タグ別アーカイブ: 硝子体管

光の筋道―眼と望遠鏡ー

光の道 始めに光あり。光無しに質量は有り得ない。光は世界を知る鍵である。光は障害が無ければ真っ直ぐ筋道を通して進む。地球の傍を通る時は、地球は障害物になる。だから光は筋道を曲げる。それは自由空間でなくなるから。光の速度もその筋道も、観測者との相対関係にあることを理解する事が世界を知る鍵になる。光と観測者の関係は普通の運動速度の相対性がそのまま当てはまる。その関係は決して『特殊』ではない。レーマーの光速度の相対性検出の基本認識が大切。光の速度がその伝播空間によって決まっているから。光が空間の距離と時間の関係を規定する世界の基準であるから。いま店先をシクラメンが飾る。じっと眺めて、何故惹きつけるのかと思う。尋ねても応えは無い。何の役にも立たない時間が過ぎる。シクラメンの花弁の分子構造が光の色合いを人の心に届けて人とつながる。光が無ければつながらない。光が『エネルギー』の縦波であるが故に世界が成り立つ。

(1)眼の機能 眼にはレンズの機能は無い。空気との境界を決める角膜の曲率でほとんどの入射光線は決まる。角膜が光の第一門の関所である。瞳への通行手形が切られる。眼の機能については教科書はじめいろいろと解説されている。カメラのレンズ機能と同じく網膜に像を結ぶと。しかしそれは有り得ないと医学の素人ながら筆者は考える。眼にはレンズ機能が無いと考える訳を説明したい。既に眼は一筋の光を観る で述べてはいるが。

眼の機能 確かに眼球には水晶体と言うレンズがある。しかしその成分は蛋白質であろう。蛋白質(角膜)と空気の境界では、光はその媒体間での透過率*(2017/11/29訂正追記。用語の間違いです。訂正してお詫びします。と同時に適切な用語が浮かばない。光伝播空間媒体の特性であるから、その媒体特有の透磁率と誘電率に基づく伝播速度の意味を表現したかったところ、透過率と早合点して使ってしまった。光の空間エネルギー密度分布波が進行方向に縦波として媒体内を伝播する。その媒体の光伝播現象に対する空間特性は、空間に特有の伝播速度が決まっている。その伝播速度は光の波長に因っても少しずつ違いがあるだろう。それは分散として現れる。従って、媒体間での違いを表現する用語としては光の縦波の『伝播速度』が適切であろう)が変わるから境界面に於いて入射角度によって屈折現象を引き起す。しかし眼球内は光伝播媒体が全てタンパク質と水分(?)であろう。そこでは屈折は起きない筈だ。魚眼の標本? が参考になるとも言えないが、蛋白質の玉葱状の積層構造と思える。人の眼もレンズのような屈折現象を起こす境界は空気と角膜の曲率面しかないと思う。そこに到達する光の内、眼の中心軸上の方向に在る対象からの光だけが瞳に入射するものと考える。 図の①一筋光路認識で文字『ア』を読むとする。文字の各部はあらゆる方向へ光を反射している。カメラのレンズ機能は、対象の一点からの多くの幾筋もの光路を通った光がフイルム面の一点(焦点)に集光し、対象全ての各点の集光された集合画像が写真として鮮明に写される。それに対して眼は対象の一点からの光の内唯一筋の光だけを受け入れる。観測対象『ア』の各部からの光のそれぞれ一筋の光路のみの光を取り入れる。眼の水晶体では光を整える積層構造に成っていて、レンズ終端でファイバー(硝子体管)に光が伝送され、黄斑に届く。網膜に視界の映像などできない。次に②の視界距離感をどのように認識するかも不思議である。望遠鏡や顕微鏡は殆ど片目で観測する。両眼で対象の距離は計れると理解している。しかし片目では、一筋の光による画像に距離を計る識別機能は備わっていないように思う。細い紙筒を覗いて、映る対象のその距離をどのように感じるかを確かめて見た。普通は片目でも、周りの光景も一緒に認識出来るから、長い感覚的脳の学習機能で距離を正しく理解できるだろう。しかし周りの景色が遮断されて極限された狭い平面の対象の距離を計る時、少し遠くに在る様に捉えるのかと感じる。それは各人の感覚に因り違いがあるかもしれないが。以上二つの意味が、望遠鏡(顕微鏡も)で対象を観測する場合の眼の機能として捉えておくべき要点と考えた。

