タグ別アーカイブ: 分布定数回路

エネルギー流と定在波

科学理論とは?(2020/12/08)。科学技術に依って生活が成り立っている。その拠り所は科学技術の基礎概念であろう。しかしその基礎概念がとてもあやふやなものに観える。電気回路論の中の分布定数回路に現れる定在波を取り上げて、その意味に観る科学論を考察してみたい。分布定数回路空間の世界 (2019/10/14)はエネルギー流による解釈のまとめでもある。

物理学理論の『エネルギー』は?
とても残念な事ではあるが、自然科学の基礎である物理学理論が拠って立つ基礎概念が筆者には極めて曖昧な、未来性が観えないものに思える。その典型的な概念が『電荷』である。自然界に、『負』の物など決して実在しない。『正』と『負』と言う対照的な物の捉え方が、一見分かり易く思える為に、極めて頑強な基礎概念として科学理論の根幹を成すこととなっている。物理学理論の根幹ともなっている原子構造論が原子核の外郭を周回する『電子』によって認識されている、そんな基礎理論が間違っているのだ。『電荷』、『電子』など自然界は必要としない。今年になって、明確に自然現象は『エネルギー』がその基礎物理量としてすべてを支配しているとの確信に至った。たった一つの『エネルギー』がその存在する空間で、全宇宙を支配していると。露草の一枚の葉も、雨蛙の細胞の一片もその極限の原子と言う構造体の片隅を構成するのが『エネルギー』に依った空間構造から成り立っているのだと。それは光の一波長の空間の一部にもなっている『エネルギー』であると。しかし残念ながら、現代物理学理論で、その『エネルギー』の存在を認識してはいない。素粒子理論には空間に分布する『エネルギー』の存在と言う認識が無い。『正』と『負』の『電荷』によって認識する自然世界の姿を教育によって全ての人に強制的に憶えこませているからだ。それが現代科学パラダイムだ。教えられる子供達には、その『電荷』を拒否する学問の自由は保障されない結果となる。

科学パラダイムとロゴウスキー電極空間の磁界。
『電子』が科学理論の構成基盤をなしている。その『電子』こそ『負の電荷』の象徴的概念となっている。原子論は核の『陽子』と周回軌道の『電子』との電気力がその構成原理となっている。『電荷』概念に依るクーロンの法則が全ての科学論の基礎として、その科学パラダイムとなっている。その『電荷』に対して、ロゴウスキー電極空間の磁界 (2020/06/18) によってその概念の矛盾を指摘した。そこで指摘した実験的検証内容は当然学術論文で公開すべきものであろう。しかし、それは30年以上前の事であり、当時研究者としての身分が保証されていなかった。その内容は到底現代科学論のパラダイムから理解されるには無理であっただろう。殆どの科学理論を否定するような内容だから。『電子』の存在を否定する必要が有るから。

定在波の『波』の正体は何か?
今、定在波と検索しても、そこに示される解説は正弦波の波動の合成波形が主である。その正弦波の波の意味は何を示したものかが分からない。電圧波形を表示しているのであろうが、その電圧とはどの様な物理概念量かを深く認識していないように思う。今年(2020年)になって、漸く定在波の発生原理 (2020/09/23) および エネルギー流が電圧・電流 (2020/10/01) によって,その波の物理的意味が理解できた。電圧と言えば、教科書では、やはり『電荷』に頼らざるを得ないか、電磁誘導起電力の電圧(この場合の巻き線コイル内に『電荷』が分離するとは考えられないから、どの様な原因で解釈するか不可解。)に原因を求める。物理学理論に『エネルギー』の概念が無いから、電気回路理論にも『エネルギー』を伝送する事の論理的解釈を示し得ない『電子』によって取り繕う解説となってしまう。

