表現を変えれば、軸性エネルギー粒子と看做すこともできる。

原子質量の概念と実像 

質量とは何かと考えると簡単にその意味をまとめられない。高分子化合物も質量体である。その構成要素は原子となる。多くの種類で捉えられる原子もすべて原子核と外殻の電子群で解説される。その原子論も、原子核内が陽子と中性子から成り立つとある。陽子はプラスの電荷を持つ素粒子で中性子は電荷の無い素粒子とある。ウランのような核分裂原子は分裂すると様々な原子になる。時には核から電子放射(β崩壊)をして原子番号の多い原子プルトニュウムにもなるという。それは中性子から電子が分離した結果ととれる。電荷の無い筈の中性子から電子というマイナス電荷の粒子が放射され、結果としてプラス電荷の陽子となるという誠に理解に苦しむ解釈が原子崩壊理論として正々堂々と科学常識になっている。そんな科学論で電荷とは何かを問わない、あるいは理屈を質さないでは置けないと思うが如何がでしょうか。そんな単純な疑問には何の数式も要らない日常用語で解説できる筈と思う。たった一つの『電荷』の概念位は、その実在性を唱える方々がどのような空間像で認識されるのかを示して欲しいものだ。プラスとマイナスの違いはどのような空間像として認識するのかを。単に磁場内での軌跡から判断出来ると言われても納得できない。素粒子とは空間に実在する物であれば、空間像を持っている筈だから。もし図1.のエネルギー回転流で粒子の空間像を解釈するとすれば、その粒子も磁気の科学技術概念に沿うものとなろう。そこには電荷の空間像を考える必要もなくなる筈だ。この局所化エネルギー粒子も質量の概念を備えていると看做せよう。原子核が有極性の陽子と無極性の中性子の組み合わせで構成されると解釈すれば、軸性エネルギー流間での磁気的核子結合力を想定することが容易になるであろう。そこに電荷は必要でない。原子核構成要素が軸性エネルギー粒子の結合体と解釈すれば、質量の本質もエネルギーとなる。

原子結合の結合エネルギー 

生体の高分子結合は主として炭素、窒素、酸素そして水素が担っているように解説されている。そこにリン等の原子が組成を成している。それらの原子同士を結合する結合手を電子などに任せる解釈には説得力が無いと思う。電子で囲まれた原子像では、余りにも原子核の原子特性に果たす役割が見えないではないか。原子特性の主役は核にあると考える。核の影響が原子周辺空間に強く出ていなければ、その原子論は説得力に欠けているように思う。そう考える時、原子外殻に電子など必要が無いと思う。水という最小の分子結合形態でも、そこには結合エネルギーが必要であろう。酸素と水素の結合に果たす役割をどのような空間像で理解しようとするのか。化学で取り扱う原子結合で結合エネルギーが取上げられていることに安心もした。木炭の燃焼や水素ガスの燃料電池で、結合エネルギーの意味が重要になる。原子核分裂では質量欠損と結合エネルギーの関係が論じられる。これらの話はすべて原子結合の意味に関わる基本的科学論に通じているように思う。この意味は2009年9月に発表した 電荷棄却の電子スピン像と原子模型 日本物理学会 第64巻2-1. p.18. にも有る。

むすび

原子表面には、核の構成エネルギー粒子群の構造が基となった原子特性が表れている筈である。磁極NとS極が4極ずつの8極を周期とした原子表面を呈すると考える。電子などの周回軌道でなく、原子表面の静止磁極分布が原子結合の空間構造を決めると考える。DNAの螺旋構造はじめ炭素原子のNS分布が分子の空間構造を決めると予想できる。カーボンナノチューブの構造も、炭素原子表面の磁極分布から単純な円筒とは成り得ないと考える。炭素結合の秘め事にも関係の記事を記した。

 

電流計は電圧計だ

電流計は電圧計だと言えば、電圧計は電流計だと言うことになる。電圧計の意味は電気の眞相(3)-電圧と負荷ーで電圧計と内部回路に示した。電流や電圧はすべて空間に存在するエネルギーとその伝送現象を科学技術概念として規定した計測量である。エネルギーの発生と消費を科学技術の現代社会基盤に据えてその利用形態概念として確立して来た。電圧計も電流計も直流なら可動コイル型、交流なら可動コイル型にダイオードを組み合わせた整流器型あるいは可動鉄片型が汎用計器として使われている。それらの計器の測定技術は計器内のコイルの貯蔵エネルギーに依る磁気的力を利用している。

可動コイル型可動コイル型 電圧計も電流計も磁石の間のコイルに電流を流してフレミングの力を利用している。図の磁気の極性は内側と考えてください。コイル電流と言いますが、実際はコイルの周りの空間に貯蔵されるエネルギーの回転流だ。その様子を図示すれば、

可動コイル型電圧計とエネルギー流コイルエネルギー流と磁石エネルギー流間の近接作用力 電圧の説明の図であるが電流と同じ作用。そこで標題で電流計は電圧計だと言った意味を説明したい。