(2)望遠鏡の原理 望遠鏡の解釈では、虚像とか実像と言う用語で解説されることが多いようだ。しかしその様なレンズの『焦点(存在しない概念)』に因る光路合成の作図法での虚像とか実像などは存在しないと考える。実像はカメラのフイルム面(写像面)の二次平面全体がすべての対象点からの焦点になるという意味で、そこに写る写真の画像とすれば、それは実像として理解できる。しかし、眼に因る観測視界は実像とか虚像などの概念では説明できない筈だ。レンズを使うか使わないかに関わりなく、普段の裸眼での視界認識と眼の機能は角膜への入射光線の角度で、全く同じ光路に因って認識している筈だ。その意味を次の図で示す。

望遠鏡の機能 望遠鏡の原理なども今回初めて考えた。ケプラー式で考えた。ここには実像も虚像も無い。眼で観測する光学器具はすべて一筋の光の光路から成り立っている筈だ。対象各点からのただ一筋の光だけで認識する原理である。眼は虚像も実像も見ることはできない。ここでも教科書の解釈とは異なる。図では遠方の大木を観る様子を描いた。天体望遠鏡なら星を観測する事になろう。観測対象の或る一点からの光は四方八方に放射している。その光の内、望遠鏡に入射し、観測の光となる光路は唯一筋の光の道しかないという意味を示した。ここが教科書での解釈と全く異なる。普通の解説は少なくても二筋の光で、望遠鏡内にその交点として在る像を結び、その像がそこに在るかのように考えて、その仮想の像を接眼レンズを通して見ると解釈している。その接眼レンズでの眼に因る観測となっている。それに対して図では、対象の観測点の光情報はある仰角θoの一筋で対物レンズに入射する。対物レンズで僅かに屈折しθで接眼レンズに入射する。接眼レンズの位置を動かせば、レンズ面の曲率によりレンズ入射角が変わることになる。それは屈折角が変化し、結局眼への入射角度が変わることになる。その角度を図ではθeとした。視野角度θeを観測対象の大きさを観る角度として認識する事になる。ただ観測対象の距離を片目でどのように認識するかは理解できない。

レンズの焦点・焦点距離とは?  に(2016/10/28)以降のレンズの記事をまとめた。

単レンズでの両眼視界

Space of Yoshihira

金澤 喜平(カナザワ ヨシヒラ)の漢字氏名が何故Kiheiと間違って翻訳されるか?

My name is Yoshihira Kanazawa.

我々は2眼一対の眼で世界を見る。2眼で遠近を計り、周りの全景を意識する。遠い対象は望遠鏡で拡大してみる。1個のレンズで両眼を使って遠景を見ることなど誰もしないだろう。無意味な事だから。しかし、眼の視覚の機能を理解するのに役立ちそうであるから、考えることにした。

一個のレンズと両眼視界 観測対象の遠近はどのような眼の機能で認識するのだろうか。単レンズをかざして、遠方の景色をそのレンズを通して両眼で見る。視界がハッキリしないで、二つの遠景が見えるように感じる。レンズ無しでその遠景を見れば、普段の正常な視界が見える。その正常な視界はその距離がどれ程かを脳で評価して認識するのだろう。遠近認識の眼の機能は両眼に届く対象からの光(視界)の角度で脳が判断していると考えていたが、どうもそれは違うのではないかと思う。

