タグ別アーカイブ: 屈折の瞬時性

天眼鏡の屈折司令官

IMG_0653窓際で『天眼鏡(こんな呼び名があった)』を陽射しに置いた。太陽光は、そのエネルギーの強烈さを秘めている。オリンピックの採火も鏡で太陽のエネルギーを使う。陽射しの中に居れば、ポカポカと暖かい。その熱エネルギーは光が持っている。レンズを使えば、すぐに火起こしができる。平行光線の太陽光をレンズで屈折させて、焦点に集めれば木材は燃え上がる。理科や物理学で光を解釈すると、とても複雑な意味付けがされる。難しくなる。波長、振動数あるいは周波数などの言葉で説明されると、光の温かみも消えてしまう。

温かみの基は何だろう 物理学的、教科書的解釈には、日常生活で感じる感覚に応えて欲しい。温かみや温度の意味が説明できるだろうか。『エネルギー』とは何か?

屈折の司令官 レンズ、天眼鏡あるいはプリズムは光の性質を理解する大切な意味を示してくれる。『屈折』と言う現象である。光の進行方向が変化する現象である。光は基本的に曲がらず、直進する。この光の直進と言う意味一つをとっても、それは難しい意味を含んでいる。余談になるので避けたいが、光の進む空間と言う意味は惑わされ易いので、その進む空間の意味を明確に定義しておかなければ、論議が成り立たないのである。例えば、今真上の頭上に向かって、光を点滅させたとすれば、その光は頭上を真っ直ぐ進みはしないのである。地球は自転、公転しているから、光の進む空間に対して常に方向を変化させているからである。以上が余談である。ここで取り上げる光の話は、手元の狭い範囲の話であるので光の直線進行の意味は光の相対速度まで考える必要はない。屈折と光路

(2016/11/22)追記。上の図で、レンズ軸に平行な光線が焦点Fを通過すると言う解釈は間違いである。教科書の誤りを信じていた結果の間違いでした。間違いで済みませんでした。焦点距離がもしFの位置であれば、その位置にスクリーンを置けば、A点からの光はそのスクリーンの面の一点にすべて集中し、像がはっきりと映し出されることになる訳です。従って上の図は間違いであります。以上訂正させて頂きます。(2017/12/04)再追記。間違いと言うのはFと言う焦点の概念だけであり、観測対象の一点Aからの光とレンズの屈折現象の角度の説明は良く出来ていて、正しい。平行光線が焦点を通ると言う意味が無意味である。図では眼で観測する時どの位置でも殆どAの文字は見える事を表現した。どの光路からの光であるかはレンズと眼と対象の間の関係で決まるだけである。しかし眼でなくて衝立などやフイルムに像を写すとなれば、Aからの光の様々な光路を通る光がフイルムの或る一点に全て集まる事により、Aと言う文字の像が鮮明に写る事になる。そのフイルムの位置とレンズの間の距離を焦点距離と表現しているのだ。焦点距離は観測対象のレンズからの距離で変わるのである。だからレンズが幾らの焦点距離かという表現は意味がない。無限遠の太陽の写像の距離を焦点距離と言うように定義すれば、レンズ一つに一つの焦点が決まるから混乱は避けられるだろう。そのような定義にすれば、衝立、フイルムに写す写像の位置は写像距離となり、焦点距離とは異なる事になる。しかしカメラなどの実際の焦点距離が写像距離を意味しているから、レンズの無限遠の定義を使うのは困難ではある。しかし、レンズの焦点と言う概念が平行光線からの教科書の解釈である限り、レンズと光の関係は混乱し続ける問題である。