写真097負荷と電流計 可動コイル型計器で考える為直流電源とする。線路に多くの負荷が接続された中で、その回路の電流を知りたいところに電流計を繋ぐ。その接続した電流計は何を計測するのかと言うことを知らなければならない。その為には電流計の内部回路を理解しなければならない。電流計もその測定したい回路電流の流れる電線路に直列に接続する。或る物を計測するには、その現象の中の一部のエネルギーを取り込まなければ、計測することは出来ない。電流計が幾ら内部抵抗が無視出来るほどであるとしても、負荷に対して直列に電流計自身が負荷として加味されるのである。電流計の内部回路とその計測機能を考えて見よう。

写真099内部回路と電圧 一つの電流計Aが負荷Pの電流を計る為に接続されている。内部回路は抵抗とコイルの並列回路である。磁石内の可動コイルは微弱電流しか流せない。そこで、負荷電流ipの殆どを流す為の並列抵抗(抵抗値ほとんど零のシャント抵抗) r を組み込む。その抵抗の値を切り替えて、電流の測定範囲(レンジ)を変更する。それでも回路には負荷に直列に抵抗が繋がる。だから、電流計はその微弱抵抗に掛かる電圧を計測のエネルギー源としているのだ。さて、可動コイルLは細い電線のコイルであるから、必ず抵抗 r’ を含む。コイルは直流電圧に対して、電圧を受け付ける事は出来ないから、必ず抵抗が含まれなければならない。電流計に掛かる電圧値Vi は結局並列抵抗(r,r’)の合成抵抗として負荷電圧を取り込む。結局可動コイルには、直流電圧の積分値としての過渡現象分のエネルギーが貯蔵される訳である。それは、前に電気回路要素Lの機能とエネルギー感覚で述べた事である。コイルのエネルギーはコイル空間内に貯蔵されるのであって、決して電流がそのエネルギーを保持するのではない。貯蔵されるのはコイル空間内のエネルギー流である。電流計、電圧計の計測機能は磁石の磁極空間内に生じる磁場と言うエネルギー回転流と可動コイルのコイル内エネルギー流との相互近接作用によって、空間エネルギー力がコイルを制動バネとの釣り合いまで回転させるのである。電流計が指示する測定値 ip は

ip=K(2Wi/L)^(1/2)^

ただし、K=1+(r’/r) の分流定数で可動コイル内の貯蔵エネルギーWi[J]を計測値の基としているのである。全体の電流計の電圧も図のようになる訳だ。

まとめ この記事に電流計の機能をまとめようと考えた理由と意味を述べよう。2年前の2013年6月に、回路とエーネルギー流電流解剖論ーを書いた。その時は直流回路で、負荷供給エネルギーの流れが負側導線からの還流として捉えていた。しかし電圧の系統規模を決める線路間エネルギー分布の意味と統一的に捉えてはいなかった。その時は電圧と電流の二つのエネルギーの流れの曖昧な解釈に留まっていた。今年6月2日の変圧器の奇想天外診断から8月14日の 天晴れ(コイルと電圧とエネルギー) までの考究で確信を得た。それは線路間に分布する空間エネルギーが電圧と言う系統規模を決め、それが負荷供給のエネルギーとなるとの確信に到達した。今回それらの総合的取りまとめとして、直流電源の線路のプラス側であろうと、マイナス側であろうとどちら側に電流計を接続するかには無関係に電流計測が出来ると言うエネルギー流からの疑問解消の解答を得た。その意味を今回の記事として直流電源回路を取上げて解説した。

電圧計が計るもの

科学技術を支える理論に電気理論がある。しかしその技術概念は物理的な意味を追究すれば、極めて曖昧なものである。技術と物理学理論との関係を明らかにすることが、明日への学問に必要であると考える。今回は『電圧』と言う科学技術の概念を、電圧計が何を計っているかについて考えることによって、少しでも明らかに出来たらと思う。電流と電圧の正体で述べた事であるが、少し補足の意味で追加する。電圧と回路

無負荷時の回路を示す。電圧計の内部は電気回路である。直流の電圧計は可動コイル型計器である。電流計が導線内を流れる『電流』等を計っていないと同じく、電圧計も『電圧』など計ってはいないのだ。電圧計にも図のように『電流』が流れているように表現する。電流 iv の値で電圧計の表示値が決まる。

可動コイル型電圧計とエネルギー流電圧計も電流計も内部の電気的回路構成は全く同じものである。磁石の中に回転する可動コイルが支持されている。その軸に制動バネ(コイルの回転を妨げるバネ)と電圧値の表示用指針が固定されている。軸受で、軸がコイルと共に回転する。その回転力がトルクτである。コイルに電流が流れるという意味は、コイル導体の周辺にエネルギーが貯蔵されることを表していて、そのエネルギー量を表現していると解釈すれば良い。アンペアーの法則やフレミングの法則で電気理論では解説されるが、本質は単にエネルギーの自然現象である。それを電磁エネルギーと言うインダクタンスLv内の貯蔵量として理論で説明されているのである。そのエネルギーの状況をどのように認識するかが重要なのである。磁石内の空間ギャップには磁石自身が造るエネルギー流が存在する。そこに可動コイルの貯蔵エネルギーが追加されれば、エネルギー流間での相互干渉が起こる。図にギャップエネルギー流とした。そのエネルギー流間の相互作用が力の『近接作用』と言うものである。水の流れで、互いに接する間の水流は相互作用をし合う訳である。それと少しも変わりの無い現象である。水の流れは目に見える。しかし、電磁エネルギー流(熱や光のエネルギーの流れ)は目に見えない。目に見えなくても、自然の現象は同じであるという極めて単純性がその本質なのである。人間が自然を解釈するのに、勝手に複雑に考えているだけなのである。ただ、空間を流れるエネルギー流の間の相互近接作用力をどのように数式で表現すれば良いかは、実験的に評価できないままである。電圧計指示値

