タグ別アーカイブ: 光

電気抵抗体の物理

はじめに
改めて電気抵抗の何を書くのかと思われそうだ。しかも物理とはどんな意味が抵抗にあるのかと。前にコイルの電圧の事を記した。電気回路要素にはコンデンサとインダクタンスと抵抗しかない。しかし、抵抗だけMKSA単位系の中で特別の単位[Ω]が使われる。この単位の意味がどんな物理的特性を表現したものと理解しているのだろうか。自然単位系として、JHFM単位系を提唱した。エネルギージュール[J]を基本としてヘンリー[H]、ファラッド[F]の空間構造単位と長さ[M]だけで全ての物理量を捉える考え方である。その中では抵抗[Ω]は[(H/F)^1/2^]と言う次元となる。何故、抵抗がインダクタンスとコンデンサの単位と関係があるのか。ここにこそ抵抗体の物理的意味合いが隠されているのだ。物理と言う一般的な意味は、科学的に物の理屈を明らかにすると言うように捉えられていよう。ならば、科学論として実験的に検証可能でなければとそれは物理の中には入れてもらえないようにも思う。そうなれば、空間に実在するエネルギーなどを論じることは出来なくなる。正しく、物理学で捉え切れていない空間のエネルギーが本当に科学論の根幹に据えなければならない基本概念の筈である。空間のエネルギーを計ることは可能かどうかとても難しい問題と思う。ここで、電気回路の中でオームの法則として一番基になる抵抗の意味を空間の構造体として捉える考え方を述べたい。

電線路の特性
電線路は電気エネルギーを供給する設備である。最低二本の電線を張れば可能である。その細い2本の電線を張ったその空間には電気特性としてのコンデンサの意味とインダクタンスの意味が含まれている。幾ら細くても2本の導線の間にはコンデンサの機能がある。電流が流れれば(流れないと言いながら済みません)、1ターンのコイルを成すとも見られるから、その空間はインダクタンスの機能を持ってもいる。

電線路エネルギーと特性インピーダンス

電線路に電圧を掛ければ、無負荷でも線路空間にはエネルギーが蓄えられる。それは線路のコンデンサとしての機能で解釈され、その充電エネルギーと看做して良い。図の①のように線路の静電容量をC[F]として理解できる。

次に負荷がかかれば、②にように線路に電流が流れると、電線路はインダクタンスの機能を発揮する。負荷に伝送するエネルギーに因って、電線路に生じるエネルギーである。図では伝送エネルギーと表現したが、★印を付けて少し意味合いが違い、線路内に加わった貯蔵エネルギーと考えた方が良かろうという意味で捉えた。エネルギー伝送量の変化が生じると、その変化を抑制する電気的慣性の意味と捉えた方が良い。

この電線路の静電容量Cとか誘導インダクタンスLとかの捉え方は、送電線路の送電特性を解釈する基本的考え方になっている技術概念である。一般には単位長さ1キロメートル当たりの定数[mH/km] 、[μF/km]として線路特性を評価する。その線路の特性インピーダンスZ= √(L/C)^1/2^ [Ω]を使う。それは身近な2本線の電線路でも同じ事であり、図のようになる。

抵抗の空間特性 抵抗はエネルギーを消費する機能要素と普通は捉えるだろう。しかし抵抗でエネルギーが消失する訳では決してない。ただエネルギーの変換が成されるだけである。電気エネルギーを熱や光エネルギーに変換するのが抵抗体である。抵抗体でもエネルギー保存則は成り立っているのだ。だから抵抗とはエネルギーの変換機能であり、抵抗体の分子・原子構造体が成す空間格子構造の物理的意味を持っている要素であると解釈すべきであろう。電線路の意味に似ているのである。L とCの空間構造の成す構造体と言う捉え方が物理的解釈である。 この捉え方をする訳の説明になるかと思う設問を提起したい。

