タグ別アーカイブ: 空間エネルギー

直流の分布定数回路現象

(2021/03/01)。下書きのまま1月以上が過ぎた。標準の科学理論はそれぞれの専門の部門に所属して、科学研究者として生活の保障を得た上で、投稿論文が専門家の査読で認められて科学誌に掲載さる。その科学的知見が評価されてこそ意味が有る。30数年前に『電荷』の意味を問う『静電界は磁界を伴う』の発表をした。その当時は、己の社会的存在の意味も理解できず、ただ電気理論の諸法則への疑念を強く抱き、自分しか唱える者はいないとの確信一つを抱いていた。職場に存在することが社会的不適合化と離れた。やむなく現在のブログによって、障子を前に自己問答して科学理論の本質を探ってきた。壱日一日が疑念と問答の繰返しであった。そのようにして科学理論の論理的根拠を探り、昨年から今年にかけて漸く電気回路の自然現象の姿を理解できたように思う。数多くの記事は科学論文にする内容ではなかったかも知れない。何も科学的検証可能な『データ』もこれと言って無いかも知れない。ただ総合的に振り返れば、その内容には自然現象の本質があるとの確信のみだ。ただ最近思う。科学の研究者として人並みに生活をする職場、それを勝ち取る公平な土俵は何処に在るのか?

この記事も『電荷』否定の自然感への確信から、電気回路現象を解釈する論説である。それは現在の科学理論として標準の教科書が解説する、所謂「科学パラダイム」の批判論と成る。電気現象はすべて、『エネルギー』の光速度伝播として捉える必要があるとの主張である。

回路。

普通の直流回路とは負荷要素が異なる。コイルあるいはコンデンサに直流電圧を印加した場合に、どの様な回路現象を呈するか。スイッチSにヒューズを添える。コイルの場合は電源短絡に成る。またコンデンサの場合は電圧が高電圧の場合にはコンデンサ内でフラッシュオーバーが起きるかも知れない。それはやはり電源短絡である。電源及び回路保護にヒューズが必要。

この回路で電源と負荷はどのような電気現象を起こすだろうか。オームの法則で解釈する電気現象ではない筈だ。当然電流あるいは電子での解釈では難しいだろう。『電子』が光速度で回路を周回して電源に戻るなどできる筈はない。それでも回路動作は負荷と直流電源の間に起きる電気現象である。どんな理論で解釈しようとも、電源から負荷に向かって『エネルギー』が伝送されることには間違いはない。しかも光速度伝播の現象として現れる。科学理論はとても難しい数学的解説が主流になっている。電気現象に量子力学的解釈を適用しても、『電子』による論理では『エネルギー』を電源から負荷に伝送する単純な意味さえも示し得ない。このような単純な電気現象についてさえ解説を成し得ない現代物理学理論だという意味を誰もが理解しなければならない。

『エネルギー』の光速度伝播と分布定数回路。

光は自由空間を伝播するやはり『エネルギー』である。電気回路現象は光と異なり、導線で囲まれた線路空間に伝送の場が制限された、光に似たような『エネルギー』の伝播現象である。光に似たという意味は光のように目には見えないが同じ『エネルギー』の光速度の流れであるという意味である。この『エネルギー』と言う物理的実体を認識することが必要である。例えば、高等学校の理科教育を考えれば、この空間に実在する『エネルギー』を認識していないから教えることが出来ていない。空間に実在する『エネルギー』を教育して来なかった現実が科学理論の考えない業界論に成っているのだ。だから『エネルギー』の光速度伝播の縦波と言う理解が出来なくて当たり前なのだ。電気回路空間を伝播する『エネルギー』の波となれば、電気回路導体内を流れる『電流』あるいは『電子』などと言う、自然界に実在しない物理仮想概念で理解することなど誰でも困難の筈である。電線で囲まれた電線路空間は、その空間構造を静電容量とインダクタンスの二つの空間解釈概念で捉え、その分布定数回路として認識しなければならなくなる。空間を誘電率と透磁率で捉える解釈法も、言ってみれば科学技術的手法の一つの解釈便法であるかも知れないが、その概念に頼らなければ、数式による認識・解釈法が執れないから止むを得ないという事なのかも知れない。せめてその二つの空間の電気的解釈論拠(誘電率と透磁率)を受け入れて、『エネルギー』の挙動を認識しなければ科学論としての最低の解釈法も採れなくなる。不立文字の一歩手前で踏み止まるしかない。

(1)コイル負荷。その電気現象を(1)図に表現した。

コイル負荷に直流電圧電源をスイッチオンで印加する。スイッチ投入と同時に、電源から『エネルギー』が回路に投入される。その『エネルギー』は光速度以上の速度では伝播しない。必ず負荷まで到達するに時間が掛かる。たとえ光速度であっても時間経過が生じる。スイッチ投入と同時に、電線路の負側導線近傍を『エネルギー』δp[J/m](1[m]当たりの分布エネルギー)の分布波が流れる。しかし、この『エネルギー』の伝播状況を実験的に証明する測定法はないと思う。証明しなければ科学論として認め難かろうとも思う。それは電源電圧 V[V]とすれば、電線路の分布定数の静電容量 C[F/m] によって決まる分布伝送『エネルギー』であり、それは

δp=C V^2^ [J/m]

として、回路定数と電圧の関係式で表現できる。電源電圧とは、その電線路の構造や空間媒体(絶縁物の誘電率など)に対して、『エネルギー』の供給能力を評価した解釈概念であると言える。電圧とは、決して『電荷』の仮想的な創造概念などで評価、解釈できるものではないのだ。さて次に、負荷に貯蔵される『エネルギー』はどのように解釈すれば良いかが問題となる。なお、伝送電力pはその分布『エネルギー』δpに回路伝送速度(光速度) co=1/√(CL) [m/s] を掛けると得られる。

p=δp×co = V^2^/Zo [J/s]

