タグ別アーカイブ: 軸性エネルギー流

力の概念と電気物理

視点一つが世界を変える。

不図疑問が湧く。今までの認識に疑問が種となって、新たな世界が驚きの中に膨らむ。今回は『力』である。電気と言う目に見えない現象故に、その世界描写は数学的な表記によってとても抽象的に描かれる。多くの法則によって体系化された学術理論の世界である。科学理論の世界は長い歴史の重みを背負って、何百年の時に亘って専門家の追究の試練に曝されて生き残って来た学術理論である。その根幹を成している概念は『電荷』である。それはクーロンの法則と言う偉大な科学技術論を論ずる基幹法則として誰もが一度は聞いたことのある法則であろう。『電荷』間に働く『力』の意味を解釈する法則である。科学理論は社会的に認知された、学術機関の専門家が推奨する権威ある理論で、広く学校教育での標準教科書として取り上げられたものである。そんな理論の根幹の「電荷」を否定することは、社会的大きな混乱を引き起こすかもしれない畏れ多さを抱える事でもある。自分一人の科学技術感覚からの『電荷』否定の挑戦であった。クーロンの法則を斬る (2013/01/06) の記事から6年が過ぎた。今回その法則に関して、力学理論の『力』の概念から改めて『電荷』否定の論証視点が浮かび上がった。気付けば当たり前のことと思う様な『電荷』に潜む矛盾点である。

力学論の力の概念

運動力学の『力』とはどのようなものか。そんな疑問を抱くことに意味があるのかと思うかも知れない。力が働くという意味で感覚的に感じるのは力を掛ける対象に、力に逆らう反作用のような抵抗がそこにはある。それが慣性体としての質量の意味だと思う。運動力学で力が掛ると、その対象は力によって加速度運動に成る。もし力の対象が質量体で無かったなら、その対象はどのような運動に成るのだろうか。図の力の概念に示したように、質量M[kg]が力に逆らって速度の変化を受けないような作用があるから力を掛ける側に、対象に作用するという意味が生じるのだ。もし対象に質量がなかったら、加速度と言う概念は存在しない。加速度の存在しない『力』の概念は力にはなり得ない。

電荷と力

図1.電荷と電界と力

さて、電気物理学では『電荷』がすべての電気現象の理論的論拠となっている。電場に『電荷』が有れば、その『電荷』はその点の電界強度によって『力』を受けると成っている。(1)式のように、空間にある電荷集合体+Q[C]が有れば、その周りの空間は立体空間全体に電界強度E[V/m]で定義付けられると成っている。その空間に、他の『電荷』が存在するとその電界Eによって力を受ける。電荷が-q[C]とすれば、(2)、(3)式の力を『電荷』が受けると言う。(3)式が有名なクーロンの法則の式である。なお (r/r)は座標ベクトルrの方向を示す単位ベクトルの意味である。荷電粒子が電磁場で力を受けて運動する現象は実際にあるから、確かに間違いとは言えない。しかし、上に示したように、『力』の概念で述べたことも間違いではない。質量がなければ、『力』は掛からない。『電荷』に慣性は無いから、それは『力』の対象にはならない筈だ。もし力が掛れば慣性のない『電荷』は直ちに無限速度で飛んで消えて、運動論の対象にはならない。前にも、荷電粒子加速と電磁力 (2015/01/31)で問題にした。今回不図した思い付きで、『力』の概念について気付いたことが質量の慣性と言う意味であった。クーロンの法則を斬る (2013/01/06)で『電荷』とその上の(3)式の否定を論じた。今回はっきりと納得できたのが質量の慣性と言うものによって初めて『力』が意味を持つという事であった。それなら実際に電磁場と言う空間での荷電粒子加速現象はどのような意味なのかという自然世界の認識の課題である。実際の電磁場での粒子加速運動論には必ず質量を必要とするから、電子にも陽電子にもすべての粒子には必ず質量が付帯している。そこで一応運動力学論としての辻褄が合わせられている訳である。しかし電気回路の電流論に成ると、電流の単位アンペア[A]=[C/s]には決して質量は必要ないから、『電荷』だけで論じられることになる。この『電荷』と『力』の問題は、世界で実施されている荷電粒子加速実験の理論的根拠の問題でもあろうかと考える。

電荷と電磁場

もう一度電荷とその電界の意味を取上げて考えて置きたい。『電荷』の意味を考える時、とても不思議に思うことがある。或るプラスの正電荷の集合体が空間にあると設定されて解説される。クーロンの法則に直接関係する電磁場の論考に於いて、どのような原理で同一の符号の『電荷』が集合し得ると考えるのか。同一符号の『電荷』は離隔距離の2乗に反比例して強力に接近は拒否される筈である。子供達に教える教育の場で、クーロンの法則が取上げられて、説明される時には同一『電荷』の集合は排除されると教える筈である。しかし、図2.のようにいとも簡単に『電荷』の集合体で理論の解説が成される。これも科学論の不思議と言わなければならない。その時の集合電荷の離隔距離はおそらくゼロの意識で論理展開しているのだろう。ゼロの2乗分の1は無限大の排斥力となる。この事は教育者側の科学論の論理性の問題としても無視できない矛盾論の筈であろう。それはさて置き、問題は電荷周りの電磁場の意味である。図2.電荷とエネルギー のように空間の誘電率がεo[F/m]とすると、その空間のエネルギーをどのように理論的に解釈しているかという問題である。係数が(1/2)の問題はさて置くとして、一応wr=(1/2)εE^2^ [J/㎥]のような電界のエネルギーが空間にあると解釈する筈である。『電荷』からの空間距離rの関数として、『電荷』周りにはエネルギーが分布していると解釈してよかろう。しかし、物理学理論で空間の解釈をする時はこのようにエネルギーを認識している筈であるが、荷電粒子加速などの場合には、この空間エネルギーをどのように解釈しているのかはハッキリしていないようだ。このエネルギーの問題は理論物理学における『電荷』の概念の捉え方に関わる問題であるから。と言うのは、このエネルギーが空間に存在していると解釈するかどうかが最初に問わなければならない問題なのである。そのエネルギーは電界がある限り、空間の無限遠までも希薄になっても存在することになるからである。空間に存在すると解釈するなら、そのエネルギーを理論物理学ではどんな物理量と考えるのか。即ち『電荷』の一部なのか、『電荷』と無関係のエネルギーなのかと言うことを問う問答なのである。この解釈・考え方は至極幼稚な素人的素朴な疑問なのである。しかしこのような考え方が、理科教育・自然科学論に求められて居る易しさの科学論の姿勢であると考える。高度な数学的理論展開では、市民が理解し、納得する自然科学論にはならないから。本当の自然科学論は日常用語で解説できなければそれは正しいとは言えないのだ。何故このように『電荷』とその周辺空間のエネルギーの問題を論じるかは、高度な理論を展開されている専門の方々こそお分かりの筈であるから。ついでにもう一つ図2-1.電荷と力とエネルギーとして、単位電荷が空間に分布していたとする。この場合は、『電荷』間には複雑な力が掛ることに成り、その空間のエネルギー分布も正と負の電荷によって、種類の違うエネルギーが存在すると解釈するべきなのかなど理論的に決まりの付け難い問題が残るようだ。本来エネルギーには『正』と『負』は無く、ただ『エネルギー』が存在するかどうかの問題であるから。そういう意味で、物理学理論の易しい解釈を求めての論考である。易しい理論的解説は難しい数学や数式は必要がない筈だ。『電荷』が『エネルギー』を持っているか、いないかを答える事ぐらい難しい事ではなかろう。結局『電荷』とは何かを問うことである。電気磁気学、電気回路論あるいは電気工学のそれぞれの解釈の場で、『電荷』が如何なる実在量かの描像を示す事が求められていることと思う。それは次の謎解きの話になろう。

