タグ別アーカイブ: 科学技術概念

科学技術概念の世界

(2020/10/20)電気概念図表。不可解な編集機能?ブロックで編集すると編集記事が勝手に消去されてしまう。旧エディターでないと正常に投稿できない。何故か?電界、磁界の距離微分の解説の内容が消去される。

科学理論は基礎概念から、多くの特殊用語の概念迄幅広く構築されたもので論じられる。中でも電気技術用語はその根幹をなしてもいよう。自然世界を科学論の世界に映せば、電気磁気学論の『電荷』と『磁気』がその基礎概念となっているようだ。

自然世界に『電荷』や『磁荷』がある訳ではない。しかし科学論では、それが理論の根幹を成すことになる。それらの科学技術概念の世界を図表に表現した。電気回路を論じるには電圧 V[V] と電流 I[A]が基本概念となる。その関連概念を『電荷』と『磁束』で纏めた。ここでは、『エネルギー』を基本に捉えた[JHFM]の単位系での解釈も含めた。図表の中心部に、L[H] C[F] の空間評価概念とt[s] x[m]に展開する『エネルギー』の自然世界像を表現した。

図表上の電荷Q[C] と磁束φ[Wb] の間の対称性。ここで論じようとすることは、『電荷』概念の論理的存在の矛盾についてである。

図表での関係を眺めると、 どちらも線束で捉えて良いように思える。しかし実際は磁束だけが線束で、電荷には点電荷と言うように、線束と言う捉え方はない。図表上からその対称性でありながら、異なる空間像になる訳の妥当性が有るか無いかを考えてみよう。先ず磁界である。その次元からも電流の距離微分[A/m]である。電流も流れる空間的方向性で捉えている。それはベクトルの筈だ。その電流のベクトルに対して、微分する空間距離x[m]も空間的方向性で認識するから、当然ベクトルである。磁界のその距離ベクトルは電流ベクトルに対してどの方向性かがはっきりしている。電流に対して直交ベクトルである。磁界と電界の空間ベクトル像から磁束、電束を求める。

磁界と磁束。

磁界は電流によって発生するとなっている。電線導体内を流れる電流など無いのだが、そのような電流を電気理論の基礎概念として決めた。その電流はベクトルとして、方向が決まる。単位ベクトルを ni とする。磁界H(x) は電流ベクトルの距離ベクトル微分で、アンペア―の法則の係数を採れば、次式となる。

   H(x)= (1/2π)d Ini/d =(I/2πx)[ni×(r/r)]        (1)

ただし単位ベクトル(r/r) とのベクトル積で磁界ベクトルが決まる。ベクトルのベクトルでの除算規則に因る(*1)。ベクトル x 近傍の磁束φは透磁率μoと面積Sから決まる。磁界により空間には磁束と言う線束が生じると解釈される。

磁束と電界および電束。

磁束は電磁誘導の変圧器の原理につながる。厳密には磁束も自然界にある訳ではないが、電気技術概念として一つの解釈概念として重宝である。それがファラディーの法則である。コイルnターンの巻き線に磁束が鎖交すると、右図の様に電圧V=n(dφ/dt)が端子に発生する。あくまでも技術概念の意味である。自然現象としてこの電磁誘導を解釈しようとすれば、『何故磁束がコイルの中で変化すれば、電圧が発生するのか?』と疑問に思わないか。その答えは、電気理論の範疇では得られない。空間の磁束の像を捉え切れているだろうか。その問答は別にしよう。ここでの主題は電界 E[V/m]の意味である。電圧が在れば、そこには電界が定義できよう。電界の発生原因は何か?という事である。静電界なら『電荷』によって解釈できる。変圧器の巻き線によって電線路に発生する電界をどう解釈するか?巻き線で正負の『電荷』を発生出来ないだろう。さて、電界が在れば、電束密度あるいは電束が決まる筈である。図に示したように、電束密度 D[C/㎡]が空間誘電率εoから決まる。そこに面積を考慮すれば、電束量が電荷の単位[C]で得られる。電界の場には電束と言う線束が伴うようになる。その単位がクーロン[C]であれば、点電荷と言う『電荷』の空間像は観えない。電荷の論理性 (2020/10/26) 。電磁誘導現象の真相 (2020/10/25) 。