ただし特性インピーダンスZo=√(L/C)である。

負荷特性とα

高周波伝送回路では、定在波と反射波の関係が論議される。ここで負荷に『エネルギー』がどの様に吸収されるかが問題となる。その解釈に負荷の整合の関係が論じられる。その関係をαと言う定数での統一した解釈をしたい。(1)図のように、α=√(Lr/L) とした。負荷の誘導性インダクタンスは線路定数Lに比して、相当大きいから α>1 となる。このαは負荷と回路特性の間の関係を評価する整合係数と呼べば良いかと思う。もし負荷が純抵抗の場合なら、αが1より大きければ、負荷端で反射が起こる。伝送エネルギーをすべて吸収できないから。その反射分だけ電源からの伝送分が減少して電圧が規定値に成り、差し引き電源供給の『エネルギー』が負荷に合った分に落ち着く。ところが、コイル負荷では少し異なる。コイルの『エネルギー』貯蔵の現象がどの様であるかを認識する問題になろう。

コイルの貯蔵エネルギー

この問題は、コイルとファラディーの法則の関係による電気技術の解釈に繋がろう。コイルの貯蔵エネルギーは印加電圧の時間積分の解釈で対応すべき問題である。この回路の場合は、電源が直流電圧の一定値である。この場合はコイルに電流は流れない。コイル端子に直流電圧が印加される。それはコイル前の回路の静電容量C[F/m]のエネルギー分布がそのままコイル内に侵入すると解釈する。コイルにその『エネルギー』が伝送され続けている限りコイル端子には電源電圧が印加され続ける。コイル巻き線間の隙間に均等にenergyが分布入射すると解釈する。電圧時間積分でコイル内の貯蔵エネルギーは放物線状に増加する。磁束概念との関係で捉えれば、磁束の2乗に比例するという事である。磁束と言う用語も、実際は磁束がコイル内に自然現象としてある訳ではないが、今までの科学理論の解釈を踏襲して解釈すればという事ではあるが。その間、励磁電流等流れる必要もない。コイル内空間の『エネルギー』が飽和した時点で突然コイル端子は『短絡』となる。

(2)コンデンサ負荷。その電気現象を(2)図に表現した。

負荷がコイルであろうと、コンデンサであろうと電源からスイッチオンではじめに送出される分布『エネルギー』は同じである。それは基本的に電源電圧とその端子につながる電線路の電気的特性で決まるのだ。それが負荷の特性の違いで、負荷にその『エネルギー』の先頭が到達した後、負荷特性と線路特性との関係で反射現象が決まる為、負荷点の特性に因る事から違いが出る。

このコンデンサ負荷の場合の現象は、コンデンサ容量 Cr[F] に『エネルギー』が貯蔵されれば当然電線路の『エネルギー』分布の流れは止まる。従って、それ迄の一瞬の過渡現象だけの問題になる。

物理学理論は役立つのか

(2021/04/08) 現在の物理学理論は自然の理解に役立たない。
筆者も一応日本物理学会の会員として、毎年年会費だけを収めている。何で発表もしないのにとも思うが、過去に何回か大会で発表させて頂き、皆さまに御面倒をお掛けし、御迷惑もかけた。誠に無礼者であったと反省しきりにある。同時に、物理学の未来、その行く末をも心配しながら、変化も期待しているところだ。だが、殆ど本質的な基礎概念などへの問題意識を抱いている様子は見えず、どんどん寂れ行くだけに思える現状は悲しい。

それは理論が技術理論の解釈用便法論でしかないから。

そもそも、真剣に自然の姿に向き合おうという意識に欠けているように思える。自然を観察する基本的姿勢があるのかと疑問に思う。と言っても何世紀も超えて確立した物理学理論だ。簡単に意識が変わる訳はないだろう。現実に世界の科学技術はその理論によって解釈可能な科学常識で十分満足できる役割を果たしていると自負している筈だ。それで、長い歴史の中で教育に間違いは無かった事が現在の姿に証明されていると言うのかも知れない。異論を唱える者の方が間違っていると。確かに、嘘の基礎概念に基づいた教育が為されていたなどとは誰も信じない。そこには、底知れない豊かな叡智によって構築された科学技術力が在るからだ。代表例として、一つの『電流』を取り上げて考えてみよう。その『電流』と言う科学技術量は電流計で測れる。それは物理学理論では『正の電荷』の時間微分と言う定義の量だ。しかし実際はそのような『正の電荷』は流れていない。自然界で純粋に『正の電荷』など有るとは物理学でも解釈していない。原子から『電子』が抜けた原子イオンしかそれに対応するものはない筈だ。だから金属内の原子イオンが動けるとは物理学論にも無い。そこで逆向きに、原子から解き放たれた『自由電子』が流れると解説されるのが現在の科学論常識となっている。『電流』とは『電子』の逆流だと。しかし、『電子』が電線の中を流れると本当に物理学者は考えているのだろうか。それはどうも何も考えないで、過去からの解釈論を踏襲しているだけにしか思えない。『電荷』とはどの様なものと解釈しているかを自己問答もしない。過去の法則と先達の教えを謙虚に、専門家として、踏襲して守っているだけに思える。それは自然現象について何も疑問を抱かないという事か。疑問を抱かない人が自然を理解するなどできない筈だ。物理学理論を、その深い意味を理解しようと思えば必ず疑問が沸く筈だ。その疑問があって初めて学問が始まると思う。身近な教育する教科書の理論を紐解けば、疑問が必ず起こる筈だ。『大学の物理教育』と言う発行誌を見させていただく。しかし、その内容を読み解いても、物理学の未来への危機感があるとは少しも思えない。