定在波の学習と実験。

工業高等学校で、最初に科目『電子工学』を担当した。教科書に定在波の項目があった。しかし、その内容を教える筆者が理解できなかった。生れてはじめて自分で研究計画を立て、実験装置を組んでデータを採り、定在波を調べた。その報告を昭和42年、新潟県工業教育紀要、第3号に報告した。そこには実際の定在波の測定値が示してある。それは価値があるものだ。しかし、初心者の報告書という事で未熟にも、電源と負荷の方向が逆向き表現に成っている。その定在波が『エネルギー』の光速度伝送現象である解釈に辿り着いたので、改めてその元データの幾つかを選んで、それを電源(発振器)を左側に配置した表現に書き改めてみた。

実験供試回路。

Fig.1. 特性インピーダンスZo=500[Ω]の線路で、図のような回路構成で実験をした。発振周波数は、 f=163[MHz] 程度であった。発表記事の内容を振り返って記憶を辿るとする。

 

右は負荷終端を短絡した場合の電圧、電流の定在波測定結果である。

 

 

Fig.2.の測定結果は終端短絡時の、定在波の基本的電気現象を理解する基であると考える。定在波と言う物がどの様な電気現象によって発生するかを理解することが、直流回路を含めてすべての回路動作の理解に通じると考える。波動とは何か?それが『電子』でも『電流』でもなく、『エネルギー』の流れによって起きているという事を理解する必要が有る。

測定法の回路。検波用ダイオードと

DC mA (直流電流計)に依った。従って、線路電圧何ボルト、電流何アンペアと言う数値は測定できない。定在波の大きさの線路分布状況の測定である。

終端短絡時のエネルギー伝送現象。その定在波の発生原理を考察しておく。それが電気現象における『電荷』概念否定の検証にもなると考えるから。

電圧定在波の測定は、その電圧と言う測定量の物理的意味を確認する検証でもある。電線路上にその定在波の波長 λ [m] が示される。電源の周波数 f[Hz] と電線路空間の電波信号の伝送速度即ち光速度 c = 1/ √(LC) [m/c] と波長λ[m] との間の関係を示す。『波』と言う実態が何を表すかと言う疑問にも答えるものと思う。その光速度伝播現象と言う事実は、どの様に考えても『電子』が電線導体内を流れるという事から説明するには無理の筈だ。Fig.3. に電線路空間を伝播する『エネルギー』の伝送波δp[J/m]と反射波δr[J/m]の時間的変化を示した。最も単純な定在波がこの終端短絡時の模様である。反射波は伝送波が反対側の電線近傍空間を戻る。その反射エネルギーが電源にどのように影響を及ぼすかは明確には理解できていない。Fig.1.に示したように電源とはコイルのカップリング結合である。電源が電線路に如何なる電圧規定の機能を発揮するかが不明であるから。時刻 t1 から t6 迄の電線路上の『エネルギー』の分布の流れを示した。この線路空間の『エネルギー』の分布がその時刻の瞬時の電圧の物理的意味を表している。二本の電線の『エネルギー』の分布量の差がその電線路の『エネルギーギャップ』として『電圧』と言う技術量の原因となっていると解釈する。その意味に一つの疑問が生じる。

『エネルギーギャップ』。

定在波は電線路の位置で、『波節』と『波腹』が生じる。短絡終端から λ/4 の位置が波腹で、定在波振幅最大になる。λ/2 の位置が波節で、定在波電圧が常に零となる。Fig.4. のように、『エネルギー』が両電線空間に等しく分布した状態はエネルギーギャップδg=0 [J/m] で電圧は零である。この『エネルギー』分布の差が『電圧』と言う技術概念の意味示すことを理解するに有効と思う。決して『電荷』で電圧が決まる訳ではない。

負荷抵抗と電圧定在波測定結果。負荷抵抗は記憶の限り、ミノムシクリップで止めたように思う。また、抵抗の形状、特性も磁器のカーボン被膜抵抗や巻き線コイル抵抗など様々であった。

右のFig.5.は終端短絡位置から λ/4 の位置に負荷抵抗 R を繋いだ時の電圧定在波測定結果である。この抵抗接続点は線路終端短絡位置から丁度電圧振幅最大の位置である。元データから幾つかの負荷抵抗の場合を選んで書き換えた。負荷整合の500Ω。300Ω、100Ωおよび30Ωを選んで示した。このような具体的な定在波の測定データ波形は余り見掛けない貴重なものと思う。工業高等学校での生徒実験に取り入れたのは、生徒に対する少し望みが高すぎた。筆者自身も理解出来ていなかった。今、電流概念および『電荷』概念を否定して、初めて納得できる境地に到達したばかりである。それでも未だこの結果について理解できない点がある。