『問』 エジソンが発明した白熱電球がある。その電球もヒラメントは抵抗体である。抵抗は温度が上がると抵抗値が大きくなる。その訳を説明してください。

『答』 (ヒント)教科書では電子が抵抗の中を通過する(電流が流れる)ことになっている。電子が通るとどうして抵抗体が熱くなるのかの物理的解釈を示して欲しい。それが出来ない時本当の訳を考えると思う。数式では解答できない問題だと思う。物理学とは本来日常の言葉で理解することが基本だと思う。教科書の解釈の論理性を問う事でもある。(関連記事) 『オームの法則』-物理学解剖論ー (2013/04/16) 白熱電球のエネルギー変換原理は? (2018/02/12)。答えとしては、電荷とか電流と言う物理的描像が空間的に不明確な概念での解釈では無理であろうと思う。エネルギーの変換現象であるから、抵抗構造体の中にエネルギーの高密度集積がなければ、抵抗体からのエネルギー放射として温度計測の測定体にエネルギーの入射は起きないだろう。温度上昇はその物体にエネルギーが貯蔵されたから起きる現象である。物体の何処にエネルギーが貯蔵されるかと言えば、その分子結合の格子空間内に蓄えられるとしか考えられない。思い出した不思議がある。周期律表と抵抗率 (2016/06/16) の意味である。何故隣同士の原子でこれ程抵抗率が違うのか。原子構造が周回電子で解釈される意味で、どのようにその差が起きるかの疑問を説明できるだろうか。電子周回論には原子構造解釈に有益な論理性が観えないと思わざるを得ない。抵抗体のL、Cの空間構造に因るエネルギー変換特性の捉え方に関係付けても、電荷に因る電子周回論に納得出来ない思いだ。これは一般的科学研究の論文発表における査読検証の世界で通用する科学論にはならないだろう。然し、科学理論の根底にある矛盾として、『電荷』否定の一つの実験結果『静電界は磁界を伴う』がすべて意味を包含していると考える。その意味を踏まえれば、日常用語で語る考えも十分科学論として意味があると思う。空間エネルギーの測定が出来なくても、クーロンの法則で『電荷』量の測定が出来ない意味と同じ事と思う。より基礎概念が基本量に統一されて解釈できることが、市民の科学論の理解に資する筈であろう。

抵抗体とLC構造 

抵抗に電圧vが掛って、電流iが流れたとする。その抵抗体は確かに電気エネルギーを消費する。然し消費したからと言って、そのエネルギーが抵抗体の中で行方不明になる訳ではない。電気コンロで有れば、そのヒーターがエネルギーを蓄積して、温度上昇をする。温度上昇は抵抗体の中にエネルギーが蓄積されて、その抵抗体に入射するエネルギー量と放射するエネルギー量が平衡した状態で定常状態の抵抗機能の電気現象になる。抵抗体の物性により、比熱とか様々な科学評価認識量でその抵抗機能が異なる。然し基本的には、抵抗はその内部機能がLとCによって構成された構造体と解釈できる。図に示したように、電圧v は抵抗体周辺の空間エネルギーの分布の様相にその物理的本質を持ち、その空間積分を表したものと解釈する。陰極線が電圧の負側から流れるのは古く放電管の実験で示されている。その陰極線と言うのがエネルギー流なのである。だから抵抗体の電圧負側から抵抗体の表面に均等にエネルギーが入射すると考えれば、図のような分布になるだろうとの予想を表現した。熱と光のエネルギーが放射され、エネルギーの入射、放射が平衡する。木炭などは結晶体とは言わないだろうが、電気的にはその構造の空間にエネルギーが貯蔵され赤く加熱される。電気抵抗は結晶格子構造を成し、その構成要素がそれぞれ単位要素としてLC構造体を成していると考えた。

むすび

電気回路要素の抵抗は電気を学ぶ最初に学習し、 誰もが基本として理解している筈である。然しその物理的意味を突き詰めると、LC構造体として理解することに辿り着いた。単位[Ω]が持つ意味は結局[(H/F)^1/2^]と言う空間構造の電気特性を持った科学技術概念であった。今振り返って、科学技術と理論物理学の間の関係が、その基礎の中味を掘り下げて観て、そこに関わる人の意識の問題に深く関わっていると思う。そこに市民に開かれた科学論の未来が託されていると思う。今とても感謝することがある。このブログに因って、書きながら自分の科学感覚を整理し、『エネルギー』に統一した認識に到達できたことである。過去の電気回路とスイッチの機能 (2016/06/01) から周期律表と抵抗率(2016/06/09) 電気抵抗のエネルギー論 (2016/06/15) などと書きながら、やっとここに辿りつけたと思う。浦島退屈論のようで情けない思いもあるが?

 

熱の物理

熱の概念
熱とは何か。熱はエネルギーの或る状態と解釈するだろう。それはどんなエネルギーか。日常の環境評価では温度と言う指標で熱の多さを捉えると言ってよかろう。例えば気体では、気体の熱エネルギー量を温度・気温として捉える。気体の熱エネルギーとは、物理学では気体分子運動エネルギー(気体分子運動論)として認識・解釈していると思う。この気体分子運動論が曲者に思える。その訳はエネルギーが質量に関係なくそれ自身で空間に実在しているものだから。光はエネルギーの伝播現象であり、質量はその光のエネルギーを論じるに必要ない筈だ。光が質量の運動エネルギーとは考えないだろう。その光の空間に実在するエネルギー像を物理学で認識していない処に問題の根源がある。