電荷も磁束も自然界には無い。
自然界には『電荷』も『磁束』も何もないのだ。無い物で科学理論が構築されているのだ。不思議な人の世の現象である。その意味を御理解されるならもっと新しい道を模索する姿があってよいかと期待したいのだ。電線金属内を『電子』が流れる等と言う物理学理論の解釈論は論理性を基本に据える科学論とは言えない。電気回路で、『エネルギー』が光速度で負荷に伝送される現象を先ず理解する必要がある。『電子』がどの様に『エネルギー』を伝送する機能を持ち得るかを考えなければならない筈だ。『電子』ではその役目は果たせないのだ。それは自然界に『エネルギー』は有っても『電子』など無いからだ。

光の振動数とは何かにも答えられない。

そんな事が物理学理論の教育で説明できなくて、なんで子供達に「考えることの大切さ」を説けるのか。何が振動しているというのか。疑問を抱かないのだろうか。光は何も振動などしていない。ただ『エネルギー』の縦波が光速度で伝播するだけである。空間に実在する『エネルギー』を認識することから始める処にしか物理学の未来はないだろう。

『エネルギー』一筋の道

(2021/02/24)。

1986(昭和61)年10月1日。『電荷』否定の起点。

1987年8月5日。電流棄却の旅立ち。

1988年8月。人生の断崖に途方に暮れて最後の研究論文投稿に賭ける。社会的組織との不調和。

そんなことを振り返りたくなる今の心境。昭和の時代から、世間の渡り方を知らずに、愚直に一つの『エネルギー』に惚れ、よくぞここ迄生きて来たかと自分を褒めたい。

自然の多様性は純粋に因って生まれた。自然こそ神の仕業か。電気理論が難しい訳。それは人間の難しさが創ったものだから。自然の純粋さに心が感応し難いからかも知れない。純粋さなど何の得にもならないから。光が空間のエネルギー分布の縦波である事を認識できるかに電気理論の意味の理解が掛かっているのかも知れない。

『エネルギー』の実像を求めて!利益につながらない学問は、経済的・精神的・社会的孤立で、自由に羽ばたけないと言う処に『学問の自由』の難しさがあるのかも知れない。

『エネルギー』一つに思いを込めた電気磁気現象の認識を述べたい。空間に展開する電磁気現象を論じようとすれば、そこには電界と磁界の概念が必要になる。その基礎概念である電界や磁界の物理的意味を深く掘り下げて考えた結果、それも人間が創り出した解釈理論の為の概念でしかなかったことに行き着いた。

『エネルギー』にもその在り様はさまざまである。それは物に入り込めば、温度の上昇として認識される。電気回路要素なら、電熱器の抵抗体に現れる姿だ。物の煮炊きの熱現象に成る。全て『エネルギー』の形だ。それを電気理論の電界と磁界との関りで見れば、上の図のように解釈できよう。空間を自由に流れるとき、その『エネルギー』を光と言う。少し伝送空間を制限された状態が、電気回路の電気エネルギーに成る。

少し理論的に解釈しようとすれば、電界と磁界でのその『エネルギー』の捉え方に成る。空間を伝播する『エネルギー』だから、空間の意味を解釈に取り入れなければならない。少なくても二つの解釈基準が必要だ。それが誘電率と透磁率に成る。その空間認識基準として直交したベクトル誘電率εo[F/m]とベクトル透磁率μo[H/m]を決めたい。それは電気回路であれば、回路定数の容量C[F/m]および誘導L[H/m]に通じるものである。

単位空間1[㎥]当たりの『エネルギー』の密度を w[J/㎥]とすれば、電界強度ベクトルE[V/m]は誘電率によって解釈することが出来る。磁界強度ベクトルH[A/m]も同じく、透磁率によって定義できる。

電界も磁界も基本的には同じ『エネルギー』の観方を変えた解釈概念と見做せる。だから、電界あるいは磁界が空間に独立に単独で存在することは有り得ないのだ。どちらも同じ『エネルギー』の観方を変えた解釈概念でしかないのだ。光の空間を伝播する『エネルギー』の姿を電界と磁界に分けて解釈するが、それも科学技術と言う見方での手法の故でしかないのだ。有名な「マックスウエルの電磁場方程式」も、具体的なパラボラアンテナの表面近くにその電界と磁界を描いてみれば、電界と磁界での解釈が矛盾であることが分かる筈だ。描けない筈だから。『エネルギー』の縦波としてしか表現できない筈だ。

冒頭の1986年10月1日『電荷』否定の起点ー『静電界は磁界を伴う』ー。そこに思いを馳せながら、その基礎論とする。

懐中電灯の特性

(2021/01/18)。懐中電灯

右は少しクラシックの高級懐中電灯だ。電源は単一乾電池4個直列に成っている。白熱豆電球が負荷だ。

 

 

電池の放電特性。

右は単一型乾電池のある会社の放電特性の試験結果だ。乾電池と花一匁 (2021/01/13)のデータの意味が不思議で再び取り上げた。放電条件で、電池容量が大きく異なる結果を示す理由が分からない。