%e3%83%ac%e3%83%b3%e3%82%ba%e3%81%a8%e9%81%a0%e6%99%af%e8%a6%96%e7%95%8cレンズと遠景視界 レンズを両眼の中心軸にかざし、遠景を観測すると、像が二つに見える。そこで両眼の内の片方を閉じて、それぞれ片方の眼で観察してみる。するとレンズも遠景の像も左右の眼と反対側に移動した様な視界に代わる。眼で見るレンズを通した視界は予想とは異なるのである。その視界が何故そうなるかを光路とレンズの関係で描いた。この光路の関係が何故起こるのか。この図の意味は普通の遠近認識の眼の機能とは異なる特殊な場合である。その特殊な場合から見えることは、普段の遠近認識の機能の意味を考える実験としての役割を示すと思う。レンズなどの無い普段の両眼に依る遠近の視界認識の仕組みを考える切っ掛けになった。両眼で見るとは両眼の瞳の方向をその対象の方向に回転して揃えることで、両眼の光路が対象に対する角度を確定し、両眼と対象の間に二等辺三角形を構成する。眼に入る光の筋道即ち光路の集合としての遠景は、その対象の各部からレンズに入り、屈折して目に届くまで、すべて一筋の光路の集合に依り全体が構成された視界として眼の情報を脳で総合評価した認識機能になっている。その事の意味は、今まで光の眼の瞳への入射角度で理解していた遠近認識の解釈と実際は異なるように思った。

遠近認識と外眼筋(ガイガンキン) レンズ無しの平常時での眼の視界を考えて見る。眼球には左右それぞれに6本の外眼筋がある。視界はまず脳の水平感覚がその方向性を判断する基本条件になっていよう。それは内耳に在る平衡感覚器官の状態を脳が判断して認識しているのだろう。その上で、眼球の上下左右の方向を外眼筋で調節したその状況を脳は認識し、眼球の回転角で遠近認識をしていると考える。その時の光路は左右の眼の瞳が僅かに内向きに向いているので、対象からの各部の光がまっすぐ瞳に入り、殆ど屈折無しに眼球の硝子体管を経由して黄斑に達する。この解釈の基には眼の内部での視界認識機構が大きな意味を成す。眼での像認識が網膜に映るカメラ機構での解釈を採るか、硝子体管の光ファイバーを通した黄斑の中心窩の解釈を採るかによって変わってしまう。網膜説を否定しなければ、視界認識の脳機能を理解するのは困難であろう。これも素人の光の縦波空間像解釈からの感覚的解釈論である。眼の視界には焦点がまったく無意味であると同時に焦点距離さえも無関係である。従って、眼球や硝子体レンズ調節による屈折制御のカメラから類推した仕組みなど視界に関しては殆ど意味の無い事に思える。メガネに依る調節は角膜から硝子体管の入り口までの間の調整に役立っている事であろうと考えざるを得ない。網膜で像を認識する訳ではないから。

眼の機能に焦点距離の概念は意味を成さない。カメラとは違う。

眼球の光路とカメラ機能ー?ー

科学は『科学的』と言う一種特有にして、日常生活と隔絶した別世界で発揮される高度な知的能力が要求される学問分野と看做されている。そこは伝統に縛られ、過去の業績に支配された共通認識の上に積み重ねる競争的発見の慣習の世界である。しかも、分野ごとに概念や手法が必ずしも共通であるとも限らない。そんな『科学的』と言うべき対象に人の眼球の機能があるように思う。そんな中で全く医学には無知の素人の私が考える事であるから、『科学的』と言う範疇には入らない話になる事には間違いなかろう。しかし、『科学的』から外れた日常感覚だけからの考え・思索でも『科学的』以上の科学的な論理があると思うのだ。それは光とは何かを問う事から始まる視点が必要であろうからだ。光の意味を、その空間像を捉えることに於いては実験的には無理であろう。光一粒の形状を見ることなど困難であることは誰もが分かろう。そんな光と眼球の関係を理解することは大変かもしれない。しかしカメラと言う科学技術の結晶が日常生活に生かされ溶け込んでいる。それは光と人間の世界認識の間を繋ぐ架け橋の具体例でもあろう。眼とカメラの間の光の綾取りを考えてみようと思う。