電圧計が指示する計測量の意味を最初に挙げた無負荷回路との関係で、数式で示せば、ファイルのようになろう。

(2015/06/23)追記。線路電圧の新しい概念解釈を示しておこう。エネルギーで観る線路電圧 。

フレミングの法則を解剖する

(2017/10/03)追記。以下の記事を考える。科学技術が成熟期に達した今、改めて過去を振り返り見直す必要があろうと思う。フレミングの法則は電磁現象の中でも、電磁力を解釈するに誠に便利で有用な法則である。ただ、便利であってもそれが自然界の真理であるかと言うと、それは違う。科学技術の多くの概念は総体的に良く統合されて、完璧であるかに見えるが、深く考えると辻褄の合わない矛盾や綻びが見えるのである。それは、どこか最も根源的な概念で矛盾を抱え込んでいるからだと考えなければならないのだろう。その矛盾の根源が『電荷』である。科学技術概念と自然の真理とは同じくないのだと言うことを知って欲しい。法則は科学技術の方便としての有用性で価値が有ると言うことを。

繰り返し、生きた生活感覚上の自然科学論を論じてきた。子供達、学生が自然の世界の本質を理解しようと思うとき、ただ学校教育だけでは無理かもしれない。

電気現象を理解する法則の中に、フレミングの法則がある。磁界中での電気導体との『電気力学』を人の手指で表現した法則だ。フレミング(Fleming,John Ambrose)は イギリスの電気工学者(1849-1945)。フレミングの法則を磁場のエネルギー流間の『近接作用力』によって解釈しようと言うのである。アラゴの円板と近接作用力に関連した記事を記した。フレミングの法則とは?

電気現象はすべて電流の電荷と磁界の磁束概念で解釈されていた。しかし、もうそんな概念で電気磁気現象を解釈するのは「科学教育・理科教育」としては未来性が保証できない筈だ。基礎概念の矛盾が大き過ぎるから。自然現象は単純性こそその本質であると認識しなければならない。有名な基本法則を改めて、エネルギー流から問い直すべきと考えて、フレミングの法則を取り上げ、新しい解釈を示したい。そこで、先ず左手の法則の旧来の解釈を示す。フレミングの左手の法則

単純な回路を示す。磁石の上に、平行導線を張り、そこに摺動電線を渡す。磁石はN極とする。摺動電線には電流 i [A] が流れるとすれば、電線にはf[N]の力が掛り、動き始める。その式 f=Bli で電線にかかる力が求まる。というのである。その示す意味は、実に美しい単純な式で表現されて素敵である。ここで、その式の中で磁束密度B[Wb/m^2]は空間の磁束量であるから、それを測定することは不可能である。測定器具を当てれば、空間の磁束量は測定器によって干渉され、考える磁束量など計れない筈である。もともと磁束という空間内の線量など存在しない物理量である。法則の式は実に素敵であっても、仮想概念でしかない訳だから、一つの理解の解釈手段でしかない。それは技術的な手法で有用であっても、厳密な測定など出来ない量である。次に電流も、同じく電流計で計測できるが、それが電子の逆流のどんな数量を測定しているかと言えば、矛盾的概念故に解釈に窮してしまう。『電動機』の技術的解釈手法として有用であるが、一つの方便でしかないと言う事を理解しなければならない。自然現象の本質を表現していると言うような「理科教育」的解釈は間違っている。少しも『真理』などではなく『方便』でしかない。フレミングの右手の法則

同じ回路で、右手の法則を示す。電流 i が流れる。力 f で摺動電線は速度Vの方向に動く。その電線をその力以上の速度で仮に動かしたとすれば、どのような状況になるだろうか?電池の電圧Eに対して、e≧Eとなる速度で動かせば、電流は流れなくなるか反対の向きに流れ出す。電源を充電することになる。それが『発電機』の原理解釈の技術的な意味を表現した右手法則である。発生する電圧の方向が摺動電線の電流と逆方向に生じるからである。

右手(発電機)と左手(電動機)が対象的に表現されている事は技術法則として非常に有用である。改めて、技術理論と物理的真理とは同じくない事を理解すべきである。フレミングの法則の近接作用

磁石の近傍空間を周回するエネルギー流を観測する事は出来ない。その流速度も分からないが、局部空間に閉じ込められているエネルギー流であるから、光速度に比べて遅いと考えたい。磁界について、磁界・磁気概念の本質に磁石近傍空間のエネルギー流で説明した。