物理学理論(気体分子運動論)を斬る それでは、その気体分子運動エネルギーとはどのようなものを考えているのだろうか。気体にエネルギーが加えられると気体分子がエネルギーを吸収することになる筈だが、おそらく気体分子質量の速度の増加としてエネルギーを吸収すると物理学理論では解釈しているのだろう。何故気体分子が速度の増加を来たす事になるのか。気体を加熱したからと言って、分子の速度が上がる理由が見えない。調理用の圧力釜がある。加熱すれば、圧力釜内の水が蒸発し気体となる。加熱に因り圧力が上昇し水分子の圧力上昇としてボイルの法則の通り圧力エネルギーとして加熱エネルギーが蓄えられる。何も水分子が運動などする必要もない。蒸気機関でのピストンの仕事は水分子の運動エネルギーなど無関係で、水蒸気の圧力がその役割を果たしているだけである。水蒸気の圧力とは水分子が加熱によって体積膨張しようと内部圧力に変換されるから圧力上昇するのである。それが単純なボイルの法則による解釈である。水分子の運動速度など無関係だ。物理学理論でエネルギーと言うと、質量の運動エネルギーと位置エネルギーしか対象にしていないのではないかと誤解しそうになる。圧力エネルギーと言う概念が余り考えられていないようだ。ボイル・シャルルの法則も気体分子運動論としてボルツマン定数に因る解釈に終結している。圧力も膨張でなく分子運動速度に因る衝突力として捉えるようだ。気体の体積、水蒸気分子の体積膨張と言う現象は考慮されていないように思う。気体の発光現象も、気体に加えられたエネルギーが分子や原子に貯蔵され、その貯蔵限界を超えたエネルギーが放出されることと解釈できよう。原子の外殻電子の運動エネルギーが増減する解釈は意味がなく、間違っている。そもそも電子が回転していると考える必要など無い。電荷など無い筈だから。エネルギーと圧力の関係で一つ取り上げておきたい。海底1万メートルの水は静止状態でも途轍もない高圧に在る。その水圧も水の空間に蓄えられたエネルギーの筈である。さて、水圧だけではなく、海底の地殻深くになれば更に圧力が増していると考えられよう。その空間のエネルギーは特別の意味を持ち、日常生活での物理現象として関わることも無い異次元の世界の話であるが、圧力エネルギーであることには変わりがない。ただ、その圧力エネルギーと言う解釈が地球の中心核まで続くと解釈すべきかどうかを判断するべき根拠は不明だ。何も地殻が運動エネルギーの空間貯蔵帯とは考え難いという事からも、気体も同じように気体分子の運動エネルギーとして解釈すべきと言う論理性が見えないということである。当然気体の圧力分布に因り気体は流れて風を引き起すが、それは気体分子運動論でのエネルギーとは異なろう。温度の解釈には風は余り関係なかろう。

熱エネルギー 熱が物に蓄えられる時、物の質量の運動エネルギーの増加となるのではない。物の結晶格子等の空間に貯蔵されるエネルギーそのものの増加が熱の増加と言うことである。熱エネルギーは電気エネルギーや光エネルギーと同じく、空間に実在するエネルギーなのである。質量構造体の内部空間に貯蔵されて温度が高くなるのである。温度が高いということは、計測温度計にその物体から放射されるエネルギーが多いということであり、温度計に入射する熱エネルギーが多い準位で、温度計の出入りのエネルギーが平衡するのである。熱も電気も光もみんな同じエネルギーなのである。それは空間を占め、そこに独立した実在の空間エネルギー密度なのである。基本的に、熱とは光であれ電気であれ物に蓄えられたそのエネルギー量によって周辺空間に放射、伝導するエネルギー量が影響され、その量を計量する人の感覚や温度測定器の表示量として捉えるエネルギーの評価なのである。物のエネルギー量とその物の入射と放射のエネルギー平衡特性が比熱などの評価係数となっているのだろう。物の原子・分子の結合構造(勿論エネルギー還流のマグネット結合構造)でそれらの係数も決まると観て良かろう。

質量とエネルギー等価則

熱エネルギーとは 今常温でMo[kg]の鉄の塊がある。その鉄を加熱した。高温の鉄の塊からは熱と光が放射される。その熱い鉄の塊の重量を計ることを考えると仮定する。鉄の質量は計りに掛けると、加熱によって加えたエネルギー分だけ等価的に質量が増加する筈と考える。それが『質量・エネルギー等価則」の意味である。エネルギーは質量に等価である。しかしここまでエネルギーを実在物理量と捉える考え方は現代物理学の中に受け入れられるかどうかは分からない。高温の鉄の塊から熱放射・光放射が続く。その放射エネルギーは鉄の持つ熱エネルギーと等価な質量の一部をエネルギーとして放射するのである。『エネルギー』も質量と同じく物理的実在量なのである。と言っても、鉄の重量を計って、熱エネルギーに相当する質量・重量の増加した結果が観測など出来ることは無理であろう。熱エネルギーの増加分をほぼ光速度の2乗で除した分など計測に掛る筈はないだろうから。実験的に検証する科学的論証は無理であろう。それでも、原理的に熱エネルギーが質量と等価であるという意味は熱く加熱されたエネルギー分だけ質量が増加しているということである。同じ様に電気コイルに貯蔵される電磁エネルギーが有れば、そのコイル内に溜ったエネルギー分の質量換算量だけ質量が増加したコイルとなる。一般的な現代物理学理論で、エネルギーが質量とは無関係に実在するという認識がどの程度理解され、受け入れられるかははなはだ心許ない。化学理論でも同じく、原子構造で電子が外殻を周回運動しているとの捉え方をしている限りは受け入れ難い考え方であろうと思う。