眼球構造の光学的機能

%e7%9c%bc%e7%90%83%e3%81%ae%e7%84%a6%e7%82%b9%e8%b7%9d%e9%9b%a2眼球構造と焦点距離 光の形と同じく眼の中味を理解することは困難かもしれない。殆ど水とタンパク質でできた構造体であろう。殆どの専門的解説図には『硝子体管』は描かれていない。それは解剖しても『硝子体管』と硝子体液の区別がつかないからであろう。『硝子体管』は発生過程で血管が通りレンズの水晶体の成長に重要な役割を持っていただろうから、その時点ではその存在は確認できたのであろう。眼がどのように成長するかの過程までは謎であろう。何故『硝子体管』があると考えるか。それはカメラの原理と比較した時に網膜上に視覚の像が結ばれると解釈することは無理であると考えざるを得ないからである。光の屈折はどのような条件で起こるか。光の伝播空間の媒体の物性的変化で起こるのである。眼球は殆ど蛋白質と水であろう。屈折を起こす場所は空気と角膜の境界であろう。光が眼球の中に入れば、水晶体でも殆ど伝播媒体の物性的変化はないと考える。水晶体構造は発生学的な関係から積層構造ではないかと仮想する。水晶体内部における光の伝播状況を空想すれば、その積層分布構造が光の垂直進行を整える役割になっていると思う。カメラのレンズのような伝播媒体間での物性的差による屈折現象は起きないと解釈せざるを得ない。なおこんな素人の水晶体解釈は、魚類の眼球構造が蛋白質の球状積層構造をしていると言う遊び心の発見からの推察でしかないが、生物的共通性からの類推でもある。それは魚眼の標本?に在るように、眼球は玉葱状の積層を成していることを類推した。さて次に『黄斑』の解釈である。眼底検査で、粒粒の点が見える場所が『黄斑』であるらしい。その『黄斑』の点は何故『点』に見えるのか。その訳は何なんだろうか。眼球の解剖学的所見は大昔からの解釈であった筈だ。『光ファイバー』等の科学技術もない時代の解釈である。だから、伝統的解釈の科学論には『硝子体管』など有りようがないのだろう。一本一本の蛋白質の線状繊維の光ファイバーなどが光の伝播通路・光路になるなどの解釈概念は存在しないかもしれない。光がエネルギーの縦波と言う概念がないと横振動波ではなかなか感覚的にも捉え難いと思う。しかし『黄斑』部が視力・視覚認識の重要な部位である事は専門的に共通理解されている。網膜全体ではない事は分かっていると思う。さらにその中心部は「中心窩」と言う窪んだ形状をしていると言う。カメラでフイルム面に視界を映す事と比較してみたい。

眼球型カメラ

%e7%9c%bc%e7%90%83%e5%9e%8b%e3%82%ab%e3%83%a1%e3%83%a9眼球型カメラ 眼の機能をカメラの機能で解釈するのが教科書的常識であるようだ。だからその事を逆にカメラに眼の構造を応用して、カメラを作ったらどうかと考えた。それがこんな設計図になった。特に工夫した点はフイルムの形状である。その面は基本的に球面の一部を成し、更に焦点距離の概念を覆すべく窪みを付けた点である。なかなか難しい撮像面であるが、こんなフイルム面を工夫したら、教科書の解説用カメラになるかと考えた。日本人の眼球の長さは平均的に24~25㎜程らしい。レンズの『焦点』の物理学的解釈が間違いだと指摘した。平行光線が焦点に集まると言う理論は有り得ない。その『焦点』の解釈が眼球の中心窩の窪みについても焦点距離の意味にそぐわないとは感じない教育的問題になっているのではないかとも思う。光の屈折現象がどのような伝播媒体の境界で起きるかも感覚的に理解していないのではないかと危惧する。みんな教育効果であろう。