実際の懐中電灯がどの様なものかを調べてみたいと思った。懐中電灯の電気回路現象はオームの法則で誰もがよく知っている。しかし、それは回路に電流が流れるという科学技術概念に因った理解だ。電線に『電流』や『電子』が流れていないとの認識に立てば、そう簡単に分かったとは言えない。懐中電灯回路の日常に有り触れた製品でも、科学技術的解釈理論とその中の自然現象の本質とは違う。本当の物理現象は『電流』や『電圧』と言う科学技術概念ではその真相は分からない。自然現象の本質を理解するには『エネルギー』の流れで捉えなければいけない。それは既に教科書の解説理論と異なる内容になる。教科書は『エネルギー』の流れと言う認識では解説されていない。最近分かったと思ってまとめた記事がある。エネルギー流が電圧・電流 (2020/10/01)。その末尾に、【実験的課題】α<1の時。として疑問を残しておいた。今回その点で新たな認識に至った。 

実際の負荷条件は殆どα<1の場合である事に気付いた。その為、右の図を修正しなければならなくなった。ビニル絶縁電線が屋外配電線路並びに屋内配線のFコード等として使われている。その特性インピーダンスZoの値が500Ωに近いように思う。ビニル絶縁体の比誘電率が2~2.8程度となればそんな値に近いかと思う。乾電池の回路での配線は普通往復の単線回路だ。冒頭に示した製品の内部を見た。そこに観える回路には何か電気技術感覚の優れた直感からの誇りが隠されているように思えた。電気回路の回路定数はその電線路の空間構造によって決まる。分布定数回路空間の世界 (2019/10/14) に算定式をまとめた。

ここには電線は使われていない。金属導体板で回路が構成されている。直流回路の導線がどの様な意味を持っているかが示されているように思えた。この回路構造で、導体が平板で伝送空間が広く、電線より回路容量 C[F/m] が大きくなり、その為『エネルギー』の伝送容量の増加が見込まれる。以前平板コンデンサ配線回路等と言う記事を書いたこと思い出した。今はもう懐中電灯は新技術やらで、LEDが使われこのような電気現象の原理を考える古き良きものが消えてしまった。ブラウン管テレビが消えたように。

回路構成。

ランプ定格。4.8V,0.5Aと豆電球に記されている。電源電圧を計ると無負荷時 6.4[V] ある。ランプ抵抗は 0.9[Ω]のテスターでの測定結果を示す。ランプ負荷時はフィラメントが高熱になって抵抗が 9.6[Ω]程度に成る。それは500Ωに比べればとても小さい抵抗値だ。負荷は定格容量 P=2.4[W]以上 となろう。

回路現象解釈。

(教科書)。教科書では、当然のごとく、『オームの法則』で解く。電源電圧V=4.8[V] 、抵抗R=9.6[Ω]なら、電流I= o.5[A] と『電流』が求まる。それだけで、負荷電力も直ちに計算できる。科学技術論としてはそれで充分で、それ以上の事は考える必要もない。直流回路では、電気回路の回路定数は考慮しない。実際には特性インピーダンス Zo[Ω]が負荷抵抗R[Ω]との関係で重要な意味を持っている。

(自然現象)。『電流』と言う貴重な科学技術概念の御蔭で、すべてが数式での論理性を持って解析でき、すべて教科書によって理解できる。この科学技術以上の事は世界の電気理論には取り上げられていない。ほぼ『電子』が『電流』と逆向きに電線の中を流れるとの解釈で専門的論理が完結している。そこには負荷にどのように『エネルギー』が電源から伝送され、消費されるかの意味が不明のままである。この単純な懐中電灯の電気回路で、『エネルギー』がどのように振舞うかをまとめた。

(1)α=1の場合。

δp1(α=1の時の伝送エネルギー)を回路整合時の基準値と定義する。負荷抵抗がR=Zoの場合は、電線路伝送の『エネルギー』の分布量δp[J/m]がそのまま負荷に供給され、負荷反射なども起きない。この状態を回路動作の基準と定義し、その値をδp=δp1とする。

(2) α<1の場合。

この場合が通常の回路状態と考えられる。負荷抵抗値Rが回路特性インピーダンスZoより小さい場合である。この1より小さいαの場合が通常の負荷状態であると気付くのに時間が掛かった。オームの法則での解釈と異なる、『エネルギー』流によってどのように認識するかの決断にも時間が掛かった。すべて実験で確認できる内容ではない。従って『エネルギー』と言う物理量がどの様な特性を持っているかを己の感覚に照らし合わせて、決断をしなければならない。これは科学論とは言えないかも知れない。

決断点。『電圧』は電線間のエネルギーギャップ δg[J/m]の技術概念である。そして自然界には決して『電荷』は実在しないという強い確信がその決断の原点となった。その事を纏めれば、電池のプラス側の電線近傍にエネルギー分布のδo[J/m]の滞留分を付け加えるしかないと判断した。その『エネルギー』は負荷への流れには関わらない。反射でもない。その分が負荷増分の『エネルギー』となり、マイナス側を伝送する増加『エネルギー』流となる。

    伝送エネルギー δp = δp1+δo [J/m]

    線路電圧    v=  (δg/C)^1/2^ ={(δp-δo)/C}^1/2^ [V]

 電流      I= ( δp/L)^1/2^ [A]

 電力      P= VI = δp/(LC)^1/2^ = (1/α)δp1/(LC)^1/2^ [W]

となる。以上が決断内容である。

(3)α>1の場合。

消費『エネルギー』が微弱の場合は、電源電圧保持『エネルギー』より少ない伝送『エネルギー』で十分である。負荷が要求する電力P[W]に対する伝送『エネルギー』分δp[J/m] では電圧保持には不足である。そこに流れない滞留『エネルギー』分布δo[J/m]が生じる事に成る。

  伝送『エネルギー』 δp=αP(LC)^1/2^ [J/m]