光の屈折は光が進む空間の媒質(空気、水あるいはプラスチックなどの進行空間の材質)の特性の違いで起きる境界面の現象である。上に示した図はレンズに観測対象のA点から光が入ると、そのレンズへの入射角が様々であるから、それぞれの入射光線で屈折の方向も変化する。従って、レンズから出る光の方向もばらばらの方向性を持っている。手元に天眼鏡があれば、物を見て欲しい。人の目とレンズからの像と言う意味には、余り焦点には関係ない事が分かる筈である。どんなに位置を変えても眼には物がほぼ良く見える筈だ。どの方向の光路を辿って来た光かは分からなくても、対象物はよく見える。ある一筋の光があれば、他の光路の光は無関係なのである。目での観測に、レンズの焦点など余り関係ないと言いたい。写真機、カメラでのレンズの組み合わせは、とても技術的にも工夫されていて、その場合の光の光路はもっと複雑ではある。それは写真の撮影画面の広さに全面で鮮明な像が写らなければならないからである。画面に他の対象点の光が混じれば、ボケの像になるから。フォカスの調整と言う事になる。さて屈折の司令官とは?屈折は媒質の境界面で起きる。光の進行方向が変わるのである。何故変わるのだろうか?この理由を説明するのが物理学の専門領域になるのだろう。ここで『問答』をしたい。物理学では、このような現象になると言う結論を説明しているが、その原因までの「何故か」と言う事には答えていない。ある程度詳しく媒質について明らかにされていよう。角度に関して、『スネルの屈折の法則』がある。屈折率が詳しく分かっているようだ。光の屈折で『色収差』と言うプリズムの光分散の問題がある。波長に関係ない屈折の問題に話題を絞るとしても、屈折の問題を預ける司令官の采配を論じるには、光の物理学的特性の振動数を採り上げざるを得ない。司令官と光の振動数の取り組みを論じたいのが主題ではある。レンズに入射する光が何故進行方向を曲げて、屈折しなければならないのだろうか。レンズの中に入れば光の進行方向は直進すると観る。媒質の変化する境界だけで変化する。その進行方向を変化させる仕組みを決める基準を司令官と名付けた。物理学では光は振動数で解釈される。光の一粒も光子というhν[J]と言う振動数ν[1/s]で解釈される。屈折はレンズ面への入射角を検知して、その到来の光路から進行方向を司令官が判断すると観よう。司令官は入射光の何を検知してその入射角を判断するのだろうか。司令官がもし、可視光線の振動数を判断基準にするとしたら、光の横に(物理学理論では、縦の振動数ではないと思う)振動すると言う何を検知して入射角を計量・判断するだろうか。次に、何を基準に屈折角度を決めるだろうか。そこには光の速度での時間的余裕は与えられず、瞬時性が求められる。瞬時性とは振動数を検知する余裕は与えられないと言う事である。光速度で入射する光の入射角度および屈折角度は何を持って瞬時に判断するだろうか。光の本質を振動数で捉えている限りは、この『問答』は成立しないと思う。光一粒のエネルギー分布で、その波頭値の入射瞬時ですべての方向性が決まると解釈しなければならない。光のエネルギーが暖かさそのものであり、その波頭値のエネルギー分布が光の特質を決める司令官の判断基準である。光とは何か?-光量子像ーがその意味を示している。この記事は前のレンズと光路の追加説明でもある。

眼球の光ファイバーと色覚

光の物理学的認識が問われている。光を周波数・振動数で認識することでは、その本質に迫れない。光一粒の認識が重要である。そのことは光の屈折現象の物理的解釈に関わる重要な基本点である。その光量子の空間像を 光とは何か?-光量子像ー に基本概念示した。

(2019/10/30)追記。記事の末尾にも追記した。どうしても、眼科の専門家の眼球機能の認識に納得できずに、先日書棚にあった、専門家の本を無意味として捨てた。光の屈折現象の物理的意味が正しく理解されていないと思った。媒体間の境界での特性差が屈折の特性を決めるのである。オットセイ、カバあるいはペンギンが何故水中でも空気中でも見えるか?人はゴーグルを付けなければ水中では見えない。その意味は眼球内のレンズ効果の理解に生かされなければならない。