 

和の趣き(2018年報告)

不立文字と言う東洋哲学の用語がある。筆者はその言葉の意味を、自然世界の事象を極めんとして深く学べば、常識的な言葉で表現出来なくなるという意味で捉えている。新しい科学的発見と言う意味で世界に新しい認識を広げる事と真逆の方向性、即ち今までの常識的解釈で認識していた世界の意味を深く突き詰める事によって矛盾が観えて来て、今までの常識的認識は真理から離れた上辺の捉え方で在ったと気付くことを表現した言葉のように思う。だから常識的な科学的専門用語が使えなくなってしまい、常識的な科学論が出来なくなる窮地に陥ることを指している言葉のようだ。電気磁気学を解釈するに「電荷」の必要が無くなってしまった。自然科学を論説するに科学常識となっている原子とその構造は誰もが納得し信頼する基礎概念であった筈であるが、電荷を否定したら、何を基礎として自然現象を解釈すれば良いか分からない窮地に陥ることとなる。当然電界も磁界も使えなくなる。それが自然世界を深く理解する結果の到達点で、いわゆる不立文字が表現する状態の意味になる。インドに生まれた東洋思想・東洋哲学の眞髄は解釈の矛盾を突き詰めて、削ぎ落しによる中心にある真理を悟ることにあるのだろうと考える。残るものは『エネルギー』一つになる。それは光であり、熱であり、結局質量である。すべては「色即是空」の見えるもの又見えないものと変幻自在に変化する認識量が『色』であり、見えたと思えば見えなくなる『空』でもあるという意味ではないか。そんな解釈論は自然科学の実証・検証による論理性が成り立たない話となってしまう。それが不立文字と言う事であろう。2018年の投稿記事をまとめてみれば、『エネルギー』の意味を尋ね歩いただけのようである。それでも自然科学論の心算である。『エネルギー』の空間分布構造を実験的検証で示すのが理想の科学的手法であることを突きつけられれば、記した記事の内容は空間エネルギー分布を測定していないから科学論でなく哲学となるかもしれない。(2019/02/01)追記。少し気が引ける思いである。標題の『和の趣き』で、ある出版社の本やお酒の名前に使われていることを知った。御免ね。(2019/02/02)追記。『不立文字』は昭和62年9月1日に始まったのかもしれない。電流は流れず の決断を自分に課したのがその年の8月であった。標題の『和』は総和で無く、東洋的という意味合いだ。Google翻訳では、「和の趣き」はTaste of Japanese で「和の趣」はWorth of Japanese Wisdom となる。とても翻訳は意味が深いと思った。

4月2日 哲学と科学 ここには『正の電荷』を誰が発見し、どのような場面でその存在が観測・証明できるのか。を問う事を記した。電子と言う負の電荷は陰極線として観察されている。しかし、正の電荷はどんな場面で観測されるのか。

生物とエネルギー 1月4日 体温とエネルギー 1月5日 生命と酸素 12月16日 生命活動とエネルギー 

原始・電子・エネルギー 原子・分子結合力と周回軌道電子論の矛盾(1月9日) 半導体とバンド理論を尋ねて(5月14日) エネルギーから電子殻を問う(5月21日) 電池における電子の役割を問う(5月24日) エネルギーと結合(10月10日) 結合エネルギー:不思議の砦(12月2日) エネルギーの象形(12月5日)

電気現象と技術・エネルギー 白熱電球のエネルギー変換原理は?(2月12日) 電気回路要素『抵抗』の物理的意味(2月24日) 『瞬時電力』の物理的意味 (3月15日)技術概念『電流』とその測定(9月24日) 瞬時電磁界と概念(10月23日) エネルギー その見えざる正体(11月6日)

地球の景色 青空と白い雲(1月18日) 太陽系はどのような力学によってその位置に存在するのか?(3月28日) 津波と圧力水頭(5月1日) フェーン現象(6月17日) 波の心を観る(11月14日) 山の木霊(12月20日)

哲学・光・エネルギー 光の正体(1月25日) エネルギーの速度(4月2日) 非力学的エネルギー(4月10日) 世界は不思議(5月6日) 焚火の科学(5月26日) 水辺の散策(6月16日) 水蒸気と蒸気線図(6月16日) プランク定数の概念(7月17日) 世界の実在物理量エネルギー(7月26日) 運動エネルギーの概念(9月15日)