左手の法則は磁場内の導線に流れるエネルギーが電流と逆向きに図のように、緑色の流れになるだろうと解釈する。磁石のエネルギー流を青色で記した。その磁石のエネルギーと銅線のエネルギーの間に、『近接作用力』Fが働くと解釈した。その二つのエネルギー流の方向は同じ向きである。エネルギー流が同じ向きで重ね合わせられる場合は、そのエネルギー流の間に空間的に局所化し、より急峻なエネルギー分布状になる性質を備えていると解釈したい。

右手の法則は磁場内で導体の相対速度を増すと、磁場のエネルギー流との間に強い反発作用を受けると解釈した。導体側では、磁場エネルギー流に対抗するように、逆向きのエネルギー流を生むと考える。その発生するエネルギー流の向きは起電力eと逆向きで、磁場エネルギー流に反発する摩擦流の意味を持つ。その現象は、電磁誘導の『レンツの法則』に相当するとも言える。

(2017/10/08 追記) 不図気付いた。科学社会のエネルギーと運動力学 (2016/08/26) で発電機と軸の関係を述べた。その機械系統の『エネルギー』伝送機能は負荷トルクが軸に掛からなければ、発電機能を果たせない。即ちフレミングの法則で、発電機の固定子巻線(電機子巻線)に対して磁極が回転して起電力が誘起されると言う意味だけでは、発電機の機能の運動力学としての意味を説明したことには成らない。磁極と電機子巻線間で力の負荷が『エネルギー』伝送の欠かせない条件である。発電機から送電線路へ『エネルギー』を送り出すには電線路側からの磁極の回転にブレーキが掛らなければ不可能である。『エネルギー』送出の意味をフレミングの法則に加える必要がある。さらに、エネルギーとは何か―電力系統に観る― も参考に挙げておきたい。

ついでに、単位についても記した。磁束密度B[Wb/m^2]と長さl[m]および電流i[A] の積が何故力の単位F[N]に成るかは簡単ではなかろう。ヘンリーHとファラッドFおよびエネルギーの単位ジュールJに基づく導出を付記した。

アラゴの円板と近接作用力

アラゴの円板と近接作用力アラゴの円板は日常生活に関係したところで利用されている。家庭の積算電力量計が家の玄関口に在る。使用電力の時間積分で、消費量の取引量を測るメーターである。円板に流れる『渦電流』が円板回転の原理として有名な電気現象と看做されている。回転円板はアルミニュームが一般的である。電流あるいは電子を切り捨てると、渦電流による解釈も物理現象としては納得できない。磁石周りの磁気をエネルギー流として解釈した訳であるから、そのエネルギーに基づく力を求めなければならない事になる。上の図に、磁極N を動かすと、アルミ板の周辺に回転していたエネルギー流と磁石のエネルギー流の間にずれが生じる。そのずれの遅れを取り戻そうとするエネルギー流間に力が生じる。アルミニューム板を磁極に近付けると、磁石磁場がアルミニューム板を突き抜けて、表にも生じると解釈する。

アルミ箔上に現れる磁石磁場の砂鉄模様。

アルミ箔の磁場(2019/05/22)追記。問答を一つ追記して置きたい。この砂鉄模様はどのようなマグネットでも観測できる。理論では磁場は一定とする等と解釈条件が付けられるのが一般的である。しかし実際は、マグネットの磁場模様は一様ではない。中心には磁場は無く周辺部に強い磁場が見える。 《さてその訳をどのように解釈するか?》が問題。磁石磁場の砂鉄模様と同じ模様がアルミ箔を通しても得られる。このアルミ上の砂鉄模様も磁石を動かせば、その動きに連れて移動する。

鉄磁場

鉄の金属板を磁石上に置いた場合の磁場の砂鉄模様である。適当に手元のブックエンドを利用した。鉄ブックエンド

参考にそのブックエンドとその配置図も右に示す。アルミ箔と異なり、鉄板を通すと、少し様子が異なる。

アラゴの円板と言う磁気との関係は鉄板では成り立たない。非鉄系の金属板、アルミか銅板と磁気との間で起きる現象である。そこには、磁石の移動に対して『遅れ』がある。誘導電動機における『すべり』の意味と同じ現象である。その現象を磁気エネルギーの二つの回転流間での近接作用力として解釈すべきと考えた。遅れの生じたアルミ箔にまつわるエネルギー流が磁石磁場エネルギー流に追随するようにエネルギー流間の近接作用力を生み出すと解釈した。そのエネルギー分布がどのような関数形式になるべき『近接作用力』表現になることを求めているかは未だ捉え切れていない。その一つの表現式が渦巻の解剖になろうと考える。