線路特性Zo=500[Ω]の適用回路である。

電圧定在波測定結果で、500Ωの場合は殆ど一定値分布である。殆ど反射エネルギーが無いからである。

その他の場合は、反射エネルギー伝送が加わり、電線路位置によって、伝送エネルギーδp[J/m]と反射エネルギーδr[J/m]との合成分布エネルギーδ=δp+δrのエネルギー線路ギャップ電圧

v=√(δ/C) [V]

の脈動の大きさが異なる結果である。この関係については上に挙げた、エネルギー流が電圧・電流 (2020/10/01) の記事が参考になろう。

測定結果の考察。負荷端は無負荷であれば、定在波最大である。

測定結果への疑問。

三つの定在波測定結果を右のー?-に示す。短絡点から、λ/4の位置が負荷端である。測定はその点から線路に20㎝毎に印をつけて、その各点の電圧定在波を測定した。波形は正弦波状の予測に合う結果を示している。しかし、100Ωの場合だけは特に理解し難い結果を示している。惜しまれることであるが、上の結果には短絡終端からのλ/4の範囲について測定しなかったことが悔やまれる。負荷で伝送エネルギーが吸収された後、短絡終端迄の伝送エネルギーの分布がどのようになるかを測定していなかったから。

(1)100Ωの場合。負荷端子の電圧定在波がゼロとは不可解な結果だ。R=αZo [Ω]で、α=0.2 の場合に当たる。この抵抗体がどの様な抵抗素材で有ったかが分からない。もし誘電体系の詰め物であれば、抵抗より容量性負荷であったかも知れない。

(2)30Ωの場合。30Ωの場合は特異な結果を示した。

(3)1500Ωの場合。30Ωと共に考察する対象として意味が大きい。

まとめ。[測定結果への疑問]についてデータの数値の詳細が不明のため、結果の詳細の検討が出来ないのが残念である。スミスチャートでの評価が可能になれば、その時点で改めて検討したい。書き始めて3カ月経過してしまった。一応公開とする。

 

分布定数回路空間の世界

(2019/10/20)追記。とんでもない(コイルのエネルギー)が読まれた。今分布定数回路の電気現象を考える論理的根拠ともなった記事である。それは、2015年の変圧器の奇想天外診断(2015/06/03) の簡単な台所での実験結果に基づく理論と技術感覚の確信に基くものである。絶縁体内の空間を伝播するエネルギーの伝送認識の確信でもある。

はじめに

既に分布定数回路と実験に載せた。その発振器を組み立て、最初の試験をした時の写真。

 

 

その分布定数線路の寸法とその特性インピーダンス算定値500Ωとしていた。しかし、少し値が違っていた。当時は計算尺で算出した。そのための誤差であろう。この記事が初めての実験結果報告であった。算定式の係数276(=120π×(2.3026/π) =276.312)の算定根拠もようやく今回の数か月の問答で、理解できた。その中で、電気回路の真の物理現象を捉えることができた。電気回路はすべて、張られた電線によって構成されたその空間を伝送されるエネルギー流であると。光エネルギーが電線路空間を光速度で伝播する現象であると。その波長が長い交流波形であるかあるいは一定値の直流であるかに関わりなく、すべてエネルギーの空間光速度伝播現象であると分かった。結局電線内を電流などと言う電子が流れているという過去の物理学理論の認識は間違っており、捨て去らなければならないという事である。しかも、その空間を流れるエネルギー流を科学的実験によって測定あるいは観測することは不可能であるという事(この意味が理解し難いかも知れない。エネルギーの空間分布を捉える測定量の瞬時値は存在しないから。時間的経過あるいは空間的長さを含む意味でしかエネルギーは捉えられないから。エネルギーの瞬時値、波形はない。電力p[J/s]の意味と・の瞬時電力意味と同じ論理性の曖昧性。)も真理である。光速度で流れる光エネルギーの空間分布波形を観測できる訳はないから。それは哲学の領域であろう。そのことは科学的手法では自然の神髄を捉えることはできない限界があるという事実を示す意味でもある。どんなに科学技術の精度が高く進歩しても無理な限界がある。それが光速度の世界であろう。伝播光の単位の一粒の光の一波長の中のエネルギー分布密度など観測できないから。科学的手法による観測不可能の対象が科学論の論理に認められるかどうかの問題でもあろう。