木賊(トクサ)と水

羊歯(シダ) 特異な植物の部類になろうシダやコケ類。シダは図鑑に依れば、琉球列島には8mを超すものも有るとあり、八丈島には茎丈4mの物があると。羊歯やコケは温暖で湿原地帯がその生育に適しているのだろう。何か地球の原始の姿がそれらの植物と連想して頭に浮かんでしまう。巨樹の化石が地球の原始世界を作って来たと考える。この水の星・地球は太陽と植物が創造したと考えて良かろう。山の木霊に関連した話。植物はどのような物理現象として水を揚水するか。ポンプがある訳でないのに、100メートルの高い木にも先端まで水を運ぶ。木賊は特別に水を多く体内に蓄えている。節がその水貯蔵に大きな機能を成していると考える。

木賊 庭に木賊が生えている。

木賊 土筆やスギナに似た節が特徴の植物だ。植物の図鑑では羊歯の類に分類されているようだ。少しシダ類とは違うかもしれない。シダ植物の茎の断面と異なるようだから。よく活け花の素材になるのかもしれない。

トクサ断面

 

トクサ寸法と特徴 シダと違って断面は中空である。周りが20個の細管で構成支持された植物だ。生えた茎を切断すると、中には水が充満している。表面の細管も水が満ちているようだ。緑色の茎は結構堅いざらざらした感触であり、支えるに十分な強さを兼ねている。この木賊もシダ植物も地球の古生代、原始の頃に繁茂した植物群のように思える。水の星地球、水を生みだした創造主は植物でなければならなかった筈だ。

トクサ磨き トクサでの汚れ磨きのことで、表面はサンドペーパーのようにザラザラしている。魚焼き器の網皿の油汚れを擦って見た。十分の強さでトクサは破れることもなく、よく磨けた。トクサの水については、切り取って1日放置すると節の間の水はすべて消えてしまう。表面から蒸散してしまうのだろう。実に興味深い特性の植物だ。節の間には大量の水が蓄えられている。あくまでも予想ではあるが、その水は地中から吸い上げた水ではなくて、トクサが生み出した水であろうと思う。この地球星にははじめから水があった訳ではないのだ。古代から地球表面から宇宙に放射される水も含めて、すべてこの星の活動の結果として水が蓄えられたのだ。それは植物しか他には考えられない。古代の巨樹がこの地球上に繁茂していた頃には、相当の温暖で湿度の高い環境と考えたい。3000mを超える高さまでも羊歯やコケの植物群の支配域であったと。トクサと水に思いを掛けてみた。山の木霊から連想してしまう。

エネルギー その見えざる正体

見えないもの 世界を光によって見ることが出来る。しかし、その光を見ることは出来ない。光がどんな形をしているかは分からない。その光の形を科学的に検証して確かめることも出来ない。しかし光は世界の実在的物理量で、空間に実在する。光は空間エネルギー分布波であると言っても、そのエネルギー波を検出をする測定法は無いだろう。何しろ1秒間に30万キロメートルの速度で通過する空間エネルギーの密度波であるから。そのエネルギーの分布状態を計る測定法が見つかれば夢の世界が広がるのだが。 見えるもの 見えないもの  にも見えないものについて述べた。その科学的に測定・検証できない電磁波の空間エネルギーについて述べようと思う。エネルギー程自然世界の根源を成しながら、その姿を見ることが出来ない不思議なものもないと思うから。大学教育に求められる「電気磁気学」 はその眼に見えない空間エネルギー波が光の本質であることを理解することを求めたものである。その見えざる正体を電磁波の中に観ることを論じたい。 眼で見えない物を心で観る夢としたい。 

電磁波はエネルギー波

図1.電磁波とエネルギー分布 正弦波の電磁波はマックスウエル電磁場方程式の解釈により、電界E と磁界Hの直交したベクトルの波動として表現される。その電界と磁界の偏微分形式で方程式に表現されている。しかし、電界や磁界が空間にあると考えるなら、その空間にはエネルギーがあると解釈される筈であるが、エネルギー分布についての解釈は電気磁気学の電波伝搬現象には見えないようだ。エネルギー波という解釈の記述について見た記憶がない。何故なんだろうか。電波伝播現象ではない静止電磁場については電界エネルギー「(1/2)εE^2^[J]」とか磁界エネルギー「(1/2)μH^2^[J]」とかの解釈がされているにも拘らずである。光速度伝播での電磁界については空間エネルギーという概念が消えてしまう人間の不思議な科学的習性を観なければならないのかと。そこで、今回はその光速度伝播の電磁界についても空間エネルギーが実在するのだということを伝える為に、その正弦電磁波のエネルギー分布を描いてエネルギーの実在性を解説しようと考えた。電磁波の本質は電界や磁界ではなく、エネルギー波なのである。それが光が空間エネルギーの縦波だという解釈に通じる事の要になるのである。図のように、正弦波の波長λとすれば、その半波長 λ/2 の繰り返し正弦波分布波となる。実はこのエネルギー密度分布波δ[J/㎥]の空間伝播現象を解説しようと考えたとき、このエネルギー波の表現法に困惑してしまった。そのことで、前の記事、瞬時電磁界と概念になった。エネルギー波が電気磁気学で取り上げられない訳の一つに、その空間表現が困難であるからかも知れないと考えるに至った。それが見えないものを観る困難かとも思う。しかし、エネルギー単位量子という捉え方で電磁波のエネルギー縦波伝播現象の解釈が欠かせないと考え、その意味を解説したい。