理論と電磁現象の間の謎解き

波形観測に欠かせない電気製品にオッシロスコープがある。電子銃からの電子ビームを平板電極間に通すと、その電極の電圧信号に従って、電子ビームの方向を制御できる。蛍光面にその制御されたビームの軌跡が波形を描く。その原理が電子電荷の空間電界による制御と解釈される。これが科学技術の電磁現象解釈原理となる。技術としてはその原理を理解することが必要であり、それだけで十分立派な電気技術者の仲間に入れる。教育もその意味で技術理論の習得への期待が国家の教育方針とされてきた。それはそれで良かった。『電荷』と言う概念を考え出して作り上げた意味はその為に有効であった。ところが、その科学技術用の理論を深く突き詰めると、とても曖昧で、論理性に絶えない矛盾が潜んでいることに気付く筈だ。科学技術教育ならそれでも良かった。しかし、自然現象を説き明かす物理学理論となれば、その矛盾を抱えて頬被(ホウカブリ)したままやり過ごす事はできない筈だ。ではそれはどんな矛盾で、何故理論が論理的で無いと言うかを説明しなければならないかも知れない。聡明な皆さんは既にお分かりの筈であろうが。その曖昧さを取り除くには、『電荷』が理論に絶えない概念であることを理解しなければならない。 f=q[v×B]+qE [N] の式で解釈するローレンツ力の力が掛る対象は電荷q[C]である。その式は質量が無い式だ。荷電粒子にこっそり質量が有ると条件付けられてはいるが、それは運動論を展開するには質量がなければ無理だからである。しかしあくまでも力の掛る対象は原理の式には『電荷』しかない。『電荷』には慣性がないから力が掛る対象にはなり得ないのである。しかし現実は、この式で解釈する通りの荷電粒子と認識する『電荷』のビームが制御される。この論理的不都合を解決する解釈法が一つあるのだ。それが『軸性エネルギー流』だ。電磁場空間内の空間電磁エネルギーの分布を理解する道である。『静電界は磁界を伴う』と言う奇妙な表現内容に鍵がある。電界と言う電場空間は、むしろ磁場空間なのである。磁場空間は磁束がある訳ではなく、軸性エネルギー流の場である。言ってみれば、『電子』も軸性エネルギー流子なのである。エネルギー流空間に電子と言う軸性エネルギー流子が通過すれば、エネルギー流同士の間の近接作用力が働くことになる。過去に載せた関連記事の図を挙げて置く。電子スピンとは?-その空間像-(2011/02/09)

 

 

 

 

 

 

 

素粒子-その実相-(2012/07/31)

 

 

 

 

 

エネルギー流と結合(2018/10/10)

 

 

むすび

問題の解決は『電荷』とは何かに答えることである。それはまた『電子』とは何かに答える事でもある。そこに未来の道が観えて来る筈だ。空間に実在するということは、その空間像を描くことでしか解決できない。抽象的な数式には姿が観えない。軸性エネルギー流は磁場と言う空間の物理的姿を示した空間像である。身近にあるマグネットのNSの磁極近傍の空間に在るエネルギーの流れの様子を示したものが軸性エネルギー流であり、それは磁極の表面空間を流れている回転エネルギー流である。その空間に実在するエネルギーを見ることはできない。それを計測することも、観測することも出来ない。その観えないものを『電子』などと捉えて、科学理論を構築して来たのである。『電荷』概念の矛盾に気づくなら、空間のエネルギーが(心にあるいは感覚的に)観えて来る筈だ。そのエネルギーに関する空間論は観測できないから科学論に成り得ないかもしれないが、そこに至らない限りは自然に心を添えないと言うことであろう。『エネルギー』を認識すれば、自然世界の本質が観えて来る筈だ。以上でクーロン力の矛盾についての論説は終わる。次の記事で、アンペアーの法則の回路電流における電子流の矛盾について述べたい。

光速度一定とは

はじめに
光とその伝播現象について、過去1世紀に亘って『特殊相対性理論』がその社会現象とも見做せるほど華やかな話題の中心を成してきた。世界は『電荷』と『質量』を持った素粒子から構成されているという基本認識にある。その中の『電子』も電気回路での役割を突き詰めれば、それは『エネルギー』の流れでしかない。エネルギーの塊を粒子と看做せば、それはあたかも質量を持った粒子とも見做せる特性を示すであろう。電磁波もエネルギー粗密分布の縦波であるから、光速度一定と言うことが示す意味を明確にするには、その速度の主体である電磁波と言う光を空間像として認識する必要がある。物理学理論で光の実相を空間認識として示すべき問題が残されている筈だ。光の粒子性と波動性と言う二つの解釈の間の曖昧さを統一して、その訳を明らかにしてこそ物理学の筈である。どんなに数式で論じても、光の実相を説明したことにはならない。『光速度一定』と言う事の中には、とても多くの問題を統一して論じなければならない意味が含まれている。一世紀前の電気磁気学論では対応できない筈だ。光が伝播するという空間をどのように定義するかも問われている。

光と電磁波とエネルギー
光とは何か?光の振動数とは何か?光の粒子性とは何か?その答えは空間のエネルギー分布として認識出来るかに掛っている。光は電磁波だと解説される。それなら電磁波とはどのようなものと捉えているのか。電磁波のエネルギーをどのように理解しているのか。放送局などの電波送信は大電力の放射設備である。エネルギーの送信なのである。電磁波をどのようなエネルギー空間像で捉えているのか。まさか振動数でエネルギーを計算出来る訳がなかろう。放送電波の半波長もエネルギー空間分布波なのである。電界・磁界の方程式で評価するだけで、その波が電界・磁界から算定される空間に実在するエネルギーの分布波だと何故捉えないのかが人の思考の科学論の不思議なのである。放送電波も横波でなく、エネルギーの縦波の電波である。その認識が有って初めて光の意味が分かるはずだ。光の振動数ν[Hz]とプランク定数h[Js]から、光あるいは光量子のエネルギーをε=hν[J]と解釈する。1秒間の振動数がどのような意味で光のエネルギーを評価出来ると考えるのか。そのエネルギーとはどんなエネルギーを評価したものか。その式の持つエネルギー量はただその周波数スペクトラムの構成基本粒子・光量子の一つの波の単位エネルギー量の意味を表現したものである。その作用性を評価する同一周波数の光の群の一粒のエネルギー量なのである。電気回路で解釈すれば、1サイクルは二つのエネルギーの山から成る。電力の場合は、周波数が決まっているからスペクトルは単一周波数だけである。そこでは基本エネルギー量を規定はできない。電線路一回線に一つのエネルギー流波しかないから。また、電力に負の解釈が有っても、エネルギーに負は無い。1秒間ではエネルギー総量はその山の2倍周波数を掛けた分になる。周波数f[Hz]の電力p[W]であれば、エネルギーの単位となる一山分はp/(2f)[J]のエネルギー量である。例えばf=50[Hz]の電力線なら、一山のエネルギーは3000[km]の長さに分布したエネルギー波となる。そんな長い送電線はなかろう。だから一般の電線路のエネルギー分布は、その線路全体に亘って殆ど直流分布と看做せるエネルギー空間分布が時間的に変動しているようなものとなる。電線路のエネルギーはそのように空間的に捉えられる。そこには電線導体内の電子流などと言う解釈は意味を成さない。さて、そこで光のエネルギーはどのように捉えるかとなる。光が電磁波だと言うなら、電磁波は空間を電線路無しに伝播する訳だから、電線路伝送エネルギーと同じく空間に分布したエネルギー伝播現象である。電磁波と同じと言う光も当然空間を伝播するエネルギー波の筈である。 ε=hν[J]  この式にどんなエネルギーが見えますか?空間エネルギー像が描けますか。光の空間エネルギー像をプランク定数と振動数でどのように認識できるかの物理の問題である。この式による光量子のエネルギーと言う意味はその振動数の光の量子的効果を認識できる点にある。その波長の光は物質に作用する時、他の波長の光と異なることを認識できるという点で有効な捉え方が出来る式である。その理由、訳を知るには何故振動数がどのようなエネルギーの意味を生み出すかを説明しなければならない筈だが、それは困難であろう。何故その振動数が重要な意味を持つかを理解するには、光の作用性としての空間的特徴を知らなければ分からない筈だ。その意味で、前の記事光量子空間像(D線)が参考になれば良いと思う。末尾にマックスウエルの電波伝播方程式に関係して、電磁波の伝播現象の図を載せた。一般には電界と磁界とに因った、基本的な結ぶ付きで論じられるが、電界は必要がないとした。その訳は、今までの長い電磁気現象の総合的な考察によって、空間エネルギーの形態は二つに分けられると解釈する。空間伝播の直線的流れのエネルギーと磁気的と解釈する軸性エネルギー回転流の二つに大別出来よう。空間を光速度で伝播するエネルギー流が、光を含めて電線路エネルギー流などにも見られる、その基本的姿である。それに対して直線的に伝送しないエネルギー流即ちある空間に留まったエネルギーの形態がある。それがマグネットのような軸性回転エネルギー流になる。地磁気のようなものも地球表面上に沿って回転している軸性エネルギー流と看做せる。少し解釈を広げれば、そのエネルギー流が基本的には地球の回転の原因となっているエネルギー流と解釈したい。そのような磁気と看做す局所的(地球表面と言う広さではあるがやはり局所的である)軸性エネルギー流を基礎に置けば、その直交方向を電界と解釈しているに過ぎないのだ。『電荷』がない以上電界が存在する根拠も無くなる。「少し述べて置きたい。無負荷電線路のエネルギー分布は電圧と言う概念に対応した電線路コンデンサの空間貯蔵エネルギーの様相で認識するが、電源電圧の時間的変動に対応してエネルギーの流れはあるから、単なるコンデンサ回路とは異なる。しかし無負荷で有れば、長い電線路コンデンサ負荷とも見做せる。その場合、コンデンサ充電の伝送エネルギー流と電線路空間の一点に生じるエネルギー流は電線路導体に直交した軸性エネルギー流の形態を取るかとも思われる。もし電源が一定直流電圧なら、その電圧・電界の様相は軸性エネルギー流となろう。」空間の磁界をマグネットのコンパスでその存在を検出できるが、電界を検出する器具は無い。電磁現象を示す『エネルギー』に静止状態は無く、光速度流にあると観て良かろう。『エネルギー』の静止とは原子内のマグネットの軸性エネルギー流となる、質量化された状態と看做せよう。