林檎と眼玉

真っ赤なリンゴは秋の実りの彩りだ。人の眼球と林檎を結びつける印象が浮かんだ。

リンゴと目玉

眼球と林檎じゃ大きさが違う。しかし、眼球構造はレンズの水晶体から繊維質状の細胞の管に繋がり、眼底の黄斑に繋がっていると解釈する。その構造を簡単に捉えるには、林檎の中心部を刳り貫いて、丁度その林檎の皮が硝子体膜で、中に硝子体液が満ち、その中心に繊維が通っていると考えれば、如何にも眼球の構造に似たものとなろう。眼球の光ファイバーと色覚の記事の追記とする。

眼球の網膜像入試問題を見て

先日の大学入試のセンター試験問題で、物理に眼球の網膜像の問題が有った事を新聞で見た。昨年春、日本物理学会第65回年次大会で、生物物理分野に『眼球の光ファイバーと光量子』と言う標題の発表をした。それは正しく、今回の入試問題のカメラ機能で人間の目を解釈する事の間違いを指摘したものであった。昨夜はその網膜上の反転像を再び考えた。学会で発表した概要で「・・カメラのような反転像ではなく、正立像と解釈すべき事を示している。」と記述した。最終的には、医学の専門家・眼科医の解釈がどのようであるかを論理的に、誰もが納得できる説明がなされることが必要であろう。私には実験も、解剖の確認も出来ない。昨夜考えた、幾つかを指摘して、正立像と判断した根拠を示したい。なお、当ブログ「眼球の光ファイバーと色覚」を参照いただきたい。

人間の眼球の中心軸には光ファイバーが貫通している。眼に入射した光の画像は上の図の眼球内の④のファイバーに入る水晶体のレンズ③との接続部で像が結ばれると解釈する。そもそもカメラのような機能で眼球の機能を解釈する教科書的認識を納得できないとした原因はレンズがカメラのように境界面で空気に接している訳ではない点である。眼球内は硝子体液で満たされていて、水晶体レンズとの境界での光の屈折など起きないと解釈した方が理解しやすい。

眼への光の入射、入射画像の屈折について考えてみよう。図の①の角膜表面が瞼の瞬きにより、液体の薄い膜で潤っている。入射する可視光線の波長は長くて7600オングストローム(千分の0.76ミリメートル)程度らしいから、入射光の屈折は角膜表面の薄い液と角膜の球面曲率で基本的に決まると思う。角膜通過後は虹彩で絞られた瞳から、水晶体レンズに到達するまでに、眼房水と角膜の境界での屈折がその光伝播媒体の分子空間定数(透磁率と誘電率)の差で起きるだろう。①の画像入射について、蛇足話を一つ。人間は空気中でないと物が見えにくい。一昨年100m自由形水泳競技で自己記録(1分26秒81)を出した。しかし、ゴーグルが外れて眼が水中の視界になった。魚と違い殆ど見えなかった経験で、強く実感している。

焦点調節と水晶体。④のファイバー入射面に視野像を結ぶには毛様体小帯の働きに拠るだろう。この働き加減で、水晶体の変化だけでなく、角膜とその間の眼房水にも影響が及ぶだろうと思う。それらの全体的な構造の変化と狭い瞳からの入射光に対する水晶体のレンズ調節効果によって視野像の焦点調節がなされると解釈する。また蛇足と思うが、水晶体の蛋白質がどんな成分か興味がある。実は、烏賊とか鯛とかの魚介類の目玉の構造が面白いと思っていた。魚の煮付けをして、その目玉を乾燥させる。それを剥くと玉葱のように膜の積層構造になっている事が分かる。魚眼の焦点調節がその積層構造からどのように成され得るかも面白そうだ。人間の水晶体も、上の図のようにタンパク質膜が積層上に成っていて、毛様体小帯の伸縮作用が効率的に働くのだろうと勝手に解釈する。