さて、眼球に関する重要な指摘をしておきたい。医学的には、眼球の機能をカメラと同じように、網膜上に光学的な倒立像を結び、その像が視神経を通して脳に伝達されると解釈されている。眼科のお医者さんの多くの方がそのように解釈していると思われる。それはお医者さんの示す目の絵図にカメラの機能と同じ様子で示されているから。それは間違いと思う。眼球の中心眼軸には『光ファイバー』が貫通しているとみなすべきである。上の図は、参考文献Dispray Atras of Elementary Anatomy の日本語訳本(その原文はフランス語の Librarie Maroine SA Editeur. Paris 1980 であるらしい。 ) を見ての解釈である。(2019/05/19)追記。この文献には硝子体管の終端は網膜の視神経に繋がっている。しかし黄斑が視力の重要な部位を占めているようであることから、その点点模様が硝子体管の光ファイバーの終端模様と考えた。その文献には眼球の硝子体液の中心には硝子体管が示されている。その硝子体管を私は光ファイバーと解釈したのである。私はその光ファイバーが眼球の中心軸を貫通していると観る。カメラのようにレンズが空気中に在る様な構造で捉えて、水晶体のレンズで屈折した光が眼底の網膜上に反転像を結ぶと考えるのは間違いと解釈する。角膜に入射後の光は瞳孔、水晶体レンズを通過した後、平行光線として硝子体管と言う光ファイバー内を進行する。光の像は丁度『金太郎飴』の切断面のように、平行光線として黄斑の窪み部まで縦波のエネルギー波として到達する。従って眼底に結ばれる結像は黄斑に正立像として到達すると解釈する(ただし、光ファイバーが捩れているなら正立像とは違うかも知れない)。何故このように考えるかと言えば、カメラ構造解釈では、網膜全体に光感知機能・神経が張り巡らされていなければならず、更にその光の色覚まで網膜全体の細胞に識別する機能を負わせなければならない事になる。ここで『眼の色覚』の生物物理的解釈が問われる事になる。眼球の構造の昔の解釈では、『光ファイバー』などと言う光学的認識は無かった訳で、カメラと同様な機能解釈が当然のこととして受け入れられたものであろう。今でも、光量子の一粒の解釈が物理学では正確に認識されていない。光をあくまでも『波動論』として認識している訳であるから、「振動数」と言う横波概念でしか解釈できないのである。光を含め全ての波は「縦波」である。そのことを認識しなければ、『プリズムの屈折現象』の説明は出来ない筈である。「プリズムと光量子の分散(発表欠席)」ー日本物理学会第64回年次大会講演概要集 第1号第2分冊、p.405.  (2009)ーに基礎論を展開。日常生活で誰もが体験する物理現象さえ物理学理論は説明できないのが現実である。風呂の中の光の屈折現象も、水面の境界面で光の進行方向が屈折する。何故かと問えば、せいぜいホイヘンスの波面解説くらいのもので説明するだけである。一見、確かに光の屈折現象の説明が出来ているように思える。高等学校の物理の教科書などでも、プリズムや虹の七(?)色が光の波長によって屈折率の違いの為に分散すると説明されるが、『なぜ波長の違いで分散するか』の問いには何も答えられないのである。それは、屈折現象をはじめとする光の物理的基礎理論が完成していないからである。眼球の内部構造で、中心に『硝子体管』が貫通している事を冒頭図面に示した下部の文献で知り、直感的に眼球の光ファイバーの存在と眼球機能の本質を悟った。それは、光量子一粒がエネルギーの空間密度分布波との認識とが結びついたからである。単に波長や振動数では、媒質の境界面での瞬時的屈折原理を理解することは出来ない筈である。光の数波長あるいは何振動数分かを媒体の境界面で、じっと待ちながら、この光の波長は幾らだから、この方向に屈折させれば良いという判断司令官が境界面に居るとでも考えるのだろうか?そんな如何にも人間臭い解釈での物理現象の存在は天然・自然の神が許さない。境界面に光の一粒の先頭波面が到達すると同時に、瞬時に自動的に進行方向が決まると解釈するのが自然の本質を認識すれば、当然であろう。振動数を認識する時間的余裕を自然現象は与えてくれない。それが光の世界である。眼球の色覚機能。それは黄斑の窪みに到達した縦波の光をそのエネルギー分布密度で直ちに分離識別する機能として理解しなければならない。微細のファイバーの一本、一本で運ばれた光をプリズム効果で弁別するものと解釈した。その到達する深さの違いとして色の状態を判断するのであろう。医学に全くの素人である私の解釈は光量子概念からの必然的結論である。2011年の大学共通入試問題に眼球の問題が出た。眼球の網膜像入試問題を見ては私がここで誤っていると指摘した「カメラと網膜解釈」の問題その物である。私は医学に関して全くの素人である。しかし、物理学の真髄が教科書には無い事を知った。それが20数年前の事である。ただ1点、『電荷概念の虚像』(『電荷』という虚像)が全ての物理現象解釈に影響を与える事態に至ったと、今その怖れをも感じている(2012/01/30/ 追記、修正)。

網膜と色覚 もし視覚の像を網膜で捉えるとすれば、網膜の各部分ごとに入射光線の波長を識別しなければならない事になる。それは光の寸法、一粒の光子の波長を全ての波長にわたって識別する細胞の検知能力が要求される。網膜全面にわたりその識別を要求できる程、細密な細胞形態を望めるだろうか。波長は何を持って識別すると考えるのだろうか。その識別能力は黄斑部の細胞の奥深さでの光分散機能(プリズム効果)に期待する以外になかろう。(2013/03/18)追記。