 

回路構造係数と電気回路特性

光が真空自由空間を伝播する時の特性と電気回路の電気エネルギーが伝播する特性と異なる点は、その電線路の構造だけある。構造によって決まる自然対数系の構造係数k=(1/π)ln(2D/d)(無次元)を決めると、その導体によって囲まれた空間の構造だけで、回路定数が決まることが分かる。真空自由空間の透磁率μo=4π×10^-7^[H/m]および誘電率εo=(1/36π)×10^-9^ [F/m]とする。

構造係数    k=(1/π) ln(2D/d) =2.3026(1/π)log(2D/d) [1]

インダクタンス La= (μo/2)k [H/m]

キャパシタンス Ca=2εo/k [F/m]

が全ての回路の基本分布定数の基本形となる。

線路構造と回路定数。

構造係数k

数値をグラフにした。

 

 

 

 

 

平行2線式電線路 

所謂分布定数回路の基本構造である。

 

 

 

 

 

 

 

同軸ケーブル

通信用や電力用ケーブルで、絶縁体の誘電率の比誘電率εsとした場合の特性である。

 

 

 

 

三相送電線路

三相送電線系統の特性は線間距離Dを幾何学平均値で捉える。その線路定数は三相の相電圧を基本とするから、中性点に対する値となる。

 

 

 

 

 

導波管 

マイクロ波伝送回路に方形の空洞伝送路がある。この場合は普通のインダクタンスやキャパシタンスの意味が捉えにくい構造である。しかし電波信号はこの導体で囲まれた空間内を伝播する。如何にも電波エネルギーが自由空間の光エネルギーと同じく制限空間ではあるが、その空間を伝播すると理解しやすい例であろう。ただ特性インピーダンスZは他の場合のように、統一的な規則での評価はできない式だ。新版 無線工学Ⅰ伝送編 p.138. 宇田新太郎著 (丸善)による。波長比 λg/λ は管内速度の遅れを意味すると解釈する。伝播定数γ[s/m] が大きくなる意味と考える。

 

特性インピーダンスZ[Ω]のエネルギー伝送に対する物理的意味

電線路空間を伝送するエネルギーは基本的には真空自由空間の光エネルギー伝播現象と同じ特性を示す。光は空間をエネルギー共振現象として伝播すると解釈する。同じく電気回路のエネルギー伝送も、回路特性のインダクタンスL[H/m]と静電容量C[F/m]の間の共振現象として伝播すると解釈する。

電線路の空間エネルギー分布を電圧v[V]と電流i[A]と言う科学技術概念で表現すれば、それぞれのエネルギー空間分布はCv^2^[J/m]  Li^2^[J/m] と評価でき、次のようにエネルギー比で解釈する。

Li^2^/Cv^2^=1

(L/C) = (v/i)^2^            ∴ √(L/C) = v/i = Z [Ω]

という特性インピーダンスZ[Ω]の意味で捉える。

むすび

結論をまとめた。右の図のようになろう。電気回路理論と物理現象の関係を統一的にまとめられた。分布定数回路の問答を終わりにする。(2019/10/20図を訂正した。)