人の視力。ランドルト環の円環の切れ目を見分ける能力で視力を判定する。視力 1.0 の人はそのランドルト環の切れ目の長さが 1.5 mm で、5m の距離から見分けられると言うことらしい。その視野角度θを計算してみると、tanθ=0.0004 から、度で求めれば、 0.00716 度程度になる。また、人の視野は物を凝視するときその一点に視点が注がれ、周りの視界はぼんやりと感じられるだけに成るように思う。自分の視野を考えるとそう思う。周りの危険を察知することが出来るように、ぼんやりの認識で済ますと思える。凝視する視力で、視野像の光は殆ど平行光線として目に達すると解釈したい。だからファイバーの入り口で反転像に成るとは解釈し難いのである。人間の目について、教科書的な網膜上の反転像と言うカメラ機能解釈は受け入れられないのである。

眼球の光ファイバーと色覚

光の物理学的認識が問われている。光を周波数・振動数で認識することでは、その本質に迫れない。光一粒の認識が重要である。そのことは光の屈折現象の物理的解釈に関わる重要な基本点である。その光量子の空間像を 光とは何か?-光量子像ー に基本概念示した。

(2019/10/30)追記。記事の末尾にも追記した。どうしても、眼科の専門家の眼球機能の認識に納得できずに、先日書棚にあった、専門家の本を無意味として捨てた。光の屈折現象の物理的意味が正しく理解されていないと思った。媒体間の境界での特性差が屈折の特性を決めるのである。オットセイ、カバあるいはペンギンが何故水中でも空気中でも見えるか?人はゴーグルを付けなければ水中では見えない。その意味は眼球内のレンズ効果の理解に生かされなければならない。