光の伝播空間と速度
光は観測者の為に伝播する訳ではない。光は空間に放射された瞬間からその空間の特性に従って伝播する。水の中、空気の密度、ガラスの中あるいは障壁の存在などその伝播媒体の特性や空間構造に従った速度、方向で伝播する。光速度の基準は理想的な真空空間と考える。観測者が光の伝播にどのような相対速度で観測しようと、それには一切無関係に光は伝播空間の特性で決まる速度で伝播する。その基準空間座標を「光規定空間」と定義する。所謂『絶対空間』である。『特殊相対性理論』とは全く違う。観測者が『光規定空間』に対してどのような速度にであるかによって、光との関係はすべて普通の『相対速度』として観測される。何も特殊な関係は無い。例えば仮の話であるが、絶対空間に対して光速度のロケットから光を放射したとする。光は光源から離れた瞬間に、放射方向に一定の光速度で伝播する。ロケットの速度には全く関係しない。ロケットの進行方向の前方に放射すれば、ロケットの観測者から見れば光の速度即ち相対速度はゼロとなる。エネルギーの塊と一緒に進むことになり、どんどん高密度エネルギーの中に進むことになり、高熱に焼かれるだろう。決して特殊な現象は起きない。光は空間エネルギー分布の縦波であるから。半波長でもエネルギー密度分布波であるから。振動数がエネルギーとなる訳ではないから。その絶対空間がどのような座標と看做せばよいかは分からない。太陽がその絶対空間に対してどのような運航をしているかも分からない。光が真空の空間で『光速度一定』で伝播する空間を『光規定空間』と定義するだけである。何者にも支配されないで光が伝播する空間、それが『光規定空間』である。その空間を人は認識できないかもしれない。当然地球表面では空気の影響も受け、地球の自転・公転によって天空からの光はすべて相対的なものとなる。

『光速度一定』と相対速度

光と言う物理的評価対象はエネルギーの自由空間での光速度伝播現象として認識出来る。その空間での伝播速度が『一定光速度』だと解釈する。宇宙からの到達光を速度を持って運動している地球上から観測すれば、光の一定速度での伝播に対して必ず観測は相対速度になる。しかも空気が有れば、真空とは異なり或る意味空気も誘電体と看做せる。それは観測に掛らない程の真空との差であるかも知れないが。しかし『特殊相対性理論』での『光速度一定』と言う意味は、光が主体的ではなく、人間の解釈が主体的になる捉え方になっている。人から見て光は一定と解釈してよいという意味である。日住生活で、朝日が山の端に顔を出す時、その太陽光は金色に輝く。日が沈む夕日になれば、赤方偏移で赤い夕焼けになる。同じ太陽光線が地球の回転との関係で観測は必ず相対速度で観測されるからの現象である。ドップラー効果と言いながら、光の空間エネルギー密度波の解釈がない為に、いろいろ解釈が混乱しているようだ。日常の感覚的認識が高度の数式解釈の物理学理論より自然を理解するには重要である。相対速度は光を観測するその光のエネルギー分布の波頭値が観測波長の短縮・伸長により変化することに表れる。それがドップラー効果と言う現象である。朝日と夕日の意味も波頭値の変化が原因である。光の空間エネルギー分布の認識が基本に無ければ、『光速度一定』の意味も理解できない筈だ。

(参考) 電磁波の伝播現象の図

アンテナから放射される直前は電気回路のエネルギーである。そこでは閉じた軸性エネルギー流の状態と解釈した。断面は閉じた円環のNS極となっている。図のようなエネルギー流が電波として放射された時点で、光速度のエネルギーの縦波となり、ただ空間エネルギー分布密度波となると解釈した。障害やアンテナによって電波が光速度伝播を止められた時点で、軸性エネルギー流になると解釈する。エネルギーの静止と言う状態は、『静電界は磁界を伴う』の実験でのロゴウスキー電極間の環状軸性エネルギー流の磁場としての流れになると考える。要するに電界と言うのは軸性エネルギー流に対して直交した方向を評価した概念でしかない。それが『電荷』を必要としない解釈である。

 

変圧器の技術と物理

はじめに
ファラディーの法則が変圧器と言う電気設備の動作原理としての基礎となっている。それは技術理論であると同時に物理学理論でもある。電圧、電流および磁束という概念によって目に見えない電気現象を解釈し理解できれば、それで変圧器に関しては立派に電気技術者となる。決して磁束がどのような矛盾を抱えているかなどを問うことがなくても。200年以上に亘る歴史を踏まえて、ファラディーの法則が変圧器の自然現象の全てを捉えた真理と思われてきた。正弦波交流電圧実効値V[v]と変圧器鉄心最大磁束値Φm[Wb]の間には V=4.44fnΦm (ただし、fは周波数、nはコイル巻数) なる関係が厳密に成り立ち、それだけを理解していれば十分である。ならば磁束という概念は磁界の世界を支配する自然の実在量であると考えても当然かもしれない。しかしながら、磁束はあくまでも変圧器の動作を解釈するために導入した技術的評価概念量でしかないのである。自然の世界に磁束は電荷と同じく存在しないのだ。ここでは鉄心中に何が起きているかを、世界に実在する『エネルギー』一つの物理量からの解釈を示す冒険の旅に出かけよう。それは常識外れの異次元の世界かもしれない。

変圧器の技術理論
磁束量が基礎となる。鉄心に巻いた二つのコイルで変圧器の基本構造が出来上がる。鉄心中に磁束φが発生し、その時の巻数nのコイルには電圧 v = n dφ/dt が誘導される。だから磁束φが変圧器動作原理の基本概念になっている。磁束φがあるから変圧器の動作理論が成り立つ。その図表現や構造も分かり易い。巻数n1と n2で巻数比a=n1/n2を使えば、1次、2次の電圧、電流の関係が簡単に決まる。①の回路図のように表現出来る。②に構造を示す。鉄心に2次コイルを巻き、その外側に1次コイルが巻かれる。電源側の1次コイルが2次コイルを巻き込む構造に構成される。鉄心中には電源電圧の時間積分値で磁束が発生し、印加電圧波形とその時間に因って磁束値が決まる。磁束が励磁電流で発生するという解釈は、変圧器の動作の基本原理を複雑化し、分かり難くする無駄な解釈である。ものの考え方を統合する習慣の機会さえ失う。ファラディーの法則は v=n dφ/dt [v]である。φ=(1/n)∫vdtと書き換えられるから、電圧の時間積分以外磁束を表現できない筈だ。励磁電流など意味が無いのだ。もし磁束を励磁電流で評価しようとすれば、同じ変圧器で、電源電圧波形を変えたとしたら、どのようにその磁束に対応する電流を表せるというのか。電圧がどのような波形であろうと、その磁束波形は電圧値と波形から決まっているのである。全く励磁電流など考える必要が無いのだ。鉄心の性能が良ければ励磁電流など流れなくて良いのだ。だから教科書の励磁電流に因って磁束が生じるという解釈が採られているとすれば、その教科書はファラディーの法則の式の意味を捉え切れていないからだと考えざるを得ない。おそらく教科書検定基準がそのような励磁電流を要求しているのだろう。教科書検定基準がそのように書くように強制していることなのかも知れない。変圧器動作原理は磁束によってその技術理論は構築されている。しかし、その磁束は現実にはこの世界に存在するものではないのだ。そのことは電気技術論でなく、変圧器の物理理論として解釈を構築しなければならない事になる。それが次の問題になる。

