タグ別アーカイブ: 直流電圧

電気エネルギーの測定法(電圧)

はじめに(2020/4/19) 電気回路技術は驚くべき文化に完成された。その基本には「オームの法則」がある。『電圧』と『電流』という二つの技術概念に依って誰もが理解し易い回路技術として、現代社会の基盤技術となった。しかし、その『電圧』や『電流』と言う計測量の意味を考えれば、そこにはとても深い哲学的問題が隠されているのだ。その意味を知ることは深く電気回路技術の中にある自然現象の活用の科学技術力とそこへの叡智の結晶が結実している意味を知ることにつながる筈だ。電気回路には、基本的に自然の本源である『エネルギー』を如何に活用するかの手法を獲得した技術の結晶が隠されているのだ。その測定法を通して電気技術が如何に自然との関係を活用しているかを深く理解できる筈だ。その事は『電流』とは、『電子』とは何かが理解できることにつながるだろう。科学技術が飛躍的に発展し、日常生活に深くその影響が及び、人がその恩恵に浸りながらも、誤った物理学理論によって曖昧な科学理論常識に染まる傾向が強まってしまった。地に足を付けた地道な自然観であるべきところ、誤った理論によって人の意識を曖昧な思考の方向に導いてきた。その代表が『電子』の概念である。『電子』の空間像が示されずに、その『負』の実在性が論じられずにここまで来てしまった。その意味を解きほぐす道はあくまでも具体的な技術の意味を通して理解するより道はない。『電子』が如何に曖昧な概念であるかを電気回路の測定の意味を通して考えてみたい。半導体で論じられる量子力学について論じるほどの力を筆者は持たないが、少なくとも電気回路における電線内を流れると解説される『電子』は全く役に立たない仮想概念である事だけは強調しておきたい。

『電圧』は『エネルギー』の計測、技術評価量。

電圧とは、その回路の電線で囲まれた空間に『エネルギー』をどの程度貯蔵した状態かを知る、あるいは評価する技術的基準量である。電圧計は何を計っているかを知らなければ、『電圧』の物理的意味を知ることはできない。水を高い所から流す力の仕組みと同じ意味が『電圧』であるというような、怪しい論説が多くある。その解説ではやはり水のような何か流すものが必要になり、結局『電流』とか逆向きに流れる『電子』が必要になって来る。電線の中には何も流れていないことを理解しなければならなし、電線路空間が有ればその空間を通して幾らでも自由に電気の『エネルギー』は伝送できる。しかもその即応性は光速度で対応できるのだ。電気(と言う『エネルギー』)は光と同じように真空や空気の空間がその最も特性を発揮できる場である。ここで言う『空間』とは、電気については真空以外にも、コンデンサの金属板に挟まれた空間あるいはその誘電体空間、コイルの巻き線で囲まれた空間や鉄心あるいは抵抗体内の結晶構造体内の空間、更に電線路の電線間の空間あるいは絶縁電線の絶縁体などの空間などを指す。例えば、ガラス戸やレンズは光も電波もその『エネルギー』が伝播する空間と見做せよう。しかし、電線の金属体は基本的に『エネルギー』の反射体と見做すべきだ。だから金属の電線内には電気の担い手と科学常識になっている概念の物理量(『電流』や『電子』)は流れない事を理解しなければならない。

コンデンサとコイルの貯蔵エネルギー。

VOLT and ENERGY 直流電圧 V の回路にスイッチ S を通してコンデンサC[F] とコイル L[H] の回路を繋ぐ。

図のスイッチSを投入してからどのように『エネルギー』が貯蔵されるかを、少し数式で考えてみよう。その電気現象は所謂過渡現象を経て、『エネルギー』が貯蔵されることになる。過渡現象は数式では一般に指数関数(*)で表現される。ー(*)指数関数での数学的問題は幾ら時間がたっても定常状態にならないという論理性の現実的矛盾を抱えているー。

(1) 貯蔵エネルギーと電圧の関係。係数の2分の1は省く。

最終的に、貯蔵エネルギーは(1)式のようになる。その貯蔵エネルギーは結局電圧によって決まる値である。だからその電線間の電圧Vは貯蔵エネルギーの量から(2)式の意味であると解ろう。『エネルギー』の単位、次元はジュール [J] であるから、電圧の単位、次元は(2)式から [(J/F)^1/2^] であると解ろう。電圧の単位はコイルもコンデンサも同じ静電容量の単位ファラッド [F] に関係した物理的意味を持っているものと理解できよう。それは当然のことで、電線路は最低二本の電線で組み立てられる。その電線の間には静電容量がある。その静電容量の空間に貯蔵された状態で電気の『エネルギー』が分布して電気の送配電系統が成り立っているのだ。この電圧の次元あるいは単位の意味を理解することが電線路の物理的意味の理解に欠かせない事なんだ。(2)式のコイルの場合について、その次元について付記しておく。(r/√L)はr[(H/F)^1/2]により、[(1/F)^1/2] となるから。