誠にお粗末なすべてが隠された不採用の人生であったことを知り、今基礎科学と大学の教育を考えた時、不思議な感慨を覚える。昭和33年夏、人生は故郷での河川土木工事の土方仕事の石の畚(モッコ)担ぎから始まった。東京に出て、人の姿を見て、生活の意味を知り再び浪人生活を親に許してもらった。昭和34年春から、神田の研数学館(今振り返って混乱している。初めてお願いに行ったとき、数学の試験で審査された。合格という事で許可された。しかし、受講料の話もなく、そのまま無料のままで1年間を過ごした。考えたら、お金を払った覚えがほとんどない。また、たぶん水道橋駅から定期券を使ったと思うが、その購入の覚えもない。一体、生活の意識もなく人生の意味も意識することもなく、何故ここまで来てしまったのか。何方かお教えいただけないでしょうか。考えれば、高等学校でも、大学でも授業料を支払った覚えが無いのだ。どこからも請求された覚えがない。???困惑のまま・・。同じく、電気学会でお世話になりながら、学会費を納入した覚えもない。新潟市の日銀支店から新潟大学の先生の地質調査のお手伝いのアルバイト賃金を連絡を受けて頂いたことがある。)での楽しい講義を聴きながら、東京都練馬区江古田の お宅(金川 昇 様)での下宿生活(ご主人に食事を作っていただいた恩義を重く感謝したい)。同宿のお勤めの方(多分、三浦様)に撮っていただいた当時の写真だ。その旅立ちの頃には思いも及ばなかった長い人生を歩んだ。その当時は、ただ研数学館と宿の往復だけの1年を過ごした。自慢は1時間の欠席もなしに通い徹したことかも。思い出せば、物理の講義が楽しかった。意味が分からなかったが「ダランベールの定理」という言葉が残っている。現代国語の講義も楽しかった。先生がよく問題を投げかけた。自分も挙手して答えていたことも楽しい思い出。お陰様で大学に入学できた。高等学校での化学の授業で、電子同士の共有結合の意味が理解できず、化学への劣等感を持った。折角大学に入学できたのに、何故か学問への喜びを得られず、無為に過ごしてしまったことを後悔している。高等学校で、生徒に教えることになって初めて、電気工学の勉強をした。その初めての実験がこの分布定数回路の組み立てと生徒実習への取入れだった。担当教科が、電子工学、電力設備(電熱・電灯)、電気機器更に発電工学および送配電工学とほとんどの科目を担当し、お陰様で勉強する機会に恵まれた。実験設備も多くの協力をいただいた。旧い柵(シガラミ)のない新設高校であったからと考えれば感謝しなければとも思う。しかし、新潟県立新津工業高校の教員として、新潟県教育委員会では採用されていない不覚の職歴。大学でも文部省共済組合にも加入していなかったことを知れば、それも影のアルバイト人材だったのか。舞鶴鎮守府の戦後処理にその根本原因があると、政府からの回答を待とう。

ある事情(介護)のためこの9年間、自由な行動ができずに来た。学術機関誌での科学論文を発表する訳でもなく、一人壁に向かって、ひたすら己の感覚と向き合いながらの科学問答をしてきたようだ。筆者の場合はお陰様で、このブログ記事を書きながら見えないお方とのつながりを頼りに自己問答をしてきた。身についた技術感覚を基に、物理学的基礎概念への疑念・疑問を自己問答として納得する答えを求めてきた。面壁達磨の苦行とは違うが、全く人との科学論をすることもなく、また学術研究論文もほとんど見ることもない、科学研究者の雰囲気もない異常な生活であった。ただ日本語での思考による結果であった。

『静電界は磁界を伴う』の全く分野の違う物理学理論の根幹への思考研究を始めて、身分の消された中で考えてきた。日本雨蛙石の囁き聞こえますかなど身近な自然世界の深さに触れ、さらに光の空間エネルギー分布の光量子像プランク定数の概念を自然の深さとしてとらえ、それらの自然現象から見る科学技術の基礎概念用語(電圧・電流)の意味も繰り返しの問答によって、常識の科学論と異なる新感覚で、それを理解できる心境になった。その中での核心として『電荷』は自然界には決して存在し得ないと確信できた。常識論とは異なる自然科学的心境でもある。今こそ科学理論はその電荷否定から改めて始めなければならない筈だ。科学と哲学の問題として。自然の単純性と深遠性。『エネルギー』への道のり。そこに新しい教育を通した子供達への夢をも与え得る道が開ける。