  電圧         v={(δp+δo)/C}^1/2^ [V]

電池放電特性。冒頭に掲げた放電条件で電池の『エネルギー』量が異なる訳が分かったとは言えないが、負荷が重くなるとプラス側導体周辺の滞留『エネルギー』が増加する。そのプラス側の分は負荷によって増加するから、その分の外部への放射損失が増えると考えたい。

直流回路の電気現象について。教育とオームの法則 (2020/09/06) で指摘した。その疑問の一部について、漸く満足の出来る『エネルギー』による解釈に到達できた。この自然現象を理解するのも、一般の方には難しいかも知れない。しかし、『電子』と言う科学常識論が誤りである事だけは間違いない。これからの理科教育と言う面で、とても大きな課題がある事を明らかにできた。それはみんなが『学問の自由』と教育いう意味を考える課題でもあると思う。

 

変圧器のエネルギー伝送現象

変圧器はファラディーの法則の適用によって解釈する科学技術設備である。大電力の伝送は変圧器に因る高電圧化が欠かせない。

ファラディーの法則。
その原理はコイル内の磁束φ[Wb]の時間的変化率によって、端子に発生する電圧が決まる事を示している。コイルの巻き線数nに比例する電圧vが発生する。
  v=n(d φ/d t) [V]
と表される。この式によって、電磁誘導現象の理解が容易だ。しかし、この法則は磁束と言う技術概念が使われているから、その意味を理解することが必要になる。もし自分が、初めて先生から磁束がコイルの中に発生すると電圧が生じると聞かされた時、簡単に理解できるだろうか。コイル内の空間に、磁束と言う線束が貫通するという磁束の物理的概念に疑問を抱くか、抱かないか。殆ど疑問など抱く余裕が無いからその言われたままを記憶して、磁束が自然界にはあるのだと理解する。

変圧器の構造。
基本的には、巻き数の異なる二つのコイルと鉄心からなる。

自然界に磁束は実在しない。
鉄心の役目は何か?鉄心が無ければ変圧器の機能は望めない。その鉄心の物理的役割は何か。技術概念としての磁束は鉄心の中を空間より多く通せるからと解釈する。技術概念ではそれを飽和磁束密度と言う言葉で捉える。磁束の飽和値が高いと解釈される。変圧器の役割は二つ以上のコイルの間で、異なる電圧を発生する電圧変換設備と言えよう。電圧という科学技術量を変換し、電圧を変えながらも『エネルギー』をコイル間で同じ量で伝送する機能を持っている。磁束は無くても『エネルギー』は自然界に実在する。それなら磁束でなく『エネルギー』で変圧器の現象を理解すべきではないか。科学技術法則はとても便利に自然現象を利用する手法を提供する。とても分かり易い。しかし、技術法則と言う物は、自然界に無い概念を定義して、自然を利用しやすく取りまとめる理論と言えよう。だから専門技術者は、簡単に技術概念を駆使して利用技術理論を使いこなせる。しかし概念が専門的な定義に因っているため、なかなか一般の市民には採りつくことの難しい理論となっている。もっと自然の本質に迫った解釈法なら、市民も理解し易い筈なのだ。理科教育はその考え方に基づく方向性を採るべきである。みんなが未来の科学技術に、その安全性や安心への意見表明による責任が発揮できるように。変圧器のコイルを巻く中心に鉄系の鉄心が使われる訳は何かを考えただけでも、その自然の特性や機能を理解することは難しい。しかし、自然現象が全て『エネルギー』がその主役を担っている事に思い至れば、必ずや分かったと安堵できる筈である。其処に科学技術と自然現象との関係を見つめる魅力がある筈だ。鉄心の内部に『エネルギー』が侵入するに時間を要するから、1次側の電源からの印加電圧による『エネルギー』供給に対して、十分対応できることになる。コイル電圧はコイル内部貯蔵の『エネルギー』が飽和したら『ゼロ』となる。鉄心内部に『エネルギー』が流入している限りコイル短絡には成らない。

自然の本質は分かり難く、複雑である。経済的効果を求めるなら、あまり役立たないかも知れない。しかし、精神的な安心感を得られる。複雑な技術概念は分からなくても、自然現象としての奥深くに秘められている不思議を心で体感できるから。その上で、技術法則を学習すれば、その技術的解釈法がとても優れている結晶だという事も解る筈だ。技術屋さんの専門性がなくても、大よその利用概念が分かって技術への理解で、未来科学技術の安全への自分なりの責任を発揮する基礎を身に付けられる。それが理科教育への大事な眼目と考える。

『エネルギー』で見る変圧器。
変圧器の機能は『エネルギー』の状態を1次と2次で変えて、伝送する電気設備である。この『エネルギー』を物理学理論ではどのように捉えているかを筆者は知らない。残念ながら、その認識が物理学理論には無いとしか思えない。電気磁気学で、電界と磁界の概念を空間電磁場に適用して理論が構築されている。その電界とか磁界と言う概念の意味を深く突き止めれば、必ず『エネルギー』に行き着く筈なのだ。それは光の半波長も空間の『エネルギー』の分布の認識に行き着く筈なのだ。しかしその解釈はどうも物理学理論には無い。それは自然を深く突き詰めて考えていないからではないかと勘繰らざるを得ない。電磁場を電界と磁界と言う概念で理解できたと解釈する限りは、空間に実在する『エネルギー』には届かない。宇宙論で高尚な理論を唱えても、足元の電気回路内の『エネルギー』が観えない限りそれは未来の世界観には届かない。単に変圧器の内部の電気現象でも、そこには『エネルギー』がその機能の主役を演じているのだ。上の図に大まかな変圧器の中の巻き線周りでの『エネルギー』の分布とその電気要素コイルとコンデンサ機能からの捉え方を提示した。