磁気概念の参考:磁界・磁気概念の本質をご参照ください。

エネルギーで観る世界ー素粒子ー

素粒子の世界 とんでもない世界に踏み込んでしまった。考えると当然の事とも思える。極微の世界に論を進めるなんておこがましい事でもある。全くの素人が特別の専門領域にである。それはたった一つの『電荷概念』への直覚的矛盾認識からである。世界、自然世界観で、自然科学の理数分野では電荷が理論構築の根源的拠り所である。それを否定する事は、言わば科学でなく文学だと酷評される程、今までの専門家としての権威に対する挑戦ともとれる内容でもあろう。その電荷概念のもとで現在の科学技術社会を構築して来たではないかと反論されよう。素粒子とは何か?物理学の歴史を辿れば、原子論の議論がその発端と考えても良いかと思う。医療技術で「MRI」はとても有効に病気診断に役立っている。しかしその原理がよく分からないのである。理論解説で、水素原子や電子の何々と言われても私の頭ではとても理解の及ばない領域の話になる。それではと、それを哲学や文学で捉えようとしても無理である。高度な数式を使わないで、その原理を捉える事が出来ないかと儚い望みを抱くのである。そこで、どうしても『原子構造論』に論を進めて行かないと理解できないと感覚的に思う。なんで電荷が無ければ、原子の極微の世界を理解できないのかと疑念が湧く。素粒子論の取っ掛かりは昔どこかで見た写真が有る。磁界(磁束密度)B の空間に未知の素粒子が飛散してきた時、その軌跡から陽子とか電子とかあるいは中性子とかと磁界と電荷の間に生じる力で、その素粒子が何であるかと判断する様な話が有ったと記憶している。電界、磁界との間の電荷に生じる力をローレンツ力と言う数式で解釈していたようだ。磁場B[Wb/㎡]の中で、電荷q [C(クーロン)]が速度V[m/s] で運動すると、ベクトル積[V×B] に比例した大きさの力が生じる。この話を初めて聞けば、誰もがそうかと納得する。しかし、しつこく疑問を膨らませてゆくと、簡単にその通りだろうとは納得出来なくなるのである。こんな事から入って、話が纏まるかまったく成り行き任せである。この行き着く先に必ず未来が開けると確信できるから、無謀が魅力ともなる。

磁界と電荷の相互作用原理 磁界とは何か?電荷とは何か?その二つを結び付ける作用原理は何か?と言う基本的で、幼稚過ぎると思われるような『問答』が西洋の科学論には欠けていると思われる。磁界と言うものの中身を説明できるかと言う問いである。磁石などの面に近い空間に何かが有る事は誰もが感じ取れるだろう。磁石のN極とS極を近付けた時、近い程強い力で引きあう。その引き合う力をどのような自然現象として捉えるかと言う問いである。教科書の説明を見れば、NとSの間に引き合う磁束の線が有り、それがゴム紐のように引っ張り合うからだと答えるぐらいの答えしか用意できていない。ゴム紐なら、近付けば力は逆に無くなるのだけれども?高度な物理学理論では『超弦理論』と言うものがある。それは凡人の頭では、理解の域を超えて、難しい。だから、もっと誰もが解り易いように説明できないかと思う。そこで、磁石の間に磁束を仮想するより、その空間に確実に存在するものが『エネルギー』である事を認識する事から始めるべきだ。そのエネルギーをエネルギーとして実在すると解釈できないで、回りくどい磁束などと言う概念を仮説・仮想して、理論を展開するのが西洋流の科学論法である。磁石の間に何が有るか?その答えを教科書通りに、磁束で理解しようとすれば、次々と難しい概念を作り続けなければならなくなる。磁束概念では到底真理に到達できたと納得できないだろう。この辺の話になると、理論物理学者も実際の電動機・モーターの運転をする機会は少ないから、実感としての磁気エネルギーの意味を体感出来ないのじゃないかと危惧する。モータや電磁石の取り扱いや、鉄心の特性に基づく設計・コイル巻き等の製作に携われば、磁気エネルギーが何処に、どのように存在するかが感覚的に会得できると思う。殆どの磁気エネルギーは鉄心材料の空隙ギャップ間の極めて狭い空間に集中して実在するのである。そのエネルギーが磁束線で出来ている等と解釈する事で、理解出来ると言う人は、とても磁場を理解している人とは信じ難い。『磁気現象』で、最近の話題になっているのが『超伝導』である。物理学理論では、専門の研究者が競って高温超伝導材料の発見・開発に鎬(シノギの漢字を初めて知る)を削っているようだ。どんな材料が選ばれるか、とても興味があるが、結局は導体周辺を伝送するエネルギーの熱化損失を極小化出来るものが選ばれるであろう。導体金属結晶・分子構造のエネルギーの通り易さが決め手になる。決して電流(と言う電荷の通過流)が導体中を流れるのでない事だけは真理である。磁気と言う自然現象の中身は空間エネルギーを捉える解釈の仕方に掛かっているだけである。超伝導現象も導体周りの空間エネルギーの特徴の一つでしかない。以上で磁気の話から一旦離れる。