特性インピーダンスとエネルギー伝送特性

はじめに(すでに公開した心算でいた。8月末の書き出し記事)
直流回路ではインピーダンスという捉え方をしないのが一般的だ。ほとんどオームの法則で、抵抗回路として取り扱う。しかし考えてみれば、電気回路は直流用と交流用と違う回路を使う訳ではない。電気回路はすべて、分布定数回路なのである。一般に、直流回路解析でインピーダンスは使わない。しかし乍ら電線路の構造は全く同じである。二本の電線を張ればそれは必ずコンデンサとコイルの機能を持った電線路である。電気工学としての直流回路の取り扱いでは、インピーダンスなど必要ないだろう。だが、電磁気現象として考えるとき、電気工学ではなく物理学としての回路現象が大切なはずである。負荷が変化したときのエネルギー伝送特性はどのような意味で理解すべきか。それは必ずエネルギーが分布定数回路の中を伝播する現象となる。何がその伝送特性を決めるかが物理学の問題になる。今、「電気回路のエネルギー問答」の記事を書いている。その中で電力の意味で壁に突き当たっている。時間軸上に描く電力波形p[W] のエネルギー時間微分値という瞬時値とはどの様な物理的意味を持つものかと考えれば、理解に窮してしまう。エネルギーの電線路伝送問題の筈であるからと、電力の意味の思案の途中に居る。その中での一つの問題として、直流も基本的にはエネルギーの伝送問題の筈と思い、直流回路の電線路の分布定数回路としての特性インピーダンス問題を取り上げようと思った。(2019/09/19)この記事は8月末に「直流回路のエネルギー伝送特性」として書き始めた。しかし書き進む内に特性インピーダンスの算定の話に変わってしまった。その特性インピーダンスは空間の電波や光の伝送特性初め、電力送電線路や超高周波伝送路に共通した物理的意味を持っていると考えれば、そのすべてに統一した特性としてとらえるべきと考えるに至った。そこで表題を改めて、特性インピーダンスに絞ろうと考えた。この特性インピーダンスに関する記事に、既に特性インピーダンスから見る空間の電気特性という記事があった。その時点より、統一的に電気現象を捉えた筈である。

エネルギーの電線路空間伝送

電気エネルギーは決して『電荷』によって運ばれる物理量ではない。『電荷』を具備するという電子や陽子が電線路導体内を流れ伝わると言われても、そこには『エネルギー』を運ぶ論理は観えない。『電荷』は回路を往復周回する論理で理解されるから、行きと帰りで『エネルギー』の運び手としての役割を果しえない。『エネルギー』は電線路内の空間を伝送される、即ちそれ自身が実在する物理量として空間を伝送すると解釈しなければ、物理学理論としての論理性は観えない筈だ。『エネルギー』は他の代替物理概念量によって伝送され得るものではない。『エネルギー』自身が空間を光と同じく伝播するものである。そこには光が空間エネルギーの分布波であるという基本認識がなければ理解できない壁となろう。直流電気現象も、電線路の分布定数回路の空間を伝送するエネルギー伝送現象と理解しなければならない。電子などが流れる現象ではない。超高周波のマイクロ波通信だけが分布定数回路の伝送現象ではなく、直流も全く同じく、その伝送は分布定数回路伝送現象なのである。

先に記事光エネルギーと速度と時空で取り上げた右のエネルギー伝播の図がまさしく直流回路のエネルギー伝送の話になっていた。この分布定数回路で、負荷抵抗が特性インピーダンスと同じ値の場合が負荷端でのエネルギー反射現象が起こらない伝送現象になる。ある払い下げの通信装置の発振回路部を利用して、筆者が作成して生徒実験として取り入れた分布定数回路の報告記事があった(何故かこの部分が印刷から除かれるので書き換えた)。それが 分布定数回路と実験 である。そこに超高周波であるが、分布定数回路のエネルギー伝送の意味を理解するに参考となる実験データが載っていた。その負荷抵抗が特性インピーダンスの場合(第8図の特性インピーダンスに等しい負荷抵抗が500Ωの場合がそれである。)の定在波測定結果で、ほぼ一定値になっていることにその意味が示されている。それは負荷端でのエネルギーの反射がない伝送形態である。このエネルギーの反射現象で、驚くべき実測結果が有るといわれている。それは送電線路の開閉サージの電圧が定格電圧の7倍まで上昇した異常現象が起きたと。それは線路絶縁対策としては大問題である。送電端と無負荷受電端間のエネルギー往復反射の結果による現象である。電線路とはそのように、如何にも分布定数回路としてのエネルギー伝送に伴う複雑な特性を示す回路だ。単純な電線路ではない筈だ。少し脇道にそれたが、電線路は物理的なエネルギー伝送現象の空間であることを先ず認識して置かなければならない。