エネルギー単位量子

図2.エネルギー単位量子 ε=(λ/2)(δの平均値)[J]  見ることのできない空間エネルギー分布密度波を、空間に図形表現してみたのが図2.である。石や花のように眼で見ることが出来るものは空間に描ける。平面表現であっても絵にして伝えられる。しかし、空間に実在すると言っても眼に見えない、形の表現のしようがないものを示す事は困難である。質量に付加される運動エネルギーは質量体とその速度を併記すれば、理解できよう。しかし、質量のないエネルギーは目に見えないから形に示せない。これは『禪問答』の部類かもしれない。そこを何とかご容赦頂いて論じさせて頂く。空間を伝播する電磁波は正弦波波長の半分の長さの空間エネルギー密度波の繰り返し波形である。今仮に単位面積あたりを通過するエネルギー波を考えれば、単位面積1[㎡]で長さλ/2[m]の体積のエネルギーε[J]の光速度の縦波伝送として捉えられる。それをエネルギー単位量子と定義する。

見えざる正体

見えない空間エネルギーは光の視界を遮ることもないから、そこに在るとは見えないのだ。電気コイルの中や磁石の周りにエネルギーが在ってもそれは目に見えないのだ。地磁気のエネルギー流が在ってもそれは目に見えないのだ。見えざる正体それが空間に実在するエネルギーなのだ。世界を構成する基であるエネルギー・素原の光がその代表なのだ。その見えざる正体のエネルギーが理科教育に求められる本源だ。サーフィンが夏の海に運動力学の絵を描く。津波とサーフィンは同じ水力学の形を見せている。波のエネルギーとは何かと尋ねれば、振動数が何とやらの解説が検索に出て来る。エネルギーの実在性が見えない理科の解説は間違いである。

『課題』が残る。光の波長はこの「λ/2」を捉えて今まで論じてきた。正弦波波長と光の波長との関係を明確にしなければならない。

過去から今まで

32  『静電界は磁界を伴う』 -この実験事実に基づく電磁界の本質ー

1.まえがき 現代物理学の基本概念に電磁界概念がある。しかし、マックスウエル電磁場方程式には時間的に変動しない電磁界いわゆる静電磁界に対してエネルギー伝播の概念は含まれていない。この解釈から「電荷も電流も時間的に不変である限り電気と磁気とは別々の現象である。」(1)という当然ともいえる結論が得られる。しかし、マックスウエル電磁場方程式をエネルギー伝播という観点から考察したとき、筆者は「電界あるいは磁界のみが単独に存在するような場は有り得ない。」という結論に到達せざるを得ない。・・・

と書き出した、1987年(昭和62年)4月の解釈から少しも進歩していない同じ事を論じ続けているようだ。

巡光舟の詩

丙子(ヒノエネ)元旦の書き初めまで 戊辰(ツチノエタツ)1988(昭和63年)秋に行方定まらぬ放浪の旅。庚午(カノエウマ)1990(平成2年)年末処置入院で閉鎖病棟に幽閉される。抵抗の意思のための断食に徹し意識朦朧、転倒怪我、対処出来ずでの転院になる?“病窓に 満月迎え 除夜の鐘” 人生も終わりかと初めての句。辛未(カノトヒツジ)1991(平成3年)ただ飯を食うだけでは暇だ。正月中東での戦争の砲撃の映像を見る。光の相対性の解析を始める。ほぼ半月で完成する。ハロマンスを打たれ、思考困難になる。4月中頃病院上空を轟音を浴びせながら、飛行隊が過ぎて行った。後で丁度その日が電気学会除籍になった日のようだったこと知った。タダ1年半も薬も飲まず、飯を食うだけの病院生活から出所。壬申(ミズノエサル)1992(平成4年)7月。家も消え行方見えない道続く。

巡光船の詩 書き直した。光の不思議に思いを込めた詩のようだ。丙子元旦で飾ってある。その年の夏は長野で野宿の旅1週間ほど。東京電力、佐久間周波数変換所を見学させて頂いた。御迷惑を掛けた事申し訳ない。

秋の語らい

意味の怪しさ額にして 庭にあった泰山木の葉の切り絵。巡光船の詩と共に。

日本物理学会入会と発表

この前年丁丑(ヒノトウシ)1997(平成9年)秋、日本物理学会に入会させて頂く。入会にお助けいただいた先生には、それっきりで御無沙汰のまま本当に申し訳のないままで来てしまった。人との繋がりをきってしまったまま何の状況も知らず今になった。戊寅(ツチノエトラ)1998(平成10)年 4月 2日 物理的概念とその次元 日本物理学会講演概要集 第53巻1-1,p.13. を初めて発表させて頂く。JHFM単位系として、エネルギー一つを自然現象の根幹に据えるべきとの思いを伝えたかった。