(2) 要素の端子電圧と回路時定数。

コンデンサの端子電圧vcとコイルの端子電圧vlは(3)式のように評価される。コンデンサの電圧は最終的には電線路電圧値 V に等しくなるが、それまでは指数関数の変化になる。コイルの電圧vlは最終的に零となる。コイルに『エネルギー』が貯蔵されるとコイルの端子電圧は恰も回路から切り離されて、線路側には接続されていないと同じ状態になる。コイルには内部空間に『エネルギー』だけが貯蔵されたことになる。厳密にはコイルの抵抗分があるからその分の電圧は残る筈ではあるが。

指数関数の累乗の次元は『無次元』でなければならない。時間 t[s] に対して時定数が rC[(HF)^1/2^]  =L/r[(HF)^1/2^] =[s] となっているから理に適っていることになる。

(*)この指数関数式は無限の時間でも論理的に零には成らない矛盾を抱えているが、その辺は数学的に曖昧でも良いとなるのだろうか。文末に指数関数の図を示す。

(3)貯蔵エネルギー計測法。

コンデンサとコイルの貯蔵エネルギーの時間変化は(4)、(5)式となる。両方とも同じ式で表される。ここでさて、線路の電圧をどのように計測するかとなる。コンデンサ内の様子を外部から伺い知ることはなかなか出来ない。コンデンサの電界と言う状態を知る方法が無いから。それに対して、コイルの中の状態は運良く、磁気と言う誠に都合の良い自然界の贈り物がある。それはコンパスや磁石と言う身近な電磁気現象の具現像として自然世界の顔を示してくれている。アンペアの法則やファラディーの法則あるいはレンツの法則等あらゆる電気現象を外部から観測する手段として活用されているのが「磁気現象」である。何か空間の秘めた「力」を磁気が持っている。当然のこととしてコイルの秘めた空間の力を『測定法』に活用することになる。自然世界の現象を探る科学技術の始まりである。19世紀に『電圧計』「電流計」が開発された。もちろん『電圧』はボルタの電池や熱現象を利用した電池などからその安定した『電圧』を開発利用してきた訳であろう。まだ当初は『電荷』概念は明確ではなかっただろうと考えたい。

(4)『電荷』と『電子』と『電圧』の間に横たわる現代物理学理論に基づく論理性の不可解。

電気回路論で、電線路の『電圧』をどのように解釈するだろうか。プラス端子とマイナス端子の間の空間に生じる『電圧』の原因を何に求めるか?プラス側には『正の電荷』、マイナス側には『負の電荷』が分布してと解説が始まるだろう。そこに思考停止の現代物理学理論が在るのではないか?『正の電荷』と言うその正体をどのように認識するのだろうか。簡単に『正の電荷』がプラス側の電線に雀が止まるように集まるのだろうか。どんな理論によって『正の電荷』だけが一方の電線に集まるのか。みんなが電気現象の基本法則と崇める「クーロンの法則」では、同じ『電荷』は反発し合うと大原則を学習して居るにも拘らず、無意識に所が変れば同一電荷同士が集合体となって結び付く。金属電線の中に『プラスの電荷』とはその正体はまさか『陽子』とならないだろうから『電子』の抜け殻の『+金属イオン』だろうか。図に示したように『+金属イオン』は銅線なら銅イオンしかない。『+金属イオン』を置き去りにして、その『電子』はいつの間に隠れて逃げ去ったことになるのだろうか不思議だ。科学理論は論理性がその身上の筈だ。一方反対のマイナス側の電線にはマイナス電荷の象徴の『電子』が集合すると解説されるだろう?図のように『電子』の密集状態が出来るとなろう。それでプラスとマイナスの電線路空間図が完成して、『電圧』の科学的理解ができるとなり、万々歳となって終わるのか?そこへ『電圧計』を繋ぐとどうなるかを考えれば、思考停止で終われないだろう。そこに不可解と言う意味が追加される。まず、乾電池に電線を繋いで配線すれば、それだけで電線間に電圧が掛かる。プラスの電線の銅金属からどのようにして『電子』を引き剥がすのだろうか?プラス側の銅線には電線内に電界などできない筈だ。電界もないのに銅金属から『電子』を引き剥がす論理的根拠が欲しい。その辺の高度な専門性は大学院などの物理学科の博士課程などで高等教育を受けた専門家やその指導者が答えるべき内容であろう。余りにも専門性のない素人の疑問では答えるに沽券(コケン)に関わる話となろうか。乾電池から『エネルギー』をランプに送る。その時『電子』が電池のマイナス側から流れ出し、ランプを通って電池のプラス側に戻る。どれ程の『電子』が集団高密度で『電子』の密集分布電線の中へと流れて行くのだろうか。流れ出す時点で、『負電荷』量が増加しても、線路『電圧』に影響を及ぼさないで済むのだろうか。さらに、ランプで『電子』はどのようにフィラメントの抵抗体で光を放射する物理学理論を展開して、電池のプラス側に戻り、『電子』の面目即ち電池から『エネルギー』を伝送する役割を果たすのだろうか。『電子』がただ電池の負極から流れ出て、電池のプラス側に流れ込むだけの『電子』の役目で、電磁気学という学問の科学理論の論理性が唱えられるというのだろうか。とてもその論理性が見えない科学理論に思えるのだが、皆さんはそれで安心できるのか?