さて、眼球に関する重要な指摘をしておきたい。医学的には、眼球の機能をカメラと同じように、網膜上に光学的な倒立像を結び、その像が視神経を通して脳に伝達されると解釈されている。眼科のお医者さんの多くの方がそのように解釈していると思われる。それはお医者さんの示す目の絵図にカメラの機能と同じ様子で示されているから。それは間違いと思う。眼球の中心眼軸には『光ファイバー』が貫通しているとみなすべきである。上の図は、参考文献Dispray Atras of Elementary Anatomy の日本語訳本(その原文はフランス語の Librarie Maroine SA Editeur. Paris 1980 であるらしい。 ) を見ての解釈である。(2019/05/19)追記。この文献には硝子体管の終端は網膜の視神経に繋がっている。しかし黄斑が視力の重要な部位を占めているようであることから、その点点模様が硝子体管の光ファイバーの終端模様と考えた。その文献には眼球の硝子体液の中心には硝子体管が示されている。その硝子体管を私は光ファイバーと解釈したのである。私はその光ファイバーが眼球の中心軸を貫通していると観る。カメラのようにレンズが空気中に在る様な構造で捉えて、水晶体のレンズで屈折した光が眼底の網膜上に反転像を結ぶと考えるのは間違いと解釈する。角膜に入射後の光は瞳孔、水晶体レンズを通過した後、平行光線として硝子体管と言う光ファイバー内を進行する。光の像は丁度『金太郎飴』の切断面のように、平行光線として黄斑の窪み部まで縦波のエネルギー波として到達する。従って眼底に結ばれる結像は黄斑に正立像として到達すると解釈する(ただし、光ファイバーが捩れているなら正立像とは違うかも知れない)。何故このように考えるかと言えば、カメラ構造解釈では、網膜全体に光感知機能・神経が張り巡らされていなければならず、更にその光の色覚まで網膜全体の細胞に識別する機能を負わせなければならない事になる。ここで『眼の色覚』の生物物理的解釈が問われる事になる。眼球の構造の昔の解釈では、『光ファイバー』などと言う光学的認識は無かった訳で、カメラと同様な機能解釈が当然のこととして受け入れられたものであろう。今でも、光量子の一粒の解釈が物理学では正確に認識されていない。光をあくまでも『波動論』として認識している訳であるから、「振動数」と言う横波概念でしか解釈できないのである。光を含め全ての波は「縦波」である。そのことを認識しなければ、『プリズムの屈折現象』の説明は出来ない筈である。「プリズムと光量子の分散(発表欠席)」ー日本物理学会第64回年次大会講演概要集 第1号第2分冊、p.405.  (2009)ーに基礎論を展開。日常生活で誰もが体験する物理現象さえ物理学理論は説明できないのが現実である。風呂の中の光の屈折現象も、水面の境界面で光の進行方向が屈折する。何故かと問えば、せいぜいホイヘンスの波面解説くらいのもので説明するだけである。一見、確かに光の屈折現象の説明が出来ているように思える。高等学校の物理の教科書などでも、プリズムや虹の七(?)色が光の波長によって屈折率の違いの為に分散すると説明されるが、『なぜ波長の違いで分散するか』の問いには何も答えられないのである。それは、屈折現象をはじめとする光の物理的基礎理論が完成していないからである。眼球の内部構造で、中心に『硝子体管』が貫通している事を冒頭図面に示した下部の文献で知り、直感的に眼球の光ファイバーの存在と眼球機能の本質を悟った。それは、光量子一粒がエネルギーの空間密度分布波との認識とが結びついたからである。単に波長や振動数では、媒質の境界面での瞬時的屈折原理を理解することは出来ない筈である。光の数波長あるいは何振動数分かを媒体の境界面で、じっと待ちながら、この光の波長は幾らだから、この方向に屈折させれば良いという判断司令官が境界面に居るとでも考えるのだろうか?そんな如何にも人間臭い解釈での物理現象の存在は天然・自然の神が許さない。境界面に光の一粒の先頭波面が到達すると同時に、瞬時に自動的に進行方向が決まると解釈するのが自然の本質を認識すれば、当然であろう。振動数を認識する時間的余裕を自然現象は与えてくれない。それが光の世界である。眼球の色覚機能。それは黄斑の窪みに到達した縦波の光をそのエネルギー分布密度で直ちに分離識別する機能として理解しなければならない。微細のファイバーの一本、一本で運ばれた光をプリズム効果で弁別するものと解釈した。その到達する深さの違いとして色の状態を判断するのであろう。医学に全くの素人である私の解釈は光量子概念からの必然的結論である。2011年の大学共通入試問題に眼球の問題が出た。眼球の網膜像入試問題を見ては私がここで誤っていると指摘した「カメラと網膜解釈」の問題その物である。私は医学に関して全くの素人である。しかし、物理学の真髄が教科書には無い事を知った。それが20数年前の事である。ただ1点、『電荷概念の虚像』(『電荷』という虚像)が全ての物理現象解釈に影響を与える事態に至ったと、今その怖れをも感じている(2012/01/30/ 追記、修正)。

網膜と色覚 もし視覚の像を網膜で捉えるとすれば、網膜の各部分ごとに入射光線の波長を識別しなければならない事になる。それは光の寸法、一粒の光子の波長を全ての波長にわたって識別する細胞の検知能力が要求される。網膜全面にわたりその識別を要求できる程、細密な細胞形態を望めるだろうか。波長は何を持って識別すると考えるのだろうか。その識別能力は黄斑部の細胞の奥深さでの光分散機能(プリズム効果)に期待する以外になかろう。(2013/03/18)追記。