追記(2013/4/3)。今日、眼球の光ファイバーに関する記事を見た。YAHOO!知恵袋の質問の回答にあった。Wikipedia.org/  のファイル:Schematic diagram of the human eye en.svg の記事。私の記事の眼球構造の図が間違っているとの指摘もあるようだ。しかし、安心した。どうも専門家の指摘のように思う。この『眼球の光ファイバーと色覚』の図で、ファイバーが網膜の黄斑に繋がっているのが間違いだとある。(2013/04/09)-その御指摘は御尤もである。今日改めて、参考資料(カラーでみせるやさしい解剖)を確認した。確かに、視神経に硝子体管が繋がっている(2021/03/24)この『繋がっている』は間違いであったことを確認した、眼底で分かった。だから御指摘は当然と思う。しかし、御指摘の中心窩付近の傷害、変成が視力に影響するらしい事から、やはりそこの黄斑部がファイバーの接続箇所と解釈したい。どうもその説明の図には黄斑の名称がなく、中心窩(チュウシンカ)が黄斑の事かと思う。カメラと等価な眼球の光解釈は確実に間違いであると思う。黄斑と中心窩に硝子体管が繋がると解釈したいー修正・追記。(2018/03/14 追記)この眼球の光学的網膜写像の解釈には違和感を抱かざるを得ない。その意味を眼球の光路とカメラ機能-?-に眼球型カメラと言う図での矛盾を描いた。眼球の網膜はカメラのフイルム面のように平板ではない。網膜面に写像が得られるとすれば、どのようなレンズの屈折で可能かは納得する理解が出来ない。何故球面にレンズの写像が出来ると考えるのだろうか。レンズの焦点・焦点距離とは?などで最近考えた事との関連で眼球の『硝子体管』と『黄斑』の関係に強く再確認の思いを得た(2018/03/14追記)。

(2019/10/30)追記。黄斑円孔内の空間で、どの様な波長弁別機能が存在するかは全く分からない。光の屈折原理は光伝播媒体の異なる特性差によって、光エネルギー密度の差が速度差を生むからである。眼球のレンズの前後の境界で物質的空間特性がどれほど異なるかと考えればほとんどその差はないと考える。角膜の球面構造と空気のような、空気とレンズの境界の特性差のようなものが無ければ、眼球内部でのレンズの屈折は原理的に起きない。眼球内部でレンズの屈折光がが望めない媒体ならば、網膜面に光が視界の像を結ぶ訳が存在しない。「コメント」を頂いた中に、黄斑についてビタミンA云々というお教えがある。下のような学会での私の解釈は、光の基本的屈折原理だけからの「自然の本質は単純・純粋にある」と言う観点からのものであり、特別科学的に信頼できる確信などない。黄斑内部で光の波長と細胞との間で生命の不思議な仕組みがきっとあるだろうと今は思う。科学理論は広い分野を包含した哲学的で、必ずしも科学的実験での証明ができなくても、総合的な自然感覚(例えば、人の水中での視界は全く見えないが、ゴーグルを付ければ空気と角膜の媒体間の屈折により正常によく見える等。)が新しい研究の不思議解明の道しるべとなると考える。以上追記させていただいた。確かに今確認すると、私の図は不適切である。光の波長識別の説明は示されていない。光の浸透深さで波長を識別する意味が図には無い。眼球の光ファイバーと光量子 日本物理学会 第56回年次大会で発表した資料を示す。目の色覚機能この図が示す色覚機能は光ファイバーの一本を通して縦波のエネルギー密度波が黄斑部に入射して、その波長に応じて、屈折による分散方向が異なると解釈したものである。その位置を黄斑内部で検出して、その情報を視神経から脳に伝達すると解釈した図である。先に書いた文の削除は、少し参考資料に惑わされて書いた部分である。あくまでも『黄斑』の黄色い点の一点ずつが光ファイバーの接続点を示すとの解釈である。視神経管の構造を検索で調べたら、中心は血管の動脈と静脈が通って居りその周りを視神経が通るとある。黄斑部の波長識別信号が視神経に網膜内を通って繋がっていると解釈したい。しかし、「カラーでみせるやさしい解剖の図と違う解釈になるので、黄斑からの経路がどのように繋がっているかは全く分からない。

(2013/5/17追記) 先日検索した文献(*)に、硝子体の構造が示されていた。そこには、繊維細胞の複雑に絡み合った様子の顕微鏡写真が載っている。その細胞の一本一本が光ファイバーと観れるかどうかははっきり言えない。しかし、硝子体(管)と硝子体液から眼球が構成されている事から、その文献によれば、益々硝子体(管)が管状の『光ファイバー』であると確信できる。(*)江内田 寛, 坂本 泰二:硝子体の構造. 眼科手術.17:355-357.2004 (現在この論文が何故か以前のように簡単に見られなくなった。2014/02/19 現在)