 

夏の景色と光

暑い陽射しの中に。

佛相華(ハイビスカス)、富貴草(フッキソウ)、紫蘇。強い日差しの中に咲く。この鮮やかな彩りに感嘆。光に色がある訳ではない。この緑色と赤。同じ陽射しの光を受けて、その輝く色が違う不思議。緑は葉緑素の色素の色と簡単に解説される。光の波長は変化する筈だ。こんな景色にも解き明かせない自然の姿がいっぱいだ。地球の生命よ永遠に有って欲しい。

色素とColor cell 物には色彩がある。光には色彩は無い。すべての光がエネルギーの空間分布である。その分布波長が様々なだけである。色彩は光を受けた人がその光の波長の組み合わせを識別して、色彩を独自の人の神経機関の創りだす結果として評価しているだけである。同じ光を受け取っても、人と動物あるいは虫の認識する色彩が同じ訳ではないだろう。人の比視感度曲線を考えても分かろう。色彩豊かな揚羽蝶の翅の色は光と色彩の関係を考える例になろう。翅に当たった光は翅の織りなす空間構造内で波長変換して再び放射されるのである。その波長変換する空間を Color cell と名付けた。絵を描く絵具がある。絵の具には独特の色合いがある。その色を色素と解釈するのだろう。光に色がある訳ではないのに、絵具の色を反映する光はどのような意味を持っていると考えれば良いだろうか。色素とか物の色とかは光の物理現象としてどう理解すれば良いだろうか。光とその共振する空間構造との関係で色彩が決まると解釈する。絵の具の分子構造が光の波長変換により色を演出する。

プランク定数の概念

光とは何か 光の物理的意味をどのように理解するか。光を振動数や電磁波の横波で論じていてはその本質を理解できない筈だ。光は粒子であり、波動であると言われる。確かに粒子のような性質で解釈できる現象を示し、また波動であると解釈できる現象をも示すであろう。その粒子性と波動性の両方を備えた光の空間像を空間エネルギー分布像 光とは何か?-光量子像-として提唱した。また、光の物理的特性はプランクの定数h[Js]によって決定的に特徴づけられる意味が分かっている。すべての光がプランク定数hによってそのエネルギーの評価が出来るという画期的発見に支えられて、光の特性を理解できると考えてよい。

光とプランク定数 光を述べる教科書には必ずプランク定数が登場する。プランク定数がどれ程重要であるかは、教科書をみれば良く分かる。ところが、物理学での光は振動数で解釈されている。光に振動する物理的実体など全く無いと考える筆者には、その振動数という意味が理解できない。改めて、振動数とは何を意味しているかをエネルギーの縦波との関係で解釈したい。合わせてプランク定数の物理的意味を光エネルギーの空間像との関係でもう一度示しておきたい。

光の空間エネルギー像 光は空間エネルギー分布波の縦波の連続波である。観測の実験経験も無い筆者がトンデモナイ事を言うと批判されることは承知だ。科学の世界ではあり得ない事だから。しかも、実験で証明できない空間エネルギー密度波での解釈であれば、科学論として受け入れられないかもしれない。しかし、最初から光を振動数で解釈する物理学理論に疑問を持っていた。『エネルギー』に対する電気技術感覚からの違和感であった#脚注(1)。

光の物理的最小単位 光は空間を光速度で伝播する物理的実体である。空間内にある体積を占有する物理量実体である。その実体をどのように認識するかが問われていると考える。光を振動数で解釈するのであれば、光の何が振動しているかを明確に示さなければなるまい。筆者は光の実体として、振動数に変えて空間エネルギー分布の最小単位εの連続の縦波で解釈する考え方を提唱したい。

物理的最小単位 ε=hνの表現に空間的な意味は観えない。しかし波長λで表現すれば、空間寸法内のエネルギー量と観ることが出来よう。波長λに因るその光の最小エネルギー量を物理的最小単位εと解釈する。その光の最小単位が占める空間寸法をどのように解釈するかの問題は残るが、波長λに関係付けた体積と考えて良かろう。このエネルギーε[J]が波長λの空間長さ内に一塊りとしてある分布形を成す物理的実体と看做す。全く質量の無い空間エネルギーの実在体。このエネルギー感覚が物理学理論・概念には無いように思う。その認識が理解されるかの問題と思う。

波長について(2018/09/04)追記 今まで光の波長λ[m]について無意識にエネルギー分布波の繰り返しの波長として取り扱って来た。その波長は標準的な正弦波の波長とは異なる。一般には正弦波の一サイクルを1波長と定義している。正弦波の一サイクルはエネルギー波で見れば二つの繰り返し波から成り、エネルギー波の2波長分を指す。例えば正弦波50[Hz]の電圧波ではエネルギーの波100[Hz]となる。従って電磁波の周波数および波長に対して、エネルギー分布波の周波数は2倍、波長は二分の一の長さとなる。光の物理的実験の経験が無いから実際の光の波長観測の意味は分からない。この事から、振動数νと波長λについての意味もエネルギー波で全て評価して来たので、一般的な定義と異なることを指摘させて頂きたい。

