タグ別アーカイブ: 白熱電球

熱電子と熱エネルギー

歩んだ道は・・」教育に生かせない道だったか?

  • (2022/10/07)。このブログ記事で公開することが、御迷惑になるのかとの心配で公開を止めていた。
  • 現代の情報化社会の原点は、その科学理論としての『電子論』に在るのだろう。現在の半導体による電子工学、電子回路の基は真空管回路にあったと思う。その意味が『エジソン効果』と言う実験の解釈に有ったことを知った。エジソンの白熱電球の現象であった。白熱電球の放射熱エネルギーを『熱電子』と解釈したと言う事だった。白熱電球の放射現象を『熱電子』の放射などと考えるだろうか。真空管は基本的には、白熱電球のフィルメントが陰極と成った真空ガラス管と同じであると気付いた。

真空管、それは白熱電球にその起源があった。

『エジソン効果』

1884年にエジソンが白熱電球についてとても面白い実験をしていたことを知った。それが上の②図である。どの様な意図で白熱電球の中に、別にフィラメントを覆うような電極を付けたのか、その発想の尋常でない事に驚く。その意味が真空管の誕生に繋がっていたようだ。その20年後に2極真空管が発明された。末尾に参考年表。

『電子』、『自由電子』が白熱電球からの歴史に関わっている事を知った。『電子』が負の『電荷』と言う現代物理学理論の歴史の発端に白熱電球があったと理解した。

とても心苦しい事ではあるが、この自然世界に『電荷』は存在しないと言わなければならない。その事を物理学理論の根源に置かなければ、子供達への未来の教育とはならない事を伝えたい。その意味で、もう一度『電子』の物理的意味、概念を白熱電球のフィラメントの『熱エネルギー』との関係で考察して置きたい。決して『熱電子』などと言う負の『電荷』量子が空間電荷効果の基になっていた訳ではない。

筆者が論じる内容は、とても学術論文になるような内容には見えない筈だ。実験室の中からでなく、日常接する自然の風景に感応しながらの感覚的思いからの日常生活論とでも成ろうものである。

しかし、ただ一つの科学理論への革命的実験結果がある。それは、ロゴウスキー電極空間に3万ボルトの直流の高電圧を掛け、その中のコンパスの指し示す方向を探ると、印加する電圧の値に依ってコンパスが指し示す方向が変るのだ。その意味は、電気磁気学理論の『電気(電界)』と『磁気(磁界)』は異なると言う解釈の間違いを示しているのだ。『電界』も『磁界』も空間に在る『エネルギー』を解釈する人の解釈論に因る事で、自然世界の純粋さは『エネルギー』一つの世界であることを示しているのだ。その実験結果が、全ての科学理論の『電荷』概念に基づく解釈の見直しを迫る筈だ。

その意味を説く例として、『エジソン効果』を取り上げる。

LEDに白熱電燈が取って代わられる。何時の日か、白熱電球とは何ですか?と時代遅れを笑われそうな思いにある。高輝度のLEDランプの自動車前照灯に目が眩む怖ろしさも、安全運転に注意しようと‥。

エジソンが追加して実験した電極が、2極真空管の陽極Pであったのだ。白熱電球のエネルギー変換の物理現象は、身近で誰もが目で観察できる日常生活科学論の代表的観察例題である。量子力学を学ぶ前に、自然の姿を直接感覚に落とし込む、光と熱の『エネルギー』の意味を身に感じて欲しい。光や輻射熱は、最近は禁じられるが焚火の炎の『熱』も『光』も傍で体に感じれば、温かく仄かな灯りに、揺らめく灯に心も静かに穏やかに揺らめく筈だ。その焚火の放射の物理実体も、白熱電球から放射される輻射物理実体も何も違いのないものだ。光に違いはない。熱に違いはない。その光や熱が空間を伝播してくるものを、人が受け止めるのだ。その空間を伝播するものを、どの様な物理的実体と理解するかが大切なんだ。それが空間を伝播する『エネルギー』なのだ。その『エネルギー』と言う最も大切な自然世界の物理的実体を、どれだけ科学理論の中に認識しているかが、とても曖昧に思えるのだ。電球から放射される『エネルギー』を認識しているだろうか?