次は『電荷』に関する話になる。電荷と言う概念をどのように空間の実像として捉えるかと言う事である。世界を二つの対象概念で捉える手法は、哲学的方法論になるように思う。男と女が生物の存在に欠かせないと感覚的にも納得し、理解しやすい。昼と夜の世界も昔は不思議なものだったかもしれない。世界を『エネルギー』一つで解釈することは中々世界認識法として、感覚的にも不慣れな為でもあって、どうも難しいのかもしれない。二つの物で比べる見方が有効であるのは、世界の基本的対称観察意識に慣れている事があるからであろう。極微の原子構造をプラスとマイナスの電荷の引き合う引力と解釈する方法が簡便で納得し易かったのである。しかし、電荷のプラスとマイナスを空間像として認識しようとすれば、そのプラスとマイナスの差をどのようなものと理解すれば良いかで、ハタと困惑の域に迷い込むのである。無いものを定義・概念化する事は何時かその真実を追究する時、化けの皮を『説明不可能』と言う事態で露呈するのである。今、科学理論が抽象的概念構築で進められて来たと考えざるを得ない現実の矛盾に直面していると思う。電荷を否定されたら、物理学の根源的『原子構造論』のE.Rutherford(1871-1937)や電子発見のJ.J.Thomson(1856-1940)まで遡らなければ成らなくなるという辛い現実がある。そこで、解決法は負の電荷と質量を背負う電子概念をどう修復して電荷の無い世界の解釈法を得るかと言う問題になる。確かに原子が軸性(独楽の軸のような性質)を持つ事は間違いなかろう。様々な原子結合で分子の集合体が構成される。その結合力を電荷無しに解決するには軸性のエネルギー回転流しか道は無い。世界の結合を統べる『力』の根源は『エネルギー回転流』のみであると解釈する。電荷、磁荷間に働くと考える直線的な磁束や電束概念では、力の解釈の本質に迫れない。ここで、全く新しい磁気概念像を提示しておく。 それは理科実験に使われるコンパスについてである。コンパスはN極とS極で磁束がそれぞれの極の先端に出入りして居る像で捉えている。しかし磁束などは仮想概念で実在するものではない。磁束概念を打ち破るには、新たな合理的概念を提示しなければならない。それが、磁極の近傍空間での『エネルギー回転流』である。上の図はその概念を簡便に表現する自慢の図である。この磁極のエネルギー流の方向性を決定するに長い歳月を要した。 磁界・磁気概念の本質 にも解説。

ほぼ結論的な事を論じた。だめ押しになる話で、恐縮ではあるが、電荷と磁束の間に『力』が生じると言う解釈は電気磁気学理論には無い。ファインマン(「ご冗談でしょう ファインマンさん」と言う御本で有名な物理学者)の電気磁気学の教科書にも、「電荷も電流も時間的に不変である限り電気と磁気とは別々の現象である」とある。この事は電荷と磁気は相互に影響を及ぼす力は無い事を説明していると考える。そこで、電荷と磁気が相互作用をする原因は無いにも拘らず、何故電荷が動くと磁気との間に力が生まれるのかと言う疑問である。電荷の定義には磁気と作用するという責務を課されていない。電荷が動くと磁気と作用するのは、動いた電荷が磁気に変化すると言う事でないと論理的でない。それでは、空間的に電荷がどんなものであるかを認識できないけれども、動くと磁気を空間に作り出すと言う事なのだろうか。磁気と磁気とは確かに磁石間の力から一応納得できる。電荷が動いた時空間に電荷から磁気を吐き出すような事になるのだろうか。その空間の磁気のエネルギーは電荷のエネルギーなのだろうか。電荷が空間に電気力線として広い場所を占有すると解釈するのだろうか。エネルギーは空間に実在する真の実在量である事を認めるか、認めないかの、言わばー科学的踏み絵ーを課したいのである。

電気の大切で、有名な技術法則がある。フレミングの右手・左手の法則である。その法則はアンペアの周回積分則の電流による磁界発生の基本法則と相俟っているものである。これはモーターの動作原理を簡単に左手の指で理解しようと言う法則である。磁界の磁束の向きに人差し指を向け、中指の方向に電流が流れると、その電流の流れている電線に親指の方向の力ベクトル f が生じると言う法則である。この法則を、この本章の初めに掲げた「素粒子飛散軌跡」の説明に使っているのである。電荷の運動方向を電流の流れで解釈する方法で解説するのである。ファラディ電磁誘導則・アンペア周回積分則の物理学的矛盾  を見ても、フレミングの左手の法則などで、素粒子論が説明されるなどと言う事は、とても納得できる説明ではないと思う。

(参考文献)自然界を理解するに、現代物理学の最先端の研究に期待が寄せられているだろうが、そこには真実は見えないだろう。科学者の論理に特殊化された集団論理に偏っていると思う。少し数学的論理内容ではあるが、自然界を支配する『力』について私が唱えた、科学者集団と異なる視点で発表した日本物理学会講演概要集を参考に挙げておく。

1 力密度 f=rot(S/v) とベクトル算法 第61巻2号2分冊 p。196.(2006.)