 

まとめ。

空間エネルギー分布が変圧器巻き線空間を支配している。その様子を上の図に示した。その『エネルギー』が変圧器外部回路にどう表れるかを右にまとめた。(2020/12/03)修正した。巻き数比a の関係も示した。このエネルギー電線路分布量δxx[J/m]はその電線路回路定数 Cx,Lxによって電圧から決まる。伝送エネルギーと反射エネルギーは負荷整合からのズレによって自動的に決まる。

変圧器の機能解釈で、ここまで辿り着くまでに、変圧器‐物理学解剖論‐ (2011/09/13)。変圧器の奇想天外診断 (2015/06/03) 。変圧器の技術と物理 (2019/04/12)。などがある。中でも・・奇想天外診断は思い付きの単純な実験ではあるが、それ以降の電気回路解釈に決定的な指針となった。『エネルギー』論への確信となった。

導体と空間とエネルギー (2020/11/28) をこの変圧器の現象説明のために先に示した。

導体と空間とエネルギー

(2020/11/07)エネルギーギャップ。
電磁気現象は『エネルギー』の動態を捉えて、その世界が観えるようだ。決して『電子』ではその真相は観えないだろう。
空間に在る『エネルギー』の姿を決めるのは、その空間構造を規定する金属導体と観ることも出来よう。その見方を纏めてみた。
電圧とエネルギーギャップ。


エネルギーギャップ。

少しづつ電気現象における『エネルギー』の姿が観えてきた。それらを繋げて行くと、すべての現象が金属導体とその近傍に関わる『エネルギー』の姿である。近接した導体が有れば、その間の空間にエネルギーが分布する。その分布の姿は、必ず不均一である。と解釈する。その様子を上の図に示した。コンデンサもコイルもその導体の間に不均一に『エネルギー』が分布する。その不均一分布を『エネルギーギャップ』と唱えたい。それはダイオードのp型と n型間に存在する不均一エネルギー分布との解釈と同じとみる。ダイオードはその『エネルギーギャップ』によって導通「オフ」状態となっている。n型側に『エネルギー』を加えれば、ダイオード「オン」となる。そのように基本的に空間構造体内に『エネルギー』が存在する姿は不均一である。その『エネルギーギャップ』が電気回路の回路定数、特に容量C[F/m]との関係で端子電圧V[V]となる。

『エネルギー』と光と空間定数。上の捉え方が誘電率εo[F/m]および透磁率μo[H/m]と光伝播現象との関係の哲学的考察につながるだろう。 

電磁誘導現象の真相

ファラディーの法則(2020/10/24)。それは19世紀初めに唱えられたアンペア―の法則と共に電気現象の不思議を解き明かす基本法則である。電気回路現象の解釈の要となる概念が『電流』と『磁束』であろう。ファラディーの法則で、『磁束』がその主要概念となる。しかしよく考えると、コイルに磁束が鎖交すると何故コイルに起電力が発生するかの理由が分からない。金属導体のコイルと磁束の間の物理現象はどの様なものか。『磁束』とは一体どのような空間的物理量か。「科学技術概念の世界」を書きながら、さきにこの記事を投稿する。

磁束が自然世界にある訳ではない。磁束とは、人が電磁誘導現象の訳を解釈するために仮想的に磁界の中に在ると考えた概念である。『電圧』とは何か?と同じように『磁束』の、その真相・意味も分からないのである。それは磁石のN極側から空間に放射する線束として仮想した概念である。空間に在る線束とはいったい何だろうか。磁束や磁界と言う解釈概念は、その本当の意味は、N極およびS極の周りをエネルギーが回転している、軸性エネルギー流の空間現象なのだ。その様子を図の磁束φの先端に記した。N極側から見て、時計方向に回るエネルギー流なのだ。コイルの端子電圧Vはコイル1ターン毎の単位電圧vuの加算の電圧となる。丁度乾電池を積み重ねたと同じことになる。

コイルはコンデンサである。電線を二本平衡に張ればその間にはコンデンサが構成される。電線間の離隔距離と電線の形状・寸法でコンデンサ容量は変わる。コイルはその電線の間にはやはりコンデンサが構成されていると考えて良い筈だ。コイルの端子電圧の意味を少し深く考えれば、そのコイル電線間のコンデンサ容量と、そのギャップ間の貯蔵エネルギーとの関係を見直せば、新しい電圧の概念で統一的に捉えられると考えた。コイル巻き線間の間のエネルギー量をδ[J/1turn]とすれば、1turnコイルの電圧vuは図のように認識できる。丁度1turnの電圧を巻き数n倍すれば、コイル端子電圧Vとなる。

変圧器と『エネルギー』反射現象。

先に電気回路は直流も高周波も同じ電磁現象の基にあると述べた。変圧器は電気回路の中でも少し異なった、電力工学の捉え方が中心になって認識されているようだ。物理学の変圧器の解釈は励磁電流による磁束発生がその根本原理となっている。もう励磁電流などと言う解釈は過去の遺物概念と破棄しなければならない時にある。そこで更に先に進むには、変圧器も電線路に繋がれた一つの負荷でしかないと考えざるを得ない。其処では負荷と電線路特性との負荷整合の統一的解釈にまとめなければならない。変圧器での電源間とのエネルギー反射現象をどの様な認識で捉えるべきか。空芯であればすぐ短絡現象になる。鉄心がある事で、技術概念の『磁束飽和』に至らずに短絡せずに済む。それは鉄心へのエネルギー入射が時間的に長くかかり、鉄心でのエネルギー反射が巻き線空間を通して電源側に起きるからと考える。後に、追記で図によって示したい。ひとまず基本的な真相だけを述べた。