変圧器の物理現象
空間エネルギーの挙動をどう認識するかが変圧器の物理現象の要である。磁束の空間像を描けますか。電荷の空間像を描けますか。物理量は空間に実在している筈である。その科学的論理に矛盾がなければ、本当に納得して捉えているならば、素直にその姿を描ける筈である。数式でない日常用語で語れなければならない筈だ。変圧器は鉄心にコイルを巻き付けて、全く繋がっていない二つのコイルの間で『エネルギー』が伝送できる機能の電気設備である。空間に存在する『エネルギー』を先ず認識して頂くことがここから述べる旅の理屈に必要である。コンデンサに蓄えられたエネルギーの姿を。コイルの中のエネルギーの姿を。常識外れの夢の世界に、本当の意味を探す旅であるから。しかし不思議なことに、div B = 0 であることを知っていながら、即ち磁束密度ベクトルB=φ/ [Wb] の発散が0であるということを。その意味は日常用語で表現すれば、磁束を→での表現は使えないという意味なのだ。磁束の発生源が無いという意味を表現しているのだから磁束が増加する→(矢印)は使えない理屈の筈だ。これは磁場空間に対する現在の物理学理論の解釈である。何故その意味を統合して捉えないのかが不思議なのだ。この磁束概念の不明確な曖昧さがそのまま放置されていては、理科教育特に物理学の論理的な考え方を育てるという意味が観えないのだ。自然の真理と科学技術の関係を明らかにするのが理学の目的と理解する。理学では、『エネルギー』を根本に据えた議論が重要な点になる筈だ。図2として空心コイルと鉄心を示した。変圧器は二つのコイルであるが、一つのコイルと鉄心の関係を論議すればそれで変圧器の物理的な(現在の教科書の物理学的という事ではなく、本当の自然の)現象の意味は分かる筈である。空心コイルはインダクタンス値もそれほど大きくない。そのコイルの中にカットコアの鉄心を組み込むと、とたんに変圧器の機能要素となる。インダクタンス値がほぼ無限大になる。いわゆる技術的な意味での磁束飽和という状態(電源短絡状態)にならなければ、殆ど電流は流れない筈だ。それは変圧器の2次巻線側に負荷が無い無負荷状態での電源側の電圧、電流の関係の話である。いわゆる磁束飽和にならない範囲での正常動作時の、その時に鉄心がどんな物理的機能を発揮するのかがここでの論題になる。電源からコイルに掛るのは電圧である。その電圧の意味は前の記事電気物理(コイルの電圧)で述べた。その電気物理という言葉は現在の物理学教科書の技術論的な意味とは違う。ここで論じる内容は教科書の内容より深く踏み込んだものであることを理解して頂きたい。磁束概念に代わる新たな解釈を求めた論議である。その上で進める。コイルにエネルギーが入射し、端子間にエネルギーギャップがある限りは正常なコイル機能を発揮すると。空心では無理であったのが、鉄心が挿入された時そのエネルギー入射が時間的に長く継続できるということである。コイル間に分布する空間エネルギーが何らかの形で鉄心の中に入り続けると考えざるを得ない。図3.コイルのエネルギーでは、電線が巻かれた部分のある状態を表した。一つのコイルとも見做せる。電気回路は金属導体、空気あるいは誘電体および磁性体など空間を規定する材料によって、その構造が制限された空間規定の形態によって構成されたものである。そこに電圧というエネルギー空間規定源である電源が支配するエネルギー場を作る訳だ。電源の負側がエネルギー供給源となって、電線路全体のエネルギー分布を光速度の速さで規定し、支配する。電線をコイル状に巻けば、その電線のコイル空間にも電圧に支配されるエネルギーや負荷に流れるエネルギー流などの影響が表れる。交流電源の半周期ごとに変わるエネルギー分布となる。インダクタンスというコイル空間もその電源の電圧というエネルギー分布の支配に従う。図2のコイルに鉄心が挿入された回路空間も同じくそのエネルギー分布に対するエネルギーの受け入れ対応が継続する限り、電源電圧をコイル端子で保持できるのである。それは鉄心がそのコイル空間にあることによってエネルギーを吸収する機能が高まったからである。(∫vdt)^2^ [HJ] のように電圧時間積分の2乗のエネルギー量が関係しているのだ。変圧器巻線のインダクタンスは殆ど無限大とも見られる。そのインダクタンスでエネルギー量に関係する電圧時間積分の2乗を除すれば、変圧器の電圧保持エネルギー量が得られ、それはとても小さな値で賄えるのだと理解できよう。そのエネルギー量に関わる量を変圧器技術概念では磁束として捉えている訳である。

図4.鉄心と軸性エネルギー流  図にはコイルの切断面の図とその平面図を描いた。鉄心を取り巻くコイル導体の間の空間はエネルギー流に満たされている。そのエネルギーが鉄心の中に流れ込むと考えざるを得ない。ここからの鉄心内のエネルギー貯蔵機能についての解釈は科学論と言える検証できる世界の話からかけ離れた別世界の話になる。鉄心の中のエネルギーの流れる様子など観測出来る訳が無い。導線の銅Cuと鉄心の鉄Feの同じ金属でありながらのその特性の差が何故生まれるかの物理的原理も分からない。しかし、マグネットに観られる力の意味を心のエネルギー感覚(磁気の軸性エネルギー流感覚)に照らし合わせたとき、そこにはエネルギーの回転流即ち軸性エネルギー流しか共感出来ないので、その軸性エネルギー流を鉄心のエネルギー貯蔵機能の原因として考えた。全く証明も出来ないお話で、科学論とは成らないかもしれない?それは原子の共有結合論否定の話と同じことであるが。この軸性エネルギー流は鉄心内の磁極即ちNとSという意味も消えてしまうことになりそうだ。その意味は隣同士の磁区間でのエネルギー流は流れが逆転するかと想像されるから。それはマグネットを近付けると、そのギャップ空間の砂鉄模様がマグネット周辺部に移動して、マグネット中心部は磁気空間という状況が無くなることを確認しているからである。同一マグネットを多数接合したとき接合部の砂鉄模様がどのようになるかの実験をしてみたい。科研の申請をするまでもなく出来る基礎研究だ。教室で授業をするには、本当に多くの分からない原理がある筈だが、教科書通りにその教育手法を伝達するだけでは、子供達も楽しくないだろう。

1ターンコイル電圧eu[v]  ファラディーの法則も物理現象として見れば、それは遠隔作用の法則である。変圧器巻線コイルに誘起する電圧の原因の磁束は鉄心中にあるから、鉄心から離れたコイルに作用するという遠隔作用である。アンペアの法則も電線電流と空間磁気の関係だから遠隔作用の法則である。変圧器の1次と2次巻線の間で伝送される電気エネルギーも磁束による解釈であれば、遠隔作用の法則である。しかし、空間にエネルギーが実在するとの概念を基本に据えれば、変圧器のエネルギー伝送も近接作用で捉えられる。コイル巻線の周りには同じようなエネルギー分布空間が存在し、そのコイル1ターン当たりのエネルギー分布量が1ターンコイル電圧eu[v]になるとする。巻線の1次、2次に関係なく、1ターンコイル電圧が同じであれば、その電線路の算術和として各巻線の端子には巻数に応じた電圧が現れる。n1×eu=v1 n2×eu=v2として。これは空間エネルギー分布による近接作用の考え方である。以前実験した変圧器の奇想天外診断の話の続きとしての結論でもある。

(遠隔作用と近接作用について) 物理法則では力が遠隔作用力である場合が多い。代表例が万有引力の法則である。それは質量の間に直接接触する物がなく離れた質点間に生じるという力である。それに対して近接作用力とは、具体的な例を挙げれば、水の流れで二つの流れが合流する時その流れの接触する水同士が力を及ぼし合い、どのような流れになるかを考えればそれが一つの例となろう。エネルギー流を考えれば、それは近接作用になる。風も空気の近接作用となろう。太陽系も全体はエネルギーの回転流として統一されて考えられるべきとは思うが。そのような解釈は質量に関わらない空間エネルギーの実在性を余り認識していない物理学理論には無いかもしれない。