白熱電球から放射される『エネルギー』を真空管では『熱電子』と言ったのだ。決して『電荷』など持たない熱を『熱電子』として、真空管の『空間電荷効果』と言う理論で、電子工学の基礎理論となって来たのだ。筆者も初めて、工業高等学校で(身分は?)授業担当が『電子工学』の真空管のお話から始まった。勿論空間電荷効果は『熱電子』の理論に因って理解し、解釈し、教えさせてもらった。学習させて頂いた参考書が右の本だ。「電子工学の基礎 ⅠおよびⅡ 」 W.G.ダウ 著、森田清 他訳 共立全書。である。 豊富な図解でとても詳しく、勉強できた。もう一冊は「無線工学Ⅰ 伝送編 新版 宇田新太郎著 丸善」である。分布定数回路の学習で、とても良く解説されていて、参考になった。

その当時(1964年)の電子工学は真空管回路がまだ基本になっていた。しかし、その年の秋10月10日は、日本でのオリンピック開会日であった。テレビジョン放送もカラー放送であったと記憶している。だから、TVも既にトランジスタ回路だったかもしれない。

その後、『発変電』、『送配電』そして『電気機器』その他『電力設備』等の電力系が主な担当科目となった。ただ「電気理論」は工業高等専門学校での全くの未経験科目として『電気磁気学』の担当経験をさせて貰った。結果として、その『電気磁気学』の授業担当の経験が『電荷』の物理的概念への疑念の始まりとなった。

そんな過去の担当教科科目を経験した事から、今、理論物理学という科学理論の基礎科目である現状を考えた時、決して『電荷』や『電子』が基礎概念とされている現状は、未来の教育内容として、その概念の矛盾が耐え難く、科学理論もその点で学問の自由という意味がどの様な事であるかを考える視点ともなるかと思う。特別専門的知識が無くても理解できるような内容でと易しい言葉で述べた心算だ。その意味で、誰にも参考になる形式の科学論であると思う。このブログ記事は、その意味で十分役立てると思う。

ただ、『電荷』や『電子』の否定と成れば、基本的な視点が現代科学理論の、解釈の基礎概念、教科書の解説と異なる事が多くなる。それは社会的な意味で問題ではあろう。

真空管の制御電圧 vg (グリッド電圧)が真空管内の内部空間の『熱エネルギー』の分布状況を制御するのであった。その『エネルギー』の分布を『空間電荷効果』と解釈して、『熱電子』の制御と解釈したのである。その『熱電子』の意味がトランジスタ理論での『電子』制御論に引き継がれたのだ。

電子工学の始まりが真空管であった。その解釈が半導体に引き継がれた。『電子』概念が生まれた意味がそこにあった。白熱電球の『熱エネルギー』を『熱電子』と解釈した。

『オームの法則』-物理学解剖論ー

電気回路を学ぶ時の最初に学習する法則が『オームの法則』であろう。今まで様々な観点から、電気磁気学を論じて来た。ここで、最も基本の法則について考えて見ようと思う。ただ、『オームの法則』の教科書的解説をするつもりはない。大学受験や、電気回路の教室授業の参考には成らないであろうことをお断りしておく。簡単な基本ほどその奥に隠れた意味は深い事を伝えたいのである。出来たら大学の電気磁気学を教えている方々にも見て頂いて、批判をして欲しいのである。

最初に先ず『オームの法則』とはどんな事かを述べたい。オームの法則実際に、どれ程の解釈で論じられるかは、自分の能力の無さから先行き不透明なままである。①のファイルの意味で、抵抗に係る電圧と電流の関係が瞬時値で成り立つと考えている。その関係は、直流回路も交流回路も成り立つ。例えば、抵抗にコイルが繋がれている回路を採り上げよう。

 

直流・交流とオームの法則

 

直流回路で、電源電圧Eが少しでも変化すれば、電流が変動するから、コイルの電圧elも0ではなくなる。しかし抵抗の電圧erはどんなに電流 i が変動しても、抵抗の電圧は電流の瞬時値に対して、er=R×i が常に成立する。交流回路の場合も、抵抗の電圧値er は電流瞬時値 i のR倍になる。抵抗の回路要素としての意味は電圧と電流に対して、極めて単純な式が成り立つ事を示している。コイルなどの場合は、インダクタンスLがエネルギーの処理に時間的遅れを伴う為、実に面倒な式の取り扱いの計算が必要になる。(一言お断りしておかなければならない事がある。電流、電圧の概念を明確に出来ずに使用している点である。電流は流れずと論じている事に対する責任を感じて。)(2019/05/12)追記。当時は未だ、電線路内空間の電気エネルギーの分布について今ほど明確ではなかった。技術概念『電流』とその測定などのようにエネルギー流として解釈できるようになった。