(5)コイルの貯蔵エネルギーの磁気特性の活用法と『電圧』計測。(2)式によってコイルのエネルギーW[J]とすれば、図のように線路電圧によってコイルのエネルギーから電圧を測定できよう。そのコイルのエネルギーをどのように計測に活用するかとなる。

簡略計測法。最も単純にエネルギー量W[J] が有るか無いかは図のようにコンパスの振れで分かる。しかし、これでは計測には成らない。

可動コイル型計器が直流回路には使われる。貯蔵エネルギー保有のコイルを磁石の間に配置すると、コイルはW[J]の平方に依った回転角度を示す。測定器の概要は図のようになる。

むすび

電線路の直流電圧を計る『電圧計』がどのように、何を計っているかを示した。この測定法で、直流電圧を電線路の『電荷』分布で解釈する論法の矛盾を論じた心算だ。このコイル内に『空間エネルギー』がコイルの巻き線に沿って軸性の回転流として貯蔵されている。その回転方向は丁度『電子』が流れるという電子論のその向きであり、『電流』の逆向きである。この電圧計の測定量の意味を知った上でも、もし『電荷』分布が電線路電圧を決めると解釈するなら、それが現代物理学理論の『パラダイム』という事であろう。更に一言付け加えておく。コイルの貯蔵エネルギー W を抵抗r による『電流』で計算して式を導出した。しかし実際の物理現象は電線の負側を『エネルギー』がコイルの端子電圧の時間積分に関係した過程を経て、コイルに入射するのである。しかし、その状況を『エネルギー』の様態として観測することはできない。『エネルギー』が実在するにも拘らず、その『エネルギー』の姿を眼前の空間に見る事が出来ないという、自然世界の掟によって支配されているとしか考えようがない。科学理論は実験的にその値を検証可能でなければならない人の決めた矢張り掟と言うべきものに縛られている。そこに現代物理学理論が認識不可能な空間の『エネルギー』である物の意味に在るのだろう。どんな方法でも電線路の空間に在る『エネルギー』の分布を観測することは残念ながら出来ない。それほど空間に在る『エネルギー』は神秘的な物理量である。

指数関数

電圧と電流の正体 (2013/5/16)

電圧ーその意味と正体ー

電圧とは何か? 電気工学や電気物理に関わる仕事に携わっている人はこんな疑問を抱かないだろう。電圧100ボルトあるいは3ボルトなどと日常用語としてありふれて使っていることだから。常識の言葉だから。こんな常識の科学技術用語を理解できないと言って、その正体をあばこう等と考える事を仕事にするとすればどんな仕事に成るのだろうか。全く経済的な利益を生むどころか、科学技術関係社会に反逆的な伝統破壊の行為と看做される。反発を食う研究である。そんな業務を仕事として受け入れる環境があるのだろうか。科学研究社会は、特に学術研究に属する分野では『客観性』を持って研究を進める事が要求される社会であろう。過去の先人の業績を踏襲してこそ仲間として受け入れられる社会である。それが常識の世界だ。学術研究機関に所属していれば、大いに常識に挑戦する機会もあろうが、最初から所属の無いものには不可能な事であろう。世界で誰も挑戦しない研究、「電圧とは何か?」と問う事も有意義な筈である。学術論文にも成し難い研究ではあるが。自然の本質を明らかにする重要な研究ではある。