 

 

エネルギー流が電圧・電流

電圧・電流の物理的正体(2020/09/29)。

長い電気回路の解釈を通して、感覚的に納得できたかと思う。『電荷』概念を捨てて、電気磁気学の科学論の常識から離れて遠い道を辿ってきた。パワーエレクトロニクスと言う新しい電力制御技術に出会い、その回路制御技術を通して『エネルギー』の実在性を感覚的に身に深く刻むことが出来た。様々な過程を経て、理論と『エネルギー』の間の不協和を謎として追究してきたように思う。電気回路は電圧と電流なしには解釈できない。その電圧と電流が回路の線路空間を流れる『エネルギー』の流れとして捉えて良いとの結論を得た。

直流回路のエネルギー流。

電池などの電源からランプを点灯する回路。それは最も基本となる直流回路だ。その電気回路は二本の電線で囲まれた空間を『エネルギー』がほぼ光速度で伝送される機能設備と言えよう。電線路はその空間が電気的特性、コンデンサとコイルによって特徴付けられる機能回路である。電線路の単位長さ当たりの持つ静電容量 C[F/m] とインダクタンス L[H/m] によってその空間の特性が特徴づけられる。その C L によって電気『エネルギー』の電線路特性が決まる。電源の特性は電線路に供給する『エネルギー』の供給能力で評価できる。電源端子の線路容量 C で供給する『エネルギー』の分布が決まる。それがそのまま電圧と言う技術量を表すことになる。電源の電池やその他の直流電源は技術的な電圧規定値、定格値でその能力を評価できる。電源から送出される『エネルギー』は線路特性に因る伝送速度 c で次の式で決まる。

c=1/√(LC) [m/s]

電線路の分布した『エネルギー』がδ[J/m] なら、その伝送速度が c となる。この伝送特性は、高周波伝送であろうと商用電源であろうと全く違いはない。直流回路も同じ基本特性にある。

直流回路の反射現象。

直流回路のエネルギー反射現象と言う認識は無いと思う。ここで述べる解釈は、おそらく科学論としては評価されないかも知れない。何故なら、全く科学的手法の原則である実験的検証による説得力のある論ではないから。しかし、電気現象が全て『エネルギー』の光速度伝播であるとの認識に立てば、その伝播空間と『エネルギー』の関係から電磁波の周波数に因る差異がある筈が無いとしか考えられない。となれば、伝送回路の空間特性により、特性インピーダンスの意味も負荷の整合性で直流回路においても全く同じ筈と考える。伝送エネルギーが負荷に到来しても、整合性の執れていない負荷では、その内のある分の反射現象が起きる筈だ。

反射現象で、反射エネルギーはどの電線路側を戻るか?ここにその判断の鍵があるようだ。プラス側を戻るか、マイナス側を戻るかに判断を下さなければならない。

反射エネルギーは負側の伝送エネルギーの到来側をそのまま反転して戻る。そう結論を付けた。

負荷の反射は回路の特性インピーダンスZoと負荷抵抗Rとの関係で整合が採れているかどうかに因る。今負荷抵抗が回路のZoのα倍とする。図のように負荷で伝送エネルギーδpの内のδrが反射するとする。負側電線路のエネルギー分布量δは二つの合成となる。負荷で反射して、電源に到来する『エネルギー』分布波δr分だけ電源から送出する『エネルギー』δpは少なくなる。電線路エネルギーギャップはδ=δp+δrと、電圧保持分布量に成っているから。

模式図。上の関係を模式図にまとめる。

負荷が整合に在れば、α=1である。『エネルギー』の反射は無く、電源供給の『エネルギー』δ分布で、そのまま負荷に吸収・変換される。

【実験的課題】α<1の時。特性インピーダンスZo より負荷抵抗が小さい場合に当たる。この時、電源の供給能力があれば、あくまでも電圧を規定値に保つべくδpを増加するかと言う問題になる。一つの実験的検証の課題が浮かぶ。プラス側を反射波δrが電源に戻る。その分多く電線路エネルギーギャップがδ=δp-δr、V=√(δ/C) となるように、δpが多く送出されれば解決となる。実験的に確認したい未解決問題。

関連記事。

電流と電圧の正体 (2013/05/16) 。電気の真相(3)-電圧と負荷-(2015/09/25) 。電圧-その意味と正体- (2016/05/15) 。エネルギー伝播現象 (2020/06/27) 。『電圧』という意味  (2020/07/04) 。電圧とエネルギー (2020/07/10) 。技術概念『電流』とその測定 (2018/09/24) 。などの解釈を経てきた。

 

定在波の発生原理

定在波とは(2020/09/22)。ここで解説する意味には『電圧』と『電流』で定在波を論じる。しかしその『電圧』と『電流』の意味には深い意味が有るので、一般的な電気回路の『電圧』『電流』とは少し異なる意味かも知れない。それは測定法に関わるので、その点も含めてご理解いただきたい。この定在波測定回路については後の記事に示したい。

電気現象はその基本が『エネルギー』一つの振る舞いである。しかし商用周波と高周波あるいは直流とそれぞれ回路解析法は異なる手法が適用される。高周波回路は電線路長に対して電気信号の波長が短いために、その電気現象は特異なものに観えることになる。それが定在波と言う波についてであろう。定在波は電線路終端短絡の場合に顕著に、そこからの反射波と伝送波の間に起こる現象として強く現れる。負荷終端の場合は、様々な影響が定在波分布に現れる。専門的な解説が多く示されている。しかし、とても内容が複雑で筆者には難しい。それも波動と言う波形が何を表現したものかが分からない。ここでは伝送波も反射波も全て『エネルギー』の分布密度波として捉える解釈について論じたい。