瞬時値と言う事に関して、一般的な電気回路でのオームの法則をもう一つ挙げておこう。

回路とオームの法則どんな回路でも、抵抗に流れる電流が決まれば、a のようにその電圧は必ず電流に比例する。もう一つb のように、電力pも電流瞬時値で決まることになる。しかし、この電力pに関しては、エネルギーの時間的消費率ワット[W]で、電流概念(i=dq/dt[C/s] の電荷qの時間tに対する変化率の意味において)とエネルギー量との関係から、自分は理解できていない面がある。何が光に

 

 

 

 

 

 

何が光に 抵抗の意味を考える時、身近な電気器具の電灯が目に入る。エジソンが発明した白熱電球である。最近は「LED」にとって代わられそうで、さびしい思いもする。蒸気機関車の力強さ、竿秤のてこの原理あるいはLPレコード、真空管ラジオなど見て分かる科学技術が懐かしい。携帯電話、IT情報網などの最先端技術は感覚的理解との不協和の世界に彷徨うような思いだ。日常の科学技術が学校教育で教えるべき目標の筈だ。科学技術と人間の感覚との乖離が学校教育の目的・目標をも失う時代になっている。こんな時代に、白熱電球を取り上げる意味も無かろうと言われそうだ。しかし、白熱電球の物理的意味さえ、その本質を理解できていない事実を明らかにしたい。単純な科学技術だからこそ、そこに隠れた自然科学としての真理を説き明かせると思う。日本では「理科教育」と言うが、「科学教育」と言う用語の方が適切かもしれない。何が光になるか?こんな単純な質問なら、誰でもが簡単に答えられなければならないだろう。その答には、電気理論など必要ない筈だ。「理科教育」と言う範疇に縛られた教育の硬直化が、「科学リテラシー」と言う問題をも引き起こしていると観る。電気理論で解釈しようとすると、『電子』が抵抗体の中で「大暴れ」でもして、摩擦熱を発生するか、「量子力学理論」を引きずり出して解釈するかの「迷走論」に陥るのが関の山である。最近は薪を燃やす事も環境の問題で、制限される。迷惑は犯罪の気風にある。薪を燃やして、発光するのと、白熱電球の発光現象と大した違いがある訳ではない。停電時に蝋燭で明かりを灯す。どれも原理は同じである。さて、もう一度「何が光になるか」と考えてみよう。白熱電球の二重コイル

電球定格:100ボルト、40ワット。透明白熱電球(内面つや消し電球が一般的)は中のフィラメントの構造も良く見えて、技術の粋が理解できよう。このフィラメントの構造は二重コイルである。その二重巻は、自動二重巻製造の智慧の、その巧さに感心する。白熱電球の二重コイル(何故か消されたので載せ直す)。

何で二重巻の難しい製造技術のコイルにするか?それは効率を高める為の工夫であり、エネルギー局所空間の高温度化のためであり、そんな所に難しい理論など不要であろう。理論の為の『電子』など不要だ。技術革新で、単純な科学技術の製品が捨てられてしまうと、自然科学の本質をも見失う危険がある。難しい理論だけが取り残され、科学無関心の社会構造になるから。何が光になるか?この問いにどう答えるかが科学技術に対する市民社会の未来志向の道標を示すことになると思う。理科教育で果たすべき学校がその責務を果たせないのだ。教育の行政の問題であり、理科教育を担ってきた大学および教育関係者の問題である。光は、薪も、蝋燭も電気炉も同じく光を放つ事を共通に持っている原因は何かと考えれば、手の指を差し込めない『何か』が原因で放射されると思うでしょう。それを普通は『熱』という。『熱』とは何か?『熱』と『光』は同じものである。その共通に持っている原因はたった一つの『エネルギー』である。関連する用語に『温度』も有る。『温度』とは何か?と物理的意味を問えば、「理科教育」の気体分子運動論が幅を利かす。理科教育が自然科学の学校教育を踏みにじっているのだ。何が光になるか?は雷が水蒸気の熱エネルギーが原因である事と、その本質は同じものなのである(2013/04/20)に追記。御参考に 雷の正体

さて、この電球の抵抗値は幾らだろうか。テスターで計ると、20.3オーム位である。白熱電球点灯時過渡特性点灯スイッチを入れてから、大体0.1~0.2秒程度でほぼ定常値になると言う。点灯時の抵抗値は250オーム位の筈である。抵抗の変化する様子を式で表現してみた。そのグラフを示す。