むすび
空間エネルギーは実在しているが、その物理量を測定できない。そこに物理学理論の実験的検証を前提とした理論構築に限界があるのではないかと思う。電気技術理論の中の矛盾をどのように読み解くかに掛り、それは哲学ともなろう。ここで特に指摘したかった点は、変圧器の磁束が少なくとも励磁電流で発生するという考え方だけはやめて欲しい点である。この点は昔のことであるが、長岡工業高等専門学校で助教授の申請に研究・教育業績として3点の論点を書いた。その一つが、ロイヤーインバータによる研究成果としての点で、変圧器磁束が励磁電流で発生するという解釈は間違っていると指摘した。それは教科書検定基準を否定したことになったのかもしれない。

電磁気学の要-Axial energy flow-

1.はじめに
電気磁気学は自然科学の基礎知識として、その習得が科学技術・理科教育で求められる。力学と相まって物理的学習内容の基本となっている。その教育に基づく共通理解が社会的科学認識の基となるから極めて重要な分野である。社会的な科学常識は、お互いに科学論を展開するに、その共通理解の重要な基になる。『電荷』や『磁束』はその電気磁気学の要の基礎概念として、誰もが共通に理解していると思っているだろう。しかし、その中で『電荷』はじめ『磁束』さえもその実像は突き詰めると極めて曖昧な概念であると考えなければならなくなった。だからそのような基礎概念に論拠を置いた科学論は本質的に矛盾を含むものに見えて来る。現在の理科教育の教科書の内容では真の自然現象理解に極めて不十分な内容であることを認識しなければならない事態になったと考える。その意味を「磁気とは何か」と言う視点で考察し、その曖昧な意味を掘り下げて、電気磁気学理論の持つ不完全さを解説したい。軸性エネルギー流-Axial energy flow-を理解することが電気磁気学の眞髄に到達する要点であることを示したい。この事の持つ意味は、今までの科学常識に因って成り立ってきた専門家の意識改革を迫る極めて重大な社会的問題でもある。

2.原子構造と周回電子像の持つ意味
原子核の外殻を周回する電子に原子の周期特性で捉える役割を担わせた原子像があらゆる科学論の基盤として社会の科学常識となっている。この根源的科学常識を疑い、批判することに成らざるを得ない『電荷』概念否定の道を通って来た。その道の長い思索を通して辿りついた到達点は、あらゆる自然現象が『エネルギー』の空間に展開する姿として認識する事であったと理解した。その意味で、改めて現在の原子構造論の電子周回論はその中味を深く突き詰めなければならないと成った。

(2-1)原子像への疑念 『電荷』否定の論理の行き着く先に待っていたのが原子像への疑念であった。その疑念の具体的な点を挙げれば、次のようなことになろう。図1.で示した原子像は曖昧なまま、どのような規則で表現すれば論理的かさえ理解できないままの一つの参考にとの表現図で示した。

  • 何故電子が周回運動しなければならないか。
  • その電子の周回運動の軌道(立体角4π球面か平面か)と回転速度の方向性を何が決めるか。
  • 電子は粒子とか波動とか極めて曖昧な空間認識像で捉えられ、論理的明確さが観えないのはなぜか。
  • 実在するという電子像の、その質量と電荷の空間像が何故示されないのか。
  • 原子という空間構造体をまとめる『構成力』は何か。

原子と言う極めて極微な空間構造体が世界の構成元素として実在していることは、そのこと自体が不思議で有っても、疑いはない。その中味を解剖して明らかに示す事はおそらく無理な話であろう。だから曖昧さは残って当然と考える。1911年以降にようやく原子の構造の論議が始まったのだろう。J.J.Thomson の陰極線発見(1898)が電子として認知されたことが原子の周回電子像の基になったのであろう。その後の量子理論が決定的に電子に電磁気現象すべての舞台で、主役の役割を担わせたこととなったと思う。単純な電気回路のオームの法則さえ導体電線の中を電子が流れる解釈が決定的な電気回路常識となって、現在の科学論の基礎となっている。量子力学での電子には必ず質量が付きまとった素粒子となっている。運動エネルギーでの解釈に質量が必要だから。然し量子力学で伝導帯を自由電子として電気エネルギーの伝送の役割を担っても、電気回路になれば電子が金属導体中を流れるが、電荷だけしか必要としないから質量の意味はどこかに消え失せてしまう。電子とは質量と電荷の混合粒子と思うが、電気回路では電子流はアンペアと言う電荷の時間微分しか意味を成さない事になっている。電気回路では電気エネルギーの伝送速度は光速度に近い筈だが、電子では決してその光速度でエネルギーを伝送する役割の責任は果たせない筈だ。それでも質問が有っても難しい量子力学を勉強してから考えなさいと説明逃れがIT等の質問に多く見られる。電気回路の現象が光速度でのエネルギー伝送として説明できない事は、電磁気現象を本当に理解していることにはならないのだ。そんな単純な日常生活に関係した電気回路の意味から考えても、原子構造論の周回電子論はとても信用出来ないのだ。

(2-2)共有結合に論理性はない 高等学校の1、2年生の時に化学を習った。原子結合で共有結合と言う負の電子同士が誠に魔法のような理屈で互いに結合の担い手となることを教えられた。クーロンの法則の同じ電荷間に働く排力が、何故共有結合ではその訳が説明されずに、無視されるのかと言う疑問が消えない。何故負電荷同士の電子が結合の役割を果たし得るのか。まさか電子質量間に働く万有引力でもあるまい。基本的には電気磁気現象が原子構造体を構成する理論であると考えれば、原子間の結合を担う『力』とは何かと言う疑問になる。また、その基となる原子その物を構成する力は何かとなる。核の結合そのものも『力』が必要な筈だ。陽子と中性子の結合論には中間子論があるが、その意味を理解するだけの能力はないし、電磁気現象としての解釈では理解困難な様に思う。原子間、分子間あるいは原子等の構造体を構成するにはどんな『力』が必要なのか。

  力としてpdfで挿入した。初めて試してみたので見難いかもしれない。中に(3)式として『質量力』などと言う力を入れた。何も特別な意味ではなく、万有引力と言う意味を質量間に働く力と言う意味で表現しただけでしかない。丁度二つの電荷が空間に有れば、電場が生じ電界ベクトルと電荷間に働く力と言う空間像と同じ意味で捉えだけである。たとえば地球と言う質量が有れば、その周りには重力場と言うベクトル空間が有ると看做すだけである。ただそれは、自然現象として空間を解釈する万有引力と言う理論が『眞』であるかどうかは別問題であろう。 電荷間の力の解釈と同じ意味で(3)式は万有引力の一つのベクトル表現法でしかない。(2)式の磁荷mは物理学理論でも実在しないと成っている。(1)式の『電荷』q[C]も否定すれば、一体どんな力を世界の結合の力として捉えれば良いかとなる。もちろん(3)式の質量力などは論外であろう。 そこに「磁気とは何か」と言う事を尋ねなければならない問題が浮上する。