総合科学・基礎科学・純粋科学の意義 本質を明らかにすることの意味は、誤ったり誤解した研究や方向性を質す判断基準として、総合的な評価を下すに重要なのである。経済的効果が無いと言うが、間違った高額の投資を避ける意味で経済性は大きい。それが総合科学、基礎科学、純粋科学なのである。科学研究の内容を市民が理解でき、賛同できることで初めて研究費を使う権利が得られるのだと認識すべきである。数式でなく、日常用語で高度な研究内容を説明し納得を得る事が必要になる。そこに、専門家だけの内部了解ではなく、市民社会との関わりが大切になるのだ。その時に科学の基礎概念が誰もが理解でき、疑念の無いもので初めて市民との意思の疎通ができ、健全な科学社会への安全が担保できるのであろう。そこに総合的な広い基礎科学の重要性が狭い専門性を超えて必要になるものと考える。ここでは前の電池電圧と『エネルギーギャップ』を受けて少し電圧の解釈の意味を深めてみようと思っての記事である。

電圧とは何か?電圧とは何か 電圧Eボルトの直流電源がある。銅板と銅線が図のようにつながっている。 

電圧問答電圧問答 

電圧問答 直流電圧源だから、各電圧計の指示値はすぐ分かる。ただ電圧計の繋がる位置が色々だ。電圧計は何を計るかと考えて、その電圧値に成る原因を何に因ると解釈するかを尋ねている。もし『電荷』を原因と考えると、その分布を考えなければならなくなる。さてどう考えるか?こんな問答は禅問答の部に入るようで、科学論の部門では毛嫌いされる問答である。しかし科学理論は論理性を持ってその真価と尊厳を勝ち得ている訳であるから、こんな易しい日常的な質問には朝飯前と答えられる基盤の上に成り立っている筈だ?そこで答を書こうとすれば、学校教育で教えられる教科書の内容から考える事に成ろう。どんな教科書も文科省の『学習指導要領』によって教育内容は決まっており、『電子』あるいは『電荷』による解釈しか許されていないから、その指導要領に従わざるを得ない。そこで『電子』で考えようと試みる。

電子と電圧電子と電圧 回路の一部を取り出して電圧計V1の意味を『電子』に因って考えてみよう。鉛蓄電池や燃料電池の電池機能原理は水素原子の『電子』が陰極端子から外部配線、負荷を流れて陽極に戻り、『エネルギー』供給源としての電池の役割を果たすと専門家の解説に在る。それが負荷への『電流』の電気磁気学理論に基づいた教科書的標準理論である。しかもそれは世界の物理学理論でもある。その時の電気現象の電圧には『プラスの電荷』は電池の外部回路に関与する解釈は無いようだ。すべて『電子』だけで理論的な解釈が成されている。そのような世界標準の電気論に従って、電圧計V1の『電圧』をどのように解釈すべきかを考えてみた。①電荷分布(電子)?と電圧として銅板間にどのような『電荷』分布を描けば良いかと苦心した。『電子』同士は好きではないが、有名な『クーロンの法則』に従えば、お互いが反発しあって、集合するのはいやだ、いやだと纏まらないのではと考えると、『電子』の分布予想も出来ないのでお手上げだ。理論とは不思議なもので、後生大事に守られている『クーロンの法則』があっても、そんな法則などお構いなしに『マイナス電荷』の集団と『プラス電荷』の集団同士が向き合って対峙する構図が理論の伝統的な常識・思想に成っている。しかしこの電池の場合には『プラス電荷』は出る幕が無いのが不思議だ。だから教科書に従って電池電圧を『電荷』で描こうとしたが無理だった。それでも思い直して、マイナス側の銅板に『電子』が分布したとして、電圧計を繋いでみた。それが②電圧計である。電圧計は中味の回路を見れば、単に高抵抗rとコイルlの直列につながっただけの物でしかない。電圧と評価する部分はコイル内に貯蔵されて『エネルギー』を指針の回転に利用しているだけである。特に電圧と言うような感覚的に予想する様なものを計っている訳ではない。陽極側と陰極側の銅板の間に電気回路のrl要素を繋いだ事に成る。もし陰極側の銅板に最初『電子』が集合していて、電圧が掛っていたとする。電圧計を繋ぐ前後で銅板間の電圧にどのような同じ電圧を発生・保持するかの訳を考えられるだろうか。また、図のように電圧計(負荷)を繋いだとしたら、『電子』はどのような力を何によって受けて運動すると考えれば良いだろうか。大まかな概略論でなく、厳密な基礎理論に基づいた合理的で論理的な解釈が求められる。日常用語と基礎的な科学用語での説明なら、誰でもが理解でき納得できると思う。しかしこの『問答』にはなかなか納得できる論理的な解釈が出来ないジレンマに陥るのだ。結論を言えば、『電子』や『電荷』では電池電圧の発生原因を説明できないという事である。宇宙の話や五次元空間の話は話の実体が目の前に無いから高度な数式で論じられると煙に巻かれたような気分でうんともすんとも言えないもどかしさが残る。しかし乾電池や蓄電池の話なら、電磁気学の理論検証には十分分かり易い筈だ。この電池電圧の意味が『電荷』概念では自分が納得出来ないので、『エネルギーギャップ』の電圧発生理由で解釈する様子を示す。