電線路と特性インピーダンス 分布定数回路と実験 の記事の線路定数を例に、特性インピーダンス500Ωの場合の分布静電容量C[F/m]と分布インダクタンスL[H/m]の定数値を算定してみよう。上の分布定数回路と実験のページ -123-に

Zo=(276/√εs)log(2D/d)=500[Ω] (2)

なる式がある。この式は、参考書の 新版 無線工学 Ⅰ 伝送編 宇田新太郎著 (丸善)p.95 に(4.6)式として載っている。この式の算出法が理解できないでいる。

そこで、平行往復導線の特性インピーダンスZoの算定法はどうするかを考えてみる。筆者は、電力工学での送配電線路の定数算定法を昔学習した。その教科書を紐解いてみれば、インダクタンスは線路電流による磁束鎖交数からの解釈であり、静電容量は電線路分布電荷がその理論の基をなしている。その理論的解釈で、実際の送電線路の回路定数・分布定数[mH/km,μF/km]が的確に算定されている現実の不思議をどう理解すべきか。

Fケーブル(屋内配線用)の特性インピーダンスの試算

上の算定式(2)式が高周波での特性値として極めて正確に思える。ちょっと寄り道をして、方向違いの商用周波数用屋内配線用として多用されるFケーブルの特性インピーダンスを算定してみよう。1.6mm銅線2本の平行ケーブル。絶縁厚0.8mmでD=3.2mm 、d=1.6mm とする。さらに、ビニル絶縁材の比誘電率εs=4.5とデータから選ぶ。そこで得られた特性インピーダンスはZo=78.3[Ω]程度と算定される。以上は一つの比較算定例とする。

特性インピーダンス算定式の係数、[276]がどのような根拠で得られたか?その訳が一つ解決した。送配電線路の教科書の中から糸口を探せた。そこで、まず特性インピーダンスの算出根拠を論じる前に、その手法の論理の妥当性を考えたい。それは最初にインダクタンスの算定手法について、電流 1[A] の物理的空間として、別に取り上げる必要があろうと考えた。インダクタンス算定式にまとめた。

同じく静電容量算定式についても纏めたい。静電容量算定式と理論にまとめた。

 

 

分布定数回路と実験

はじめに

遥か昔の報告記事がある。1964年(昭和39年、新潟地震6月と日本でのオリンピック10月があった年)から、工業高等学校での初めての担当科目が電子工学であった。電子工学を担当するように告げられていたので、大学を卒業するまでに、電子工学の基礎Ⅰ,Ⅱ W.G.ダウ 著 森田清他訳 (共立出版)を購入し、勉強して何とか間に合わせた。当時を思い出すと、真空管の空間電荷効果2分の3乗則について話したことを覚えている。まだ半導体の話は教科書ではそれほど扱われていなかったと思う。特に分かりにくい内容と思ったのが分布定数回路の現象であった。教えるにも自分がよく分からない。それで、回路を組んで分布定数回路実験を生徒実習に取り入れた。その内容を、「分布定数線路実習に対する一考察」として、新潟県工業教育紀要、第3号、昭和42年(1967)に投稿した。初めて書いた記事である。内容は実験データなどあまり他にはない資料で、貴重と思うので、ここに掲載させてもらう。今、直流回路のエネルギー伝送特性 を書いている中で、分布定数の話を載せる関係から、良い参考資料と思った。(2021/07/02)追記。この「分布定数線路実習に対する一考察」記事についてお世話になった。図は何方かに、わざわざ奇麗に書き換えて頂いた。初めて記事を書いたので、論文の書き方も知らず、御迷惑をお掛けし、お手数の労をお掛けした事に感謝申し上げたい。