3.磁気とは何か それは「磁気の本質」を問うことになる。電気磁気現象の要が『磁気とは何か』に明確な認識を持つことである。2つほど問題を提起したい。

  • コンパスは何故磁界の方向を指すのか。
  • マグネットを向かい合わせると、そのギャップlの長さに因って何故磁気力が変わるのか。その物理的原因は何か。

電気磁気学では、磁束量φ[Wb]が磁界解釈の基礎概念となっている。ファラディーの法則として、電気理論の根幹を成す重要な概念でもある。アンペアーの法則として、電線導体電流との関係でも重要な磁束で、欠かせない基礎概念であるとの意識にある。インターネット検索でも専門的な解説がある。電子スピンなどと関連付けて解説される。然しその解説に因っても少しも理解できないのは筆者だけだろうか。マグネットから空間に磁束Φが放射(?)されている図で表現される。磁荷は存在しないが磁束が存在するとは、その磁束は何が創りだすのかとなる。変圧器のファラディーの法則から、そろそろ磁束が励磁電流によって発生するなどと言う間違った解釈はやめても良い筈だ。磁束はファラディーの法則の式の積分形で『電圧時間積分』で決まることを知らなければならない。然しだからと言って、それで磁束が自然界に実在する物理量だと決めつける訳にはいかない。磁束も電流と同じく、科学技術概念としての人が創りだした便利な解釈用の概念でしかないのだから。それでは本当は磁束とは何をそのように概念化して利用しているのかと言うことになる。そこが重要な点であり電気磁気学の要となるのだ。答えは空間のエネルギー流でしかない。それは軸性エネルギー流-Axial energy flow-である。巷の解説では、電子スピンと言うが電子がマグネットの表面でスピンをしてその電子から空間に磁束が伸びていると言う意味であろうか。その磁束とは空間にどのような実体を成すものと認識しているのか。コンパスが磁界の方向を向くと言う現象も、やはり力が働いたから向きが決まる訳である。この軸性エネルギー流と言う概念は物理学理論ではなかなか受け入れ難いものであろう。それはもともと物理学には空間にエネルギーが実在すると言う認識が無いように見受けられるから。物理学理論では質量が無いとエネルギーが論じられないように思う。電気コイルの磁気エネルギーと言う時、そのエネルギーは空間の何処に存在していると解釈するのだろうか。コンデンサのエネルギーと言う時、そのエネルギーはどこにどのようなものとして存在していると解釈するのだろうか。電荷はエネルギーには成れない筈だ。磁束もエネルギーではない筈だ。マグネット間のギャップ l が小さくなれば、磁石の引き合う力は強くなる。何故強くなるのかの意味を説明しなければならない筈だ。磁束が太くでもなると言うのだろうか。それでも説明には成っていない。物理学理論でも、電気技術論でもマグネットの表面の磁束密度は一様と仮定すると言う条件を設定するのが一般的である。そこが間違いである。マグネットギャップを変化させると、ギャップ内の磁気模様が全く変わってしまうのである。ギャップを狭めて行くと磁場の強い処はマグネット周辺に移動し、中心部分には磁場は無くなるのだ。磁場一様等と言う条件は成り立たない事を知らなければならない。磁場とは磁束などと言う線束が有る場ではないのだ。ハッキリ言えば磁束など無いのだ。ただエネルギーがマグネット軸に対して回転して流れている現象なのだ。それを軸性エネルギー流と名付けた。要するに空間に質量など無関係に、『エネルギー』が実在している認識がなければならないのだ。光の空間エネルギー分布流と同じ意味である。光のエネルギーを振動数で解釈している限りは、電気磁気学の眞髄には到達できない。

4.磁界の空間像 磁界とは『軸性エネルギー流』である。図に表せば次のようになる。図のマグネット棒と磁界の関係。それはマグネット近傍空間には左ねじの尖端をN極として、ネジを回して進む時の回転方向にエネルギーが流れていることを示す。この回転エネルギーが地球の表面にも流れている訳で、地磁気が具体例としての考える論題としてよかろう。地球の磁気は北極がマグネットのS極で、南極がマグネットのN極である。地球表面を自転の向きに即ち東西南北の東向きにエネルギーが流れていることを知らなければならない。地球の自転が何によって起きているかは、そのエネルギー流が何故在るかを理解することが出来れば分かった事になるのだろう。その自転の物理的意味について解釈を下す事は科学論か哲学か悩ましいこと言えよう。兎に角、このマグネット近傍空間のエネルギー回転流が磁場と言う概念が持つ空間の意味である。光が空間を光速度で伝播する空間エネルギー密度分布波と捉えることと繋がる意味でもある。この質量に関係ないエネルギーの実在性を空間に認識することが電気磁気学の要となるのである。

5.ギャップに因る磁気力の変化およびコンパスの指示の訳  (3.磁気とは何かの答)マグネットの引き合う力は不思議だ。検索すれば、その力の原理を知りたいと質問がある。然し、その解答は的確な説明とは言い難い、何か誤魔化しで逃げているようにしか思えない。残念であるが、本当は分かりませんとでも答えて欲しいのだ。解答者も教科書の解説を習得したからと言って電気磁気現象の眞髄を分かっているとは言えないのだから。決して磁束(自然世界に実在する物理量ではない)と言う科学技術概念では、マグネット間の空間にある『エネルギー』の姿は理解できないのだから、ギャップの長さで磁気力が変化する意味は分からないだろう。教科書に無い意味磁界・磁気概念の本質の記事の意味を知らなければならない。次にコンパスが磁界の方向を指す訳は何か?それも同じような原理の力の問題である。磁束がコンパスの中を通って空間の磁場の磁界と繋がるから、その方向を向く。と解釈して良いのだが、磁束が実際に実在する物理量でないと言うことを認識すれば、その解釈ではやはり正しいとは言えないだろう。試験問題でコンパスがどの方向を向くかという問題なら、磁束の考え方で正しい答えは得られる。知識としてはそれだ宜しいのだ。自然現象を理解するという意味には、この例のように答えられればそれでよいという考え方と、もっと自然世界の本質・真髄を知るべきだという考え方と多様な意見がある筈だ。それは一人ひとりの生き方の問題となるのだろう。磁気が軸性エネルギー流の目に見えない現象だと言うことを知ることに因って初めて、広い電気磁気現象の意味が矛盾なく理解でき、心から安心した納得に至れるのだと思う。それが安堵と言うものかも知れない。地磁気とコンパス(2012/09/13) が一つの解答となろう。

6. 磁気原子像と原子結合 『電荷』否定に因る原子像はどんな姿か。今年は原子周期表の記念の年らしい。8の周期性で特性が決まる原子を周期律表でまとめられた意味は驚嘆に値する知見と言えよう。その周期性から原子構造が周回電子像で解釈される結果に現在の原子構造が共通理解の基を成して来たと思う。周期性は他の原子との結合特性から認識出来るものでもあろう。原子が結合するのは原子の表面が互いに他の原子との安定した接合面を持つ事が出来るからであろう。もし周回電子が原子結合の任務を担うとすれば、その電子は立体角4πの原子表面をどのような道筋で回転運動をしながら、となりの原子と安定した接触面を保てると考えるのだろうか。その空間運動状況を原子結合に結びつけるには、原子核が周回電子の運動を可能にする何次元ものスピン運動をするか、魔術師か忍者の雲隠れ抽象空間を想定できるようでなければ、電子の運動と結合面の空間像を頭に描くことは無理じゃなかろうか。こんな論議は決して科学論の場では誰もが取り上げたくない事だろう。それは教科書の指導内容と異なる反社会的のことで、教育体制に混乱を生むから。科学論は現在の教科書の指導内容の枠からはみ出さないようにしなければならないとの意識が無意識的に思考の根幹を支えているのだろう。まさかこんな基礎の科学概念が否定される筈はないと誰もが教科書の指導内容や科学常識を信じているから。

(6-1)ダイヤモンド結合 炭素は結合手が4で、宝石のダイヤモンド共有結合や有機分子のベンゼン核など結合の代表的な論題となる元素であろう。炭素同士の強固な結合が抽象的な原子表面上の軌道周回運動電子によって生まれると言う曖昧な論理を何故信じなければならないのか。また炭素原子表面は空間的に4面体(直方体)か球面を4等分した接合面と看做すべきだろう。従って、有名なベンゼン核の亀の甲羅の平面的な六角形の構造が何故出来るかにも論理性が観えない。原子結合面は空間的な立体面から出来ている筈だから、結合手が2本と1本でのベンゼン核表記法は有り得ない。まずい記事ながら、参考に炭素結合の秘め事を挙げて置く。

(6-2)マグネット原子構造 軸性エネルギー流と言う空間のエネルギー像は『電荷』に代わる電磁結合の統一的理論構築の未来像になると考える。結合エネルギー:不思議の砦 (2018/12/02) で示したマグネット結合の図を再掲したい。マグネット同士を接合すると、接合部でのエネルギー流は隠れるように思える。砂鉄に因ってある程度は確認出来よう。このマグネット同士のN、S間での結合が原子結合の結合手になるとの解釈論を2009年に発表した。その時の図を示したい。

『電荷』否定は陽子、中性子などの素粒子の電荷概念の否定だから、当然原子核内もエネルギー粒子と捉えなければならなくなる。その核のエネルギー粒子の影響がそのまま原子表面に現れると言う考え方を取る。その結果の原子結合は当然の帰結として、図のようなマグネット結合になる。

7. むすび 2009年日本物理学会秋季大会で、“電荷棄却の電子スピン像と原子模型”の標題で関連の発表をした(日本物理学会講演概要集 第64巻2号1分冊 p.18. )。それは丁度10年程前の解釈である。今振り返っても、その内容は現在の認識と殆ど変らないようだ。10年間の思索を通して、よりこのマグネット結合原子構造の解釈に強い確信を得ている。電気回路の電磁エネルギー伝播現象即ち電気磁気学の実像を光速度伝播特性として理解出来たからだ。『電荷』や『磁束』が科学技術解釈概念だと言う意味は、それらは自然世界に実在する物理量ではないと言うことであって、物理学と言う自然世界の真理を探究する学問で使う用語・概念としては適切でない事になる。