2 磁力密度 f=rot(S/v)  第63巻1号2分冊 p.310. (2008)

追記(2013/4/2)  上の力の式は時間的な変化を含まない。それは変動のない静的な状態で、その力を認識するだけなら有効と思う。しかし、常に変化する自然現象としては不十分である。長く唱えて来た式であるが、竜巻や台風の表現式としては十分でないと思う。それは空間のエネルギー動態に対しても同様に考えられる。エネルギーは集合した形態が『質量』であると考える。太陽系はじめ、宇宙の全てにその回転に本質的特質を備えている。万有引力を軸性の回転形態を創る原理的法則と看做す事は出来ない。万有引力の法則は回転を作り出せない。世界は「軸性回転力」に因って構成されると考えたい。すでに渦巻の解剖で提示したが、時間を含む式

dp/dt=rot S  [N/(s m^2)]

が近接作用力として合理的と考える。

また、素粒子ーその実相ーとして電荷概念なしのエネルギー流での描像を描いた。

地球の自転と万有引力を考える

(7月4日追記) 科学は高等数学で記述される。しかし、自然は本当は人に易しく語りかけて来るものと思う。難しい自然法則を掲げられると、それだけで尻込みしたくなる。そんな法則など余り当てにならないと思うようになった。だから「万有引力」などと言う物理学大法則を取り上げて疑問をぶつけたのが下の5月の記事である。今回追記しようと考えた訳は、最近の地球上における、気象異常現象とその多発が気掛かりになったからである。日本の夏の気温が猛暑続きである事は誰も体感している。(2018/11/29)追記。以下の偏西風は間違った解釈であった。地球の自転は貿易風が相対的な気体との関係を生み、その関連から偏西風の方向が生じると考えるべきであろう。それは地球の自転が何によって引き起こされているかとの関わりで考える必要があろう。その訳は物理学で答えられないのであろう。以下#・・#間の考えは間違いであった。#地球の回転速度より早く、大気が吹き回っているのである。地球が自転してその影響で偏西風が起きる訳ではないのである。#当然中国の上空の温度上昇が西風として日本に流れて来るのである。中国のエネルギー消費の増加に連動して日本の気温上昇が起こるのは当然の帰結である。二酸化炭素がどうのこうのでなく。要するに『エネルギー消費量の増大』が人間の生存環境に大きく影響を与えているのである。暑さを避けるには、貧乏人も、お金持ちもみんなが平等に生きる生活環境を分かち合わなければならない事に気付くべきである。クーラーで暑さをしのぐ経済成長路線が人間の生活環境を悪化加速しているのである。確かに、太陽光発電は二酸化炭素の発生抑制には成る。シリコン原材料の採掘から太陽光発電パネル製品製造過程のエネルギー消費量が発熱の気候環境に及ぼす分を差し引いての話である。原子力や、火力発電のように海水温を上昇させる訳ではないが、森林などの熱吸収効果と比較すれば、とても大きなエネルギー消費による気温上昇の原因には成るのである。『原子力発電の熱の行方』 。気温上昇だけでなく、風水害、森林火災の多発現象は人間の経済成長路線の負の産物である事を認識したうえで、未来の生き方を決めなければならない。二酸化炭素ガスの地球空気層の蓄熱作用は大きいだろうが、海水の温度調節機能は計り知れない大きさである。その海水温度上昇は永久凍土・氷河を融かし、海水の蒸発現象を促進し、大洪水の引き金になっていると解釈する。地球はグローバル化して狭い活動範囲になってしまった。世界中の人がどの様な未来の生活を望むかを、みんなで自然科学・自然の意味を理解して決めて行かなければならない時代に肥大し過ぎてしまったのである。地球環境は、極めて微妙な平衡状態に浮遊する対象であろう。地球が太陽系の中に浮遊する星であれば、多くの打ち上げられた衛星の宇宙ゴミもエネルギーバランスに必ず影響している事を認識しなければならない。また、嫌われるような話になった。