空間のエネルギー分布空間のエネルギー分布 エネルギーにはプラスもマイナスもない。光のエネルギーと同じく、空間に金属導体に因って束縛された状況で分布する。その分布密度を予測して図に描いて示した。その密度分布を実験的に測定する方法を見つけられるかどうかは疑問だ。『電子』の分布を描く場合に似ている結果である。プラス、マイナスと言う金属導体間にそのエネルギーは分布し、マイナスからプラスまでのエネルギー分布密度の線積分がその『電池電圧』となる。エネルギーで観る線路電圧に交流の場合を示したが、直流でも同じ事である。

交流電圧 電圧は直流も交流もその本質は同じである。主に金属導体間に掛かる電気の”何か圧力”のようなものと感覚的に捉えられる。その姿・本性を認識し難い訳は実験的に測定することが出来ない「空間エネルギー」だからである。電気の眞相(2)-電圧とは何かーに述べた。科学技術の電気工学では空間エネルギーなど観測できない物理量であるから、『エネルギー』の利用と言う眼目から、実に優れた計測量として、『電圧』を考えだした訳である。『電圧』と『電流』で電気工学の基礎を創り上げたのだから、その技術的感覚は素晴らしいと先人の業績に感謝しなければならない。交流電圧によって送配電線路が構築され、『エネルギー』利用が可能になった。その交流電圧は発電機と変圧器での発生原理に新たに「磁束」と言う概念を創り上げた事により、理解し易い『電磁誘導則』で誰でもが理解し易くなった事は科学技術の意味を理解する上で大切である。「磁束」で交流電圧を理論付ける技術感覚の意味を理解すべきであろう。さて、科学技術とその基礎概念は自然世界の『真相』と成るかと言う点で改めて考えなければならない歴史的転換点に居ると思う。電気現象の物理学的解釈は自然世界の眞相を捉えるに重要な基本認識と成っている。その自然現象・自然世界を『電圧』、『電荷』、『電流』の科学技術概念で論じようとしたとき、その論理の先には混迷の未来が待ち受けている。同様に『電界』『磁界』も自然世界に実在する『真相』ではなく、科学技術の『エネルギー』利用手段としての便利な構築概念でしかないのだという事を認識することが未来への安全の思考の基盤である。

科学技術と自然世界と教育 先人が築き上げて来た科学技術と自然世界の眞相を混同しないように理解して欲しい。『電荷』など世界には存在しないのだ。今、この事の中に見える複雑な人間意識と科学的競争社会の間に立って、未来への子供達に対する教育を考え、根本から再構築すべき時に立っている。未来への教育問題は教育機関、教育者に課せられた喫緊の課題である。過去を踏襲し、先人の業績を尊重してなどと拘泥している時ではない筈だ。

『電圧』と『エネルギー』その実験的検証 昨年は物理学概念に(『電荷』への)疑念を抱き、旅立って30年程たった時に不思議な実験を手掛けた。これも予測できた訳ではなく、何かに誘われて手掛けたような実験である。変圧器の奇想天外診断で『電圧』の意味を考える切っ掛けを得た。続いて、コイルと電圧とエネルギーおよび天晴れ(コイルと電圧とエネルギー)の実験的検証、そしてまとめとしての電気の眞相(3)-電圧と負荷ーによって『電圧』と『エネルギー』の関係を捉えることが出来たと考える。