論文: 25pWD-13 “磁力密度 f=rot(S/v)” 日本物理学会講演概要集第63巻1号2分冊 p.310.(2008) 。これは磁気がエネルギー回転流であることを論じた論文である。このいわゆる電磁力と言う力については、長岡工業高等専門学校で、既に履歴書が『以下余白』として消されたままの1年8カ月後(?)の昭和62年3月末に、『静電界は磁界を伴う』の電気学会発表の準備中の深夜の睡眠途中で閃いた思い付きであった。その後、「電磁エネルギーの発生・伝播・反射および吸収に関する考察」電気学会 電磁界理論研究会資料、EMT-87-106.(1987) に(29)式として記した。それは静電界と言うコンデンサ極板間に電圧に応じて、コンパスの指す磁界方向が変化すると言う電磁界現象が存在する事実の理論的解釈論として示さなければならなかったのである。コンデンサ内も電磁エネルギーの流れによってその現象・状況が決まると言う実験結果に基づく発見事実である。ここに科学基礎概念に対する意識革命の必要性が隠されている。

(付記) 関連記事。電気回路理論と電気磁気学の関係(2017/12/06) 。電磁力の本質(2017/10/17) 。

 

 

エネルギーと結合

はじめに

科学常識を逸脱した科学的検証の見込みもつかない論理の展開を試みる。ここに述べようとすることは科学理論や法則に基づくものでないから、とても科学論とは認められないかも知れない。その事をはじめにお断りさせて頂く。しかし自然界に『電荷』なるものが実在するとは到底考えられない。18世紀の科学論の始まりからその根底となって来た基礎概念である電荷を否定したら、そこに見える自然の姿は全く異なったものとして目に映ることにならざるを得ない。自然世界は何を以って形作られているか。眼で見たことも無いが、天体のお話から推論すれば、太陽系はじめ銀河や星座の形はすべて回転がその基本を成している。日々苦しめられる台風災害も、その基は回転現象である。地球だって回転している。回転が自然の構成原理でなくて、他に代わり得るものが在るだろうか。その回転は科学論の原理や法則には見えない。酸素と水素が結合すれば水分子となる。結合エネルギーで結合されていると高校理科の化学で解説されている。しかし、その真の意味を理解する術を筆者は持ち合せていない。どんな結合の力かは理解できない。マイナス電荷とマイナス電荷で手を繋ぎたいと思っても、多分断られるだろうと諦める。それは有名なクーロンの法則の原則に従えばである。しかし科学論では同種電荷の電子同士が手を繋ぐ不思議が許されている。実はこの記事を書く切っ掛けが、IT検索で初めて知った『結合エネルギー』の解説であった。その化学の基礎も知らなかった恥ずかしさがこの記事の基ともなった。せめて高校生が疑問に思うことに答えられれば良いかと、科学理論に拘らずに自由に結合エネルギーの意味に解釈を下してみたい。

エネルギー素量と極性

自然界では空間にエネルギーが実在していると考える。その姿の基本は光である。光は空間を光速度で伝播するエネルギーの縦波の波列である。光のそれぞれの最小単位は波長 λ[m]ごとの空間長のエネルギーch/λ [J]の分布波である。その空間のエネルギーの存在形態は光だけではない。ある点に留まる局所化されたエネルギーも存在する筈だ。電気回路のコイル内の貯蔵エネルギーもその一つに挙げられよう。その局所エネルギーの形はどのようなものが可能かと考えれば、軸性の回転流を思い描くことが出来よう。それが図1.である。

図1.エネルギー流と極性 p(有極性) wp(弱極性) np(無極性) 世の中にある身近な科学概念に関係する物にマグネットが在る。マグネットは日用品としてメモ止めの繋ぎ手の代表格である。物理学では磁束で解釈する。磁束が繋がると何故力を生むか、その理屈を考えても理解できない。マグネット同士を近付けると急に強い力になる。感覚的に誰もが実感できる。しかし磁束でその力の訳を理解しようとしても納得できないのではないか。近付くと磁束が太くなるという理論も無いようだから、力が距離の2乗に逆比例するという意味の理屈が見えない筈だ。結局磁気現象の理屈が分かっていないからであろう。理科教育では磁気のクーロンの法則として覚えさせるようだ。この記憶させる教育で、語学と違うのが理科教育であろう。覚えさせて、受験競争用の能力を鍛えれば、頭が固定概念により創造性の邪魔になるだけである。何故磁束で力が変化するかの理屈を説明出来るかである。電荷による繋ぎ手を否定すれば、磁気による繋ぎを考えたくなる。マグネットの力は自然の姿を映し出している筈だ。磁気現象はすべて空間エネルギー流の回転に秘められている。力の新しい解釈として空間のエネルギー流が有効と考える。エネルギー流が揃えば高密度化の方向に力が働く。磁極のN極がエネルギーの左向き回転流の方向を意味する。左ねじの回転方向がエネルギー流の回転方向で、ネジの進む方向が磁極のN極である。磁極の意味はエネルギー回転流の軸性を捉えた科学技術概念である。局所化エネルギー流の姿として考えられるのが図1.になる。磁場で影響を受けるのがpの有極性のエネルギー流である。影響を受けないのがnpの無極性エネルギー流の場合であろう。その間のエネルギー流の様態の変化もある筈だから、それが弱い有極性のwpと考えたい。このwpの小さなエネルギー流が何らかの原因で分離すれば、いわゆる電子という電荷の無いスピン流体となるとも考えられよう。このエネルギー回転流体が軸性を持つという意味で、軸性エネルギー流と言えよう。また表現を変えれば、軸性エネルギー粒子と看做すこともできる。

原子質量の概念と実像 

質量とは何かと考えると簡単にその意味をまとめられない。高分子化合物も質量体である。その構成要素は原子となる。多くの種類で捉えられる原子もすべて原子核と外殻の電子群で解説される。その原子論も、原子核内が陽子と中性子から成り立つとある。陽子はプラスの電荷を持つ素粒子で中性子は電荷の無い素粒子とある。ウランのような核分裂原子は分裂すると様々な原子になる。時には核から電子放射(β崩壊)をして原子番号の多い原子プルトニュウムにもなるという。それは中性子から電子が分離した結果ととれる。電荷の無い筈の中性子から電子というマイナス電荷の粒子が放射され、結果としてプラス電荷の陽子となるという誠に理解に苦しむ解釈が原子崩壊理論として正々堂々と科学常識になっている。そんな科学論で電荷とは何かを問わない、あるいは理屈を質さないでは置けないと思うが如何がでしょうか。そんな単純な疑問には何の数式も要らない日常用語で解説できる筈と思う。たった一つの『電荷』の概念位は、その実在性を唱える方々がどのような空間像で認識されるのかを示して欲しいものだ。プラスとマイナスの違いはどのような空間像として認識するのかを。単に磁場内での軌跡から判断出来ると言われても納得できない。素粒子とは空間に実在する物であれば、空間像を持っている筈だから。もし図1.のエネルギー回転流で粒子の空間像を解釈するとすれば、その粒子も磁気の科学技術概念に沿うものとなろう。そこには電荷の空間像を考える必要もなくなる筈だ。この局所化エネルギー粒子も質量の概念を備えていると看做せよう。原子核が有極性の陽子と無極性の中性子の組み合わせで構成されると解釈すれば、軸性エネルギー流間での磁気的核子結合力を想定することが容易になるであろう。そこに電荷は必要でない。原子核構成要素が軸性エネルギー粒子の結合体と解釈すれば、質量の本質もエネルギーとなる。

原子結合の結合エネルギー 

生体の高分子結合は主として炭素、窒素、酸素そして水素が担っているように解説されている。そこにリン等の原子が組成を成している。それらの原子同士を結合する結合手を電子などに任せる解釈には説得力が無いと思う。電子で囲まれた原子像では、余りにも原子核の原子特性に果たす役割が見えないではないか。原子特性の主役は核にあると考える。核の影響が原子周辺空間に強く出ていなければ、その原子論は説得力に欠けているように思う。そう考える時、原子外殻に電子など必要が無いと思う。水という最小の分子結合形態でも、そこには結合エネルギーが必要であろう。酸素と水素の結合に果たす役割をどのような空間像で理解しようとするのか。化学で取り扱う原子結合で結合エネルギーが取上げられていることに安心もした。木炭の燃焼や水素ガスの燃料電池で、結合エネルギーの意味が重要になる。原子核分裂では質量欠損と結合エネルギーの関係が論じられる。これらの話はすべて原子結合の意味に関わる基本的科学論に通じているように思う。この意味は2009年9月に発表した 電荷棄却の電子スピン像と原子模型 日本物理学会 第64巻2-1. p.18. にも有る。