適当に数式にしてみたので、正確ではない。でもうまい式と思う。0.8秒で式の上では定常状態になっている。ついでに電流の値も参考に示した。この電流値には全く物理的意味は無い。電源が交流100ボルト(50ヘルツ)であるから、電圧は0.02秒ごとに最大値140ボルト正弦波の1サイクルで変化をする。厳密には、二重コイルもエネルギーに対して幾らかのインダクタンス機能を持ち、電流値もR-L回路の過渡現象の繰り返しとなろう。ただどのように減少するかの様子を示した。

抵抗とは何か 白熱電球も点灯初期から、定常状態まで、変化する。フィラメントのタングステンも温度特性がある。高温度で、高い抵抗値になる。点灯時はR=(100^2^)/40=250Ωの抵抗値になる。何故こんなに抵抗値が変化するのか余り考えなかった。何故だろうか?まさか『電子』が熱いフィラメントの中では、通り抜けに苦労するからだなどとは考えないでしょう。高温と逆の現象に絶対温度零度付近で、超伝導現象が起きる。言わば導体の抵抗値ゼロの状態である。最近は非金属の有機材の超伝導現象が研究されている。関連記事で、超伝導とは何か?電気式木炭暖房の二つを挙げておく。木炭暖房は木炭の電子流などでは滑稽と思う記事である。ここで、改めて電流が導体の中を流れる『電子』の時間的変化率と言う概念に対して、どのようにその論理性を主張できるかの『問答』を提起しなければならない。超伝導現象の意味は正にそこの物理学理論の矛盾を問うのである。だから、抵抗とは何かと考えさせられる。

電気技術と抵抗専門的学習は、用語から解釈の仕方まで特殊な壁を乗り越えなければならない性格を持っていると思う。抵抗の単位Ω(オーム)も人の名から付いた単位である。電圧のボルトと電流のアンペアの比が何故オームになるかの意味も分からない。それは電気の基礎の基本だから、覚えなさいとなる。覚えて習熟する内に、それが当然の原理と認識が深く脳に染みつく。脳の論理回路が形成される。それが専門家の専門的能力となる。電気技術者はその集団の共通用語で、互いに共通の認識で、便利で有効な言語体系を構成できる。しかし、抵抗とは何かと改めて考えてみると、どう言う意味なのかと悩む自分がいる。

物理現象と抵抗この⑧のファイルの内容には馴染が無いであろう。自然科学では、その共通理解のために、基本的な事項を定義している。共通な取引単位でエネルギー量に対して、ジュール[J]、電力量キロワットアワー[kWh](これもエネルギー量のジュールと同じ意味。1[kWh]=1000[J/s]×3600[s]=3.6×10^6^[J] だから。)等がある。物理的単位系の基本定数に真空空間の透磁率μo=4π×10^-7^[H/m] が決められている。エネルギー量ジュールに対して、この定数に基づいてすべての単位系が構築されている。高度な科学論、宇宙論や素粒子論など空間と時間の関係を論じる領域で、殆どこの空間定数の論議が入り込まない論理を理解できない。『時空論』は正にこの定数の話になると思う。だから、基本の電気法則の『オームの法則』で抵抗と空間論の話題を取り上げようと思う。以後どのような事になるか自分にも分からない。参考に、エネルギー[J(ジュール)]とJHFM単位系をご覧ください。

空間と抵抗 ここで一つ空間の意味を電気現象から考えてみよう。空間はそこに無数の科学技術の扱う『電波』が溢れている。ドイツ人ハインリッヒ・ヘルツが19世紀末に空間を電気信号が伝わることを実験的に実証した。そこから電気通信が進展して、現在の情報化社会に成っている。伝播伝播と空間特性伝送線路導体も無い空間が電気信号を送れる意味は大変な事なのである。携帯端末もアンテナから電波を放っているのだ。その空間は電気信号を送るに、特性インピーダンスという抵抗値を持っていると考えられている。その抵抗値はほぼ337オームである。その値は丁度、光の光速度cに真空透磁率μo倍で、120πオームとなる。光速度もc=(μoεo)^-1/2^と、空間定数から決まるものである。この空間での電波伝播に於いて、抵抗[Ω]でありながら、損失は殆どない。だから抵抗オームとは何かと考える必要があろう。それがファイル⑧で示した次元を理解しなければならない事なのである。抵抗は電気ロスを生むと考えがちであるが、エネルギーの変換器と観る解釈がよりその物理的認識には重要である。