(5月19日記事)アイザックニュートン(1642-1727)が唱えた「万有引力」が宇宙や地球の運動を考える基に成っている。アインシュタインが唱えた『特殊相対性理論』、その発展上の『一般相対性理論』が現代物理学の宇宙論の拠り所と成っているようだ。しかし、それらの相対性理論は私から見れば、間違った理論と言わざるを得ない。何も難しい高等数学の数式が宇宙の真理を説き明かすものでないと確信している。現在『重力波』などが華やかに研究されているが、私には全く意味を成さないものである。そんな難しい事よりもっと身近に大きな疑問が山のように転がっている。宇宙空間が歪むなどと言う前に、何故地球が自転するのか?何故太陽を中心に惑星が同一方向の回転をするのか?上空の偏西風は何故西から地球の回転より早く回るのか?地球を回しているのは何か?等と詰まらぬ日常観測の疑問も『物理学理論』で簡単に説明できなければ、高尚な宇宙理論方程式にどんな意味が有ると言うのだろうかと異議を唱えたくなるのである。『詩心・・』70号「地動説」ってどんな意味?(2000年7月22日)ですでに疑問を吐き出しているが、今でも納得できないでいる。月と太陽と地球の運動はどのように理解したら良いのだろう。などと考えてみた。と冒頭にあり、終わりに『この地球の速度を知りたい。太陽の運動速度が解らない限り、自分の足元に不安が付きまとう』とある。先日ツイッターで「マイケルソン・モーリー」の地球の運動と光との相対速度の検出実験(1887年頃で、明治20年に対応する)の問題について触れた。その実験の検出失敗をアインシュタインが早とちりして、光の速度に関しては、日常生活で経験する様な二つの物体の運動に伴う、その相対性は観測上に現れないと言う解釈の基で、光だけは特殊な自然現象と看做さなければならないと言う事を踏まえて、『特殊相対性理論』と言うものを唱えた。ミンコフスキーの光空間とか、とても普通の感覚で捉えられない世界を構築したと言わなければならない。その学説の延長上に現在の宇宙論が有ると言ってよかろう。身近な疑問を挙げれば、地球と太陽が運動していると考えるなら、その運動の基準空間をどう認識するかと言う大問題になる。その基準空間を私は「光規定空間」と解釈する。空間は歪んでもいないし、どんな学説にも左右されず、ただそこに在るだけの全方位均等空間である。宇宙の果てがどの様であろうと地球上からの想像の域を超えることはできない世界と覚悟している。だから『光』が空間をユウクリッド幾何学の直線的に伝播する事によって決定する『光規定空間』が全宇宙に展開しているだけである。広大な空間に様々な形状で、渦巻状や回転体群の星座・星雲が個々別々の軸性を持って、エネルギーの集合局所化としての質量の集合群が生成・消滅の繰り返しとして宇宙世界を形作っているだけである。その空間を支配しているのが、物質の極限状態のエネルギー即ち『光』である。地球が運動していると言うなら、その地球の運動速度を規定する基準空間座標が確定できなければ成らない筈である。それは同時に太陽の運動方向とその瞬時速度を確定できなければならない事をも意味する。こんな至極子供じみた疑問が科学の宇宙論の基本問答として提起され、回答が求められて良いであろうと考える。

レーマー(デンマークの天文学者、1644.9.25-1710.9.19)の木星の衛星観測による『光速度算定』 木星の衛星の回転周期を観測して、地球が木星に近づく場合と離れる場合との間で、衛星の周期に違いが有る事に気付いた。その訳を地球の運動と木星からの光の速度との『相対速度』に原因が有ると解釈したのだろう。1675年に木星と地球との相対運動に基づく『光の相対速度』を算定したのである。現在光の速度は毎秒30万キロメートルと考えられているが、レーマーは光の速度を観測により、毎秒22万キロメートルと算定したようである。少し値が違うが、当時すでに地球と木星の相対運動を基に、光の相対速度と言う基本認識から算定していたのである。その実験内容の意味は「マイケルソン・モーリーの実験』で求めようとした、地球と光の相対速度検出実験と何ら違わないのである。マイケルソン・モーリーとレーマーの実験結果の違いは二つのミラー間の光の伝播経路の僅かな差に求めた事と木星と地球の相対運動の接近と離遠の大きな差に求めた事との違いが失敗と成功のカギを握る1つの要因となっただけであると言える。以上の事柄から、どう考えてもやはり地球の運動をどのような物だと確定する根拠を明確に示せない。光規定空間座標上に地球の運動状態を定義できないのが残念である。真空空間での光の速度が定義されているのだから、様々な星座や星の地球との相対速度が観測上で確定できれば、光に基づいた地球の運動を確定できるかもしれない。

万有引力とはどのような意味か? 太陽系が身近な天体である。その天体の運行で、何故同じ方向に回転するのかがとても理解できない事である。万有引力で説明しようとしても、太陽への引力と遠心力との釣り合いと言うが、質量も作用点も明確でない事や、公転・自転が万有引力の原理が原因で決まるなどという理屈は成り立たない事等から、総合して考えると万有引力の法則としての意義が信じられないのである。ニュートンは微分積分学を打ち立てた偉人でもある。「ニュートンの万有引力則の矛盾」(2004年3月の日本物理学会講演概要集第59巻第1号第2分冊 p.315) で作用点の矛盾を指摘した(旅費が無く発表に参加せず)。それは距離の逆二乗則の距離積分の数学的論理問題の提起でもある。重力定数6.672×10^-11^[㎥/kg・s]はどのように算定して、どう言う意味かは解らない。地球の自転公転で、2000年は4年毎の閏年でありながら、100年に一度は閏年にしない原則に当たる年であるのに、更に特別の事情により閏年の366日となるという珍しい2000年問題の話題になった年でもあったようだ。一年が365日としての自転公転周期に閏年も含めると、地球の一年間の回転数は366と4分の1回転となる。1回余分に回転数が加算される。等と愚かしい事を考える。ついでに誰もが不思議に思うだろうが、何故月は地球に同じ面しか見せないのだろう?万有引力からは説明できない。月は、太陽に対してどんな軌跡を描いているのだろうか?それは万有引力から説明できるだろうか?地球の太陽系における空間エネルギー分布および火星、金星、木星等々の全体の空間エネルギー分布が太陽系の意味を認識するに重要と思うが、それらはどう計算すれば良いのだろうか?等と疑問の山に満ちている地球の周りに、足元に。