むすび

原子表面には、核の構成エネルギー粒子群の構造が基となった原子特性が表れている筈である。磁極NとS極が4極ずつの8極を周期とした原子表面を呈すると考える。電子などの周回軌道でなく、原子表面の静止磁極分布が原子結合の空間構造を決めると考える。DNAの螺旋構造はじめ炭素原子のNS分布が分子の空間構造を決めると予想できる。カーボンナノチューブの構造も、炭素原子表面の磁極分布から単純な円筒とは成り得ないと考える。炭素結合の秘め事にも関係の記事を記した。

 

エネルギー単位[eV]を尋ねて

長い伝統に因って培われて来た学問の中で、この世界の根源を探る哲学的分野に『物理学』が在る。前から大変畏れ多い事ながら、単に電気工学分野の『エネルギー』感覚から、物理学概念の意味への疑問そのままを書き記して来た。失礼の段お詫びしたい。特に『エネルギー』の概念について、物理学では質量なしの空間に存在する『エネルギー』の認識が無いと批判して来た。別の記事で、『静電エネルギー』の意味を考えている内に、少し誤解していたかと思う事に出会った。それはエネルギー単位[eV]である。素粒子加速などの場合に採られる基本的単位である。その概念には質量の意味が何処か隠されているのか、表面的には現れていないような感覚を受けた。そこでその『エネルギー』の概念が良く分からない事も有って、ここで確認しておきたいと思った。

[eV]の意味 ウイキペヂアの記事を参照して調べた。

 

エネルギー単位[eV] 荷電粒子が電場で受ける運動力学とその結果得られる『エネルギー』の意味を少し幼稚ながら具体的な量を基に考えてみる。先ず電場と言う意味から考えてみよう。ただし、空間誘電率ε=1/(36π)×10^-9^[F/m] とする。

電場とは 電場とは電荷によって創られる空間の電界強度の分布空間と理解している。図1はQ0の電荷からr=3[m]の離隔点の電界強度(ベクトル) E1が丁度 1[V/m]となる状態を仮定した。そんな単純であるが、具体的な意味を基に電場とは何かと考えてみたい。図に空間の一点の電界E(x)を示した。その場の電界は両方の電荷Q0 とq からの電界ベクトルの合成として空間の電界強度が決まる筈だ。いま、距離xq をだんだん小さくしてゆくとする。すると限りなく電荷qに近い場の電界強度となる。Q0 に因る電界は小さくなるが、qに因る電界は限りなく強くなる。qが単位電荷であっても距離の逆2乗で無限に大きくなる。自己電荷qによる電界強度は空間電界分布にどう評価すれば良いか。自己電荷qの点では突然不連続の電界分布断裂点となる。この問題はデラックが唱えた点電荷のエネルギー無限大の矛盾と同じ意味と思う。電場の電界強度は『電荷』に因ると解釈する限り、その電界強度の空間分布そのものが『エネルギー』であるとの認識には成り難いように思う。この『電荷』と電界強度と『エネルギー』の関係が電場とは何かを考える原点であった。『静電界は磁界を伴う』になった。

『電荷』と『力』と『エネルギー』 [eV]の『エネルギー』評価単位は素電荷eが1[V]の電位差を通過すると『電荷』が獲得する『エネルギー』と言う意味らしい。ここには質量が表面に現れていない。質量が無くても『電荷』だけで論じられる『エネルギー』量にも見える。『力』は電界強度と『電荷』のみから評価される物理概念だ。『力』によって動かされる『電荷』と言う意味から、その場を通過するだけで電位差の分だけ『エネルギー』が増加する意味に思える。ただ荷電粒子と言えば、そこには質量が含まれているから、その質量に掛かる『力』で加速度運動を起こすと言う普通の運動力学に因って運動エネルギーを持つと言う馴染みのあるジュール[J]で理解はできる。しかし[eV]は『電荷』がただ電場を通過するだけで『エネルギー』を得ると言う意味のようだ。『電荷』が電位差を登ると位置エネルギーのような意味の『エネルギー』を仮想しているかとも思えるが、それは『エネルギー』の増加には成っていない。増加した『エネルギー』分だけ、その『電荷』が逆の方向に仕事をする意味がなければならない。『電荷』が『エネルギー』を持つと言うことはその『エネルギー』は有効に使えると言うことであろうが、電場でどのような仕事をする『力』となるのだろうか。最後に『電荷』Q0 とq が合体した時、運動速度の意味が無い訳だから、『電荷』q はどのような値の『エネルギー』を持ち、その『エネルギー』はどのように電場に影響を及ぼすのだろうか。またどんな仕事の役割・能力を持つと解釈するのだろうか。もう一つ、『電荷』Q0 とq の間にはどちらが『エネルギー』を受け取るか与えるかは相対的なものと思える。図ではQ0が電場の原因として表現したが、その解釈は相対的なものでしかなかろう。

電磁現象における『エネルギー』 上に疑問を呈したように、全く専門家の理論が理解できない能力無しかも知れない。『静電エネルギー』と言う言葉からその意味をどう理解すれば良いかと考えた時、『電荷』が持つ『エネルギー』等は無いとしか考えようがない結論になる。『電荷』が存在すると言うことを認めるとすれば、プラス、マイナスなど無く『電荷』そのものが『エネルギー』の軸性回転流の方向性に因る空間分布形態と看做さざるを得ないと思う。

アラゴの円板と近接作用力

アラゴの円板と近接作用力アラゴの円板は日常生活に関係したところで利用されている。家庭の積算電力量計が家の玄関口に在る。使用電力の時間積分で、消費量の取引量を測るメーターである。円板に流れる『渦電流』が円板回転の原理として有名な電気現象と看做されている。回転円板はアルミニュームが一般的である。電流あるいは電子を切り捨てると、渦電流による解釈も物理現象としては納得できない。磁石周りの磁気をエネルギー流として解釈した訳であるから、そのエネルギーに基づく力を求めなければならない事になる。上の図に、磁極N を動かすと、アルミ板の周辺に回転していたエネルギー流と磁石のエネルギー流の間にずれが生じる。そのずれの遅れを取り戻そうとするエネルギー流間に力が生じる。アルミニューム板を磁極に近付けると、磁石磁場がアルミニューム板を突き抜けて、表にも生じると解釈する。

アルミ箔上に現れる磁石磁場の砂鉄模様。

アルミ箔の磁場(2019/05/22)追記。問答を一つ追記して置きたい。この砂鉄模様はどのようなマグネットでも観測できる。理論では磁場は一定とする等と解釈条件が付けられるのが一般的である。しかし実際は、マグネットの磁場模様は一様ではない。中心には磁場は無く周辺部に強い磁場が見える。 《さてその訳をどのように解釈するか?》が問題。磁石磁場の砂鉄模様と同じ模様がアルミ箔を通しても得られる。このアルミ上の砂鉄模様も磁石を動かせば、その動きに連れて移動する。

鉄磁場

鉄の金属板を磁石上に置いた場合の磁場の砂鉄模様である。適当に手元のブックエンドを利用した。鉄ブックエンド

参考にそのブックエンドとその配置図も右に示す。アルミ箔と異なり、鉄板を通すと、少し様子が異なる。

アラゴの円板と言う磁気との関係は鉄板では成り立たない。非鉄系の金属板、アルミか銅板と磁気との間で起きる現象である。そこには、磁石の移動に対して『遅れ』がある。誘導電動機における『すべり』の意味と同じ現象である。その現象を磁気エネルギーの二つの回転流間での近接作用力として解釈すべきと考えた。遅れの生じたアルミ箔にまつわるエネルギー流が磁石磁場エネルギー流に追随するようにエネルギー流間の近接作用力を生み出すと解釈した。そのエネルギー分布がどのような関数形式になるべき『近接作用力』表現になることを求めているかは未だ捉え切れていない。その一つの表現式が渦巻の解剖になろうと考える。

磁気概念の参考:磁界・磁気概念の本質をご参照ください。