この発振回路は、双3極管2B29を使った回路である。筆者の作れる回路でなく、ある事業所の払い下げ通信機を手に入れ、その心臓部である発振回路を使わせて頂いた。

 

 

 

 

発振回路の陽極部に、実験用分布定数回路を結合する部分を作った。図4.のように実習室の端から端まで平行分布定数線路を張った。

この分布定数の構造は屋内配線用の軟導線1.6mmΦを線間間隔52.2mmとして、特性インピーダンス500Ωとした。

 

 

 

定在波の電圧、電流測定装置を第5図及び第6図として示してある。新版 無線工学 Ⅰ(伝送編) 宇田新太郎著 (丸善) を全面的に参考にさせていただいた。測定原理はp.85.に示されてある。しかし具体的な実験に取り入れた回路方式についてはどの様な理解のもとで決めたかは今は覚えがない。

 

定在波測定内容と実験結果。色々の測定結果のデータが示してある。実際の実験結果であるから、その意味では貴重な資料となろう。

 

 

 

 

【Ⅶ】検討 実験結果に対する検討結果が記してある。専門的には幼稚なものかも知れないが、結構真剣に取り組んでいたと感心する。

 

 

 

 

 

検討の続き。

 

 

 

 

 

以上の6ページ。

むすび

実験では、発振周波数が160MHz程度であった。その中でとても興味ある経験をした。この分布定数線路に直管蛍光灯40Wを挿入した。蛍光灯の発光原理は水銀ガスの励起波長数千Åの筈である。160MHzで蛍光灯が発光するとは信じられない。「量子力学」とは何か?と疑問が浮かんだ。

昔、1980年割愛人事と言われて、長岡技術科学大学に転勤するつもりでいたが、その春4月辞令をいただいた時には辞令の「前職欄」が空欄であった。その意味が分かった時には、正規の職業に採用された事がなかった事なのか。大学には研究実績と研究能力がなければならず、筆者のような者はまだ未熟と解釈して我慢してきた。今も、新潟県から転勤した履歴はないか?どう解釈しても、1939年12月01日生まれた翌年舞鶴鎮守府への戸籍転籍とその後の戦後の1949年4月戸籍戦後隠蔽処理(原戸籍抹消糊付け改竄)が根本原因であろう?だから、私は偽物か などの事件となるか。

分布定数線路と特性

新潟県工業教育紀要 第3号(昭和42年度) に初めて研究報告の記事を投稿した。大学時代は、全く電気の勉強もしていなかったので、『電子工学』の科目を教える為に、初歩から学習しながらの授業であった。その電子工学の中に分布定数線路の話があって、その指数関数の説明に実習に取り入れた回路制作とその実験結果報告であった。 「量子力学」とは何か?が時々読まれるので、その基の回路の記事を参考に転載したい。昨年末コピーを頂いたので、読んでみると中々貴重な記事に思える。分布定数回路で検索しても余り具体的な記事を見かけないので。

写真185分布定数回路構 双三極管2B29 回路構成は殆ど払い下げ品の回路をそのまま使わせて頂いた。

写真186線路設計と構造

写真188実験測定結果 こんな測定値は余り見かけないと思うので、貴重かと考えた。この分布定数回路の線路中に、直管蛍光灯40Wを挿入すると、その部分が光輝く。周波数162MHz と記事にあるから、量子力学理論に基づく解釈では理解しかねる実験結果だ。実験に基づいて理論は検証されなければならないが、さてどうしたものか?

最後に、この紀要の投稿記事で、お断りして置かなければならない事がある。それは私が提出した図面が余りにもお粗末な為、全て何方かに清書をして頂いたと話を聞いていた。申し訳なく、お手数をお掛けしたことに改めてお礼申し上げます。