追記(2013/4/3)。今日、眼球の光ファイバーに関する記事を見た。YAHOO!知恵袋の質問の回答にあった。Wikipedia.org/  のファイル:Schematic diagram of the human eye en.svg の記事。私の記事の眼球構造の図が間違っているとの指摘もあるようだ。しかし、安心した。どうも専門家の指摘のように思う。この『眼球の光ファイバーと色覚』の図で、ファイバーが網膜の黄斑に繋がっているのが間違いだとある。(2013/04/09)-その御指摘は御尤もである。今日改めて、参考資料(カラーでみせるやさしい解剖)を確認した。確かに、視神経に硝子体管が繋がっている。だから御指摘は当然と思う。しかし、御指摘の中心窩付近の傷害、変成が視力に影響するらしい事から、やはりそこの黄斑部がファイバーの接続箇所と解釈したい。どうもその説明の図には黄斑の名称がなく、中心窩(チュウシンカ)が黄斑の事かと思う。カメラと等価な眼球の光解釈は確実に間違いであると思う。黄斑と中心窩に硝子体管が繋がると解釈したいー修正・追記。(2018/03/14 追記)この眼球の光学的網膜写像の解釈には違和感を抱かざるを得ない。その意味を眼球の光路とカメラ機能-?-に眼球型カメラと言う図での矛盾を描いた。眼球の網膜はカメラのフイルム面のように平板ではない。網膜面に写像が得られるとすれば、どのようなレンズの屈折で可能かは納得する理解が出来ない。何故球面にレンズの写像が出来ると考えるのだろうか。レンズの焦点・焦点距離とは?などで最近考えた事との関連で眼球の『硝子体管』と『黄斑』の関係に強く再確認の思いを得た(2018/03/14追記)。

(2019/10/30)追記。黄斑円孔内の空間で、どの様な波長弁別機能が存在するかは全く分からない。光の屈折原理は光伝播媒体の異なる特性差によって、光エネルギー密度の差が速度差を生むからである。眼球のレンズの前後の境界で物質的空間特性がどれほど異なるかと考えればほとんどその差はないと考える。角膜の球面構造と空気のような、空気とレンズの境界の特性差のようなものが無ければ、眼球内部でのレンズの屈折は原理的に起きない。眼球内部でレンズの屈折光がが望めない媒体ならば、網膜面に光が視界の像を結ぶ訳が存在しない。「コメント」を頂いた中に、黄斑についてビタミンA云々というお教えがある。下のような学会での私の解釈は、光の基本的屈折原理だけからの「自然の本質は単純・純粋にある」と言う観点からのものであり、特別科学的に信頼できる確信などない。黄斑内部で光の波長と細胞との間で生命の不思議な仕組みがきっとあるだろうと今は思う。科学理論は広い分野を包含した哲学的で、必ずしも科学的実験での証明ができなくても、総合的な自然感覚(例えば、人の水中での視界は全く見えないが、ゴーグルを付ければ空気と角膜の媒体間の屈折により正常によく見える等。)が新しい研究の不思議解明の道しるべとなると考える。以上追記させていただいた。確かに今確認すると、私の図は不適切である。光の波長識別の説明は示されていない。光の浸透深さで波長を識別する意味が図には無い。眼球の光ファイバーと光量子 日本物理学会 第56回年次大会で発表した資料を示す。目の色覚機能この図が示す色覚機能は光ファイバーの一本を通して縦波のエネルギー密度波が黄斑部に入射して、その波長に応じて、屈折による分散方向が異なると解釈したものである。その位置を黄斑内部で検出して、その情報を視神経から脳に伝達すると解釈した図である。先に書いた文の削除は、少し参考資料に惑わされて書いた部分である。あくまでも『黄斑』の黄色い点の一点ずつが光ファイバーの接続点を示すとの解釈である。視神経管の構造を検索で調べたら、中心は血管の動脈と静脈が通って居りその周りを視神経が通るとある。黄斑部の波長識別信号が視神経に網膜内を通って繋がっていると解釈したい。しかし、「カラーでみせるやさしい解剖の図と違う解釈になるので、黄斑からの経路がどのように繋がっているかは全く分からない。

(2013/5/17追記) 先日検索した文献(*)に、硝子体の構造が示されていた。そこには、繊維細胞の複雑に絡み合った様子の顕微鏡写真が載っている。その細胞の一本一本が光ファイバーと観れるかどうかははっきり言えない。しかし、硝子体(管)と硝子体液から眼球が構成されている事から、その文献によれば、益々硝子体(管)が管状の『光ファイバー』であると確信できる。(*)江内田 寛, 坂本 泰二:硝子体の構造. 眼科手術.17:355-357.2004 (現在この論文が何故か以前のように簡単に見られなくなった。2014/02/19 現在)