インピーダンス整合。

負荷インピーダンスが電線路の特性インピーダンスと整合して居れば反射波はない。すべて負荷に伝送エネルギーが吸収されて反射するエネルギーは生じない。それがインピーダンスマッチングと言う状態なのだろう。

電線路電圧の概念。

電気現象は『電荷』を否定して初めてその真相が見えてくる。高周波であろうと直流であろうと、電源は電線路の空間を通して、『エネルギー』を負荷に供給する回路技術である。二本の電線a と b の間に高周波電圧を掛けるとする。その電圧を掛けるという物理的意味をどのように解釈するかと言う難しい話になる。まさか電線に正の電荷と負の電荷を交互に電源から送出するなどとは考え難いだろう。①には、『エネルギー』の波の伝播で示した。電線路に電圧測定装置、オッシロスコープ等を繋げば②の様な電圧波形が得られるから、電圧と言う物理量が自然世界に存在すると誰もが考え易い。しかしその電圧と言う物理量は、人が科学技術に依って獲得した測定技術の賜物であって、簡単に電線路に電圧が在ると理解するには、それはとても深い物理的意味を知らなければ分かり難い概念なのである。

定在波とエネルギー流。

終端短絡の定在波とは。電線路の位置によって、電圧や電流と言う概念の分布を測定すると、測定値が正弦波状の分布になる。その分布波形を定在波と言う。終端短絡の時、『エネルギー』は電源から伝送され、終端ですべての『エネルギー』が反射する。その往復の『エネルギー』の波動が重なり合い、その密度分布の大きさが電線路の位置によって決まった脈動をする。図の電圧の定在波をVで示し、電流の分布をIで示した。電圧定在波Vは常に零の位置がある。『エネルギー』は電線路を光速度で流れるから、電線路の位置によって流れが違う訳はない。それなのになぜ測定値が異なる正弦波分布になるかと言う疑問が沸く。そこに『定在波』と言う意味が隠されているのだ。

今、図のように電線路の長さが電源電圧波長の2倍の長さとし、その終端を短絡する。電線路を短絡するなどという事は普通は短絡事故と考える。しかし、高周波電圧波形の場合は、『エネルギー』密度がそれほど高くなる前に極性が反転して、高密度にならないため、短絡しても事故とならずに済む。極性の切り替えが早く高密度エネルギーにならずに済むためである。短絡終端に到達したエネルギー波はすべて反射して電源側に戻る。その反射伝送は到来『エネルギー』波の反対側の電線近傍を、即ち反対側電線を戻る。

電線路電圧の意味の追加説明。この事は別の記事にして示したい。短絡終端は当然電圧は零である。電圧零という意味は二本の電線路の両方が同じエネルギー分布であれば、それ電線路間の電圧は零である。電圧とはエネルギー分布ギャップを評価するものである。それは乾電池電圧の『エネルギー』の意味と同じものである。二本の電線間にエネルギーの分布差が無ければ、如何にエネルギーが大きかろうと電圧は零である。エネルギーギャップ零は電圧零である。

この記事は

金澤:分布定数線路実習に対する一考察。新潟県工業教育紀要 第3号、(昭和42年)。に載せた定在波分布波形の意味が良く分からずに、改めた考えてみた。実験での測定データなどは他にあまり見当たらない。その意味でとても貴重な資料と考える。正直に当時を振り返れば、よくこんな実験をして、報告記事にしたと驚いている。その訳は今でもそのデータの意味が良く理解できないのだ。その意味を少し掘り下げて理解してみたい。その第一報として定在波と『エネルギー』の関係だけを論じた。一般の解説には『エネルギー』の観点はほとんど示されていないように思う。

 

原子構造と8面磁極

原子構造(2020/09/13)。

原子構造論など全くの素人が申し上げるのは大変恐縮である。しかし、『電子』の存在を否定したら、標準的原子構造論を信じられなくなる。専門家の論理を否定せざるを得なくなる。誠に不遜の極みとお恥かしい次第です。

八面体と軸性エネルギー流。八面体の表面は軸性エネルギー流(Axial Energy flow)の磁極との解釈を提案した。図の赤い丸は N 極、青い丸は S 極を示す。水素原子は最小のマグネット単位原子と解釈する。もし『電子』を考えるなら、それはもっと小さな軸性エネルギー体のマグネットと考えればよいかも知れない。しかし電気回路ではそんな『電子』も必要ない。分布定数回路を考えれば、そこには電線路空間内のエネルギー分布流しか考えられない。従来の分布定数回路と言うインピーダンス認識も考え直す必要に迫られる。

原子の基本的特徴。周期律表に示されるように、やはり8の周期性で特徴付けられるのは確かであろう。中心には核があり、その周りを『電子』が取り囲んでいるような構造体として原子を捉えているのが常識的科学論である。原子は他の原子と結合する性質を基本的に備えている。原子の空間像をどのように捉えるかは、その結合の機能を何に求めるかに係っていよう。常識論である原子構造は外郭電子同士の結合にしか説明が付かない。だから「共有結合」なる電子間の結合力を頼りにする以外ない。あるいは電子が理由は不明だが、相手の原子に移り、その結果イオン結合なる結合理論を唱える。そんな電荷間の「クーロン力」に論理性が成り立つと考えること自体が、失礼ながら何も考えていないとしか思えない。

新電磁気学の事始め (2020/09/15) 。『電子』周回構造の原子論批判の為の記事とした。