記事の冒頭の図表に『電子』は入らない。電気理論の概念をまとめたが、量子力学はじめ、半導体など殆どの基礎理論は『電子』が無ければ物理学理論が成り立たないようだ。それなのに図表には『電子』の入る余地が無い。それは電気回路現象には『質量』と『負の電荷』を持つ『電子』の果たす役割が無いからである。

— ここの記事が消えてしまった? –そこには、『電子』による理論構築が全ての根底をなす関係から、粒子的な捉え方が必要であったからであろう。しかし、上の図表には『電子』は入る余地がない。その訳は、『電子』の概念には『質量』が無ければ粒子的解釈が出来ない。電磁気学には無い『質量』を組み込めないためである。 電磁気現象や電気回路には『質量』は必要がない筈だ。そこには『質量』とは何か?の哲学的考察が生まれる。同時に『電荷』と『質量』を空間に含む『電子』の自然世界での役割は何か?となる。

(*1) :日本物理学会講演概要集。61-2-2. p.196. (2006.9.24).

電気回路理論と電磁気学の関係

標題のような関係を問われているようだ。言われてみれば、なかなか悩ましい問題かもしれない。電気回路理論は物理学の分野と言うより電気工学の科学技術応用理論になると考えた方が良かろう。回路理論は電流や電圧と言う科学技術概念で論じる分野になるから。しかし電気磁気学(現在の教科書の内容は電流、電荷概念によって解釈しているから、それは科学技術の範疇になり、真の自然の真理とは異なる。2018/02/13)はあくまでも自然現象として電気現象の真理を探る学問分野になろうから、電気工学と異なる物理学の範疇の分野になろう。物理学は応用でなく自然の真理を説き明かす学問分野と考える。だから物理学は例えば『電荷』の実在性を説き明かす事を目的とするような学問分野であろう。科学技術概念とその用語は応用分野が広がるにつれ、次々と新しい概念・用語が造りだされる傾向にある。超伝導現象等も古い電気磁気学には無かった、気付かなかった現象である。その新しい応用技術用語・概念が如何なる自然現象なのか、その本質を究めることが物理学である筈だ。そこには電流を自然の真理と解釈するようではとても物理学とは言えない。広く自然哲学としての見極めをする学問が物理学であろう。応用と真理は常に対立する学問分野であるべきだろう。電流概念(電荷と質量の混合素粒子である電子の流れと言う概念。しかし電流はA[C/s]で、その単位には質量は入らないと言う不思議な電流概念論の矛盾)を否定すれば、初めて電気回路内の現象の意味が分かって来る筈だ。電流が流れていない事が分かれば、導体としての銅線の資源量は節約され、設備は軽量化されるのだ。それが自然現象の本質を究める学問・物理学であろう。物理学の電気磁気学は根本から作り直さなければならない処に立っているのだ。電気工学と電気磁気学は全く異なる分野である。科学技術の社会に生きる現代人がその科学技術の本質を理解し、賢く生きる未来を見据えるに欠かせないのがその科学技術に隠された真理を認識しながら、技術との関わりを考えることであろう。技術を理解するには、電気工学で有ればオームの法則やファラディの法則と言う便利な技術法則を使う術を身につける必要がある。ファラディの法則一つをとっても、磁束と言う概念を使うが、科学技術法則として《磁束=コイル印加電圧の時間積分》と言う概念で捉えることが必要である。しかし、その法則さえ物理学として自然世界の真理を求める分野では磁束など存在しない事を理解する必要がある。磁束もただ一つの『エネルギー』の回転流を評価する科学技術概念でしかない事を。

今電子レンジと水について考えている。水分子が衝突し合って加熱されると解説されているのを本当か?なと。マグネトロンと同じく、MRIもなかなか不思議な理論で、すべて磁界と磁束の科学技術概念がその基本理論を構成している。みんな『エネルギー』の様相に観えるから、筆者の迷惑論かと御免なさい。