(2013/5/18追記) 電流と電圧の正体でオームの法則に関連記事を書いた。負荷抵抗をR[Ω](=[(H/F)^1/2^])、負荷電力をP[W]とすれば、電流はI=√(P/R) [(J/H)^1/2^]、電圧はV=√(PR)[(J/F)^1/2^]の電力と抵抗との関係である事を示している。

白熱電球

二重コイル電球と点灯古い電球が見つかった。白熱電球と言う。白いと言うより赤褐色の光である。温かみを感じる。この電球のフィラメントは二重コイルになっている。もうこの白熱電球は製造中止の憂き目に在る。エジソンが1879年炭素電球を発明してから、130年以上経った。電気の技術史の本を見たら、白熱電球の『エジソン効果』の発見から真空二極管が生まれ、電信通信が生まれたらしい。そんな技術にとても深い愛着を感じる。長い人類の生活に電灯と言う光明をもたらした偉人エジソンに感謝したい。このような誰もがその技術に親しみを抱き、見て分かる生活の技術であった。今は情報機器の中味を理解できない不安の時代に生きている。幸福と技術の哲学的問題が今の時代の象徴になっているように思う。

(2014/09/27)追記。白熱電球は光の放射現象に関連付けたくて取り上げた物でもある。前後の記事に、球と立体角及び照明と配光曲線がある。この白熱電球は二重コイルになっている。オームの法則の応用技術の代表に挙げても良かろう。『オームの法則』-物理学解剖論ーでこの白熱電球を例に取上げた。その中でも二重コイルの意味を考えている。科学理論の基本で量子力学論が支配的になり、光放射現象を原子の外殻電子の周回運動論から解釈する様な論調になったしまった。そのような量子論では、二重コイルの技術的工夫はどのような意義で捉えるのかと異議を差し挟みたくなる。白熱電球の発光現象の論理的解釈の有り様を問うのである。二重コイルの意味はエネルギーをコイル内に有効に高密度で貯蔵できるかで、高エネルギー密度の程度が高ければ高温度になり発光量も白熱光に高輝度化出来るからである。フィラメントのタングステンWがその高温度に対する耐熱性を備えているから、有効なフィラメント材料となっているのである。要するにフィラメントのコイル内にエネルギーを高密度で貯蔵できるかどうかの技術的工夫が二重コイルになったのである。全く量子論など何の意味も無いのである。

花が光か 光が花か

花は光に  何故か図の挿入を拒否される?挿入が出来た。

世界で光を見るのか、光で世界を見るのか。考えればますます難しくなる。どうもいけないね、禅問答のようになる。光は捉えきれない。その意味はエネルギーを計測できないから。教育の場ではプランクの輻射式が物理学理論の論拠として論じられる。式を見れば何故そんな式で光を解釈できるのだろうかと頭が痛い。部屋に君子蘭が咲いている。電球の温度が光の放射を決めるらしい。プランクの放射則は白熱電球の分布波長スペクトラムを表現したものではない。黒体と言う特殊な発光体の放射則である。スペクトラムは壺の場合は、その壺の空間形状が光の波長を決める要因になるから、図の白熱電球の場合とは波長分布で違いが有る筈だ。プランクが指摘したように、黒体の放射スペクトラムは連続でなくて、不連続と言う。それは黒体の内部空洞での光の反射収斂波長がその空洞によって決まるからだと解釈する。それは原子、分子の構造空間に因る放射スペクトラムにも同じことが言えよう。フィラメントが二重コイルなら、幾らかそのコイル形状による熱エネルギー貯蔵空間が波長分布に影響を与えるであろう。電灯では、式と図の放射光分布は異なる筈だ。式はなんか味気ない感じがする。花を眺めてその花の気持ちを思えば、式などどうでも良いと思う。花を眺めただけで、そこに展開される光の不思議を十分に感じ取られる。光に色が有る訳ではない。その白熱電球が放つ光を花は受ける。花に色が有ると感じて、人はそれを慈しむ。花の色が白熱電球の色と同じならどんなに興ざめかと。花は花の思いを世界に届けようと必死に見える。それぞれの花が形と色を、自分らしく誇って示す。花弁のどこでどんな物理的エネルギー変換をして世界を創っているのだろうか。波長変換の仕組みを物理的な自然力として受け止めて理解したいが、自分には非力で無理である。花の花びらに入射した光を細胞から再放射するから人は花に色を見て、花の心を受け止めると言えよう。花の表面の微細構造内の空間が光の波長を変換していると解釈する位しか出来ない。光が世界を造るのか、世界が光を創るのか。