光量子空間像と概念 光の正体で示した図である。(2018/09/03)追記。この光量子空間像の表現には波長とエネルギー分布波形で、波頭値の意味が分かり難い。波長との関係を次の図で示す。

波長とエネルギー分布模様 大よその波長比較として、赤、緑、青および紫外線を念頭に取上げてエネルギー分布模様を描いた。その光の先頭値である波頭値の比較を(波頭値比較)として描いた。光の波長で、その作用の強さが異なる訳は、周波数が高い程エネルギー分布の波頭値密度が高いからだと解釈する。その波形分布式を次に示す。

光の空間像 光のエネルギー分布波形を時間を止めた瞬間でのエネルギー分布波形の一つの表現式である。この波頭値Hλ[J/㎥]が波長の4乗に反比例する場合の式である。この表現式はエネルギー分布が進行方向に均等分布平面波との一つの条件での式であり、条件で変わる筈である。光のエネルギー分布の軸性(光の偏光に関係すると考える)は考慮していない波形である。

  プランク定数の物理的概念 光の最小エネルギー単位εの空間寸法λは空間を通過する時間の周期τで置き換えられる。すべての光はその最小エネルギー単位εとその空間通過時間の周期τとの積が一定であるというプランク定数の物理的意味を持っている。特別目新しい内容は無いが、プランク定数の物理的意味は光の空間エネルギー分布形態で解釈する処にあると言えよう。

 

#脚注(1)

  • 金澤:物理学が問われていること 日本物理学会講演概要集 第55巻2号2分冊310頁(2000)
  • 金澤:プランク定数の次元と実在概念 同上 56-1-2、p.310. (2001)

半導体とバンド理論を尋ねて

追記(2018/05/16) 反省を込めて追記。既に前に同じような記事を投稿していた。半導体とバンド理論の解剖 (2014/01/25) である。さらに太陽電池の解剖 (2014/02/06)にも有る。辿れば、その前年のトランジスタの熱勘定 (2013/01/30)から始まっていたようだ。そこで、電気エネルギーと熱エネルギーが同じものであると考えていたようだ。現在は、『電荷』概念では自然現象の本質を理解することは無理であるとの認識にある。このトランジスタの熱勘定で論じた意味が極めて大切なことを示唆していたと思う。荒っぽくて、反感を買うようの記事が多くて誠にお恥ずかしい。2013年には「量子力学」とは何か?電子科学論の無責任など。

半導体の電子とは? 電力技術における電子の意味を尋ねて30年以上過ぎた。結論は『電荷』も自然界には実在しないと確信するに至った。それならば当然電子も『電荷』などとは関係ないことになる。電気回路の金属導体中を電子が通り、電流になると解釈されている。ただし、筆者は電流は流れず等と言ってきた。だから以下の記事も科学論として認知されるようなものではないかも知れないが、市民や電気の初学者が疑問に思うことに対する『問答』としての価値は十分にあるものと思う。言わば統合的な理屈の自然科学論として見て欲しい。専門的な領域を超えた論理として。さて、現代物理学理論の根幹を成すものに量子力学がある。その代表的な適用が半導体である。半導体の電子のエネルギーレベルとその動作領域の抽象的認識概念が理論構築の原点になっているように思う。フェルミ準位がその要のエネルギー基準値として存在することになっているように思える。そのフェルミ準位は半導体の物性特性に因って、そのエネルギーレベル(電子のエネルギー量)が何ジュール[J]、あるいは何[eV]と決まった値があるのだろうか。

エネルギーバンドとフェルミ準位 電気工学、電気物理と同じ電気エネルギーを取り扱うのに、その専門分野ごとに理論的解釈法や概念がまったく異なる。ただ、原子構造については原子核とその周りを回る電子から構成されているという解釈は自然科学論の基本原則として世界の共通認識になっている。原子構造が科学論の原点にある。『電荷』否定はその科学論から除外されてしまう。永年電力技術で感覚的に身に付けたエネルギーの実在性が染み付いた論理構成の習慣が『電荷』概念の曖昧性に拒否感を抱くようになってしまった。電気物理での半導体の電気現象解釈理論はバンド理論で、正しく原子構造論の電子のエネルギー論を論じているように思う。それは『電荷』概念に基づいて理論構築されている。半導体結晶は基本的にダイヤモンド結合の構造と解釈されている。電子による共有結合が基本になっているように思う。原子核の周りをどのような速度で電子が周回運動をしているかは分からないが、それぞれの電子が回転し互いの隣り合う原子同士の間では、核の周りは複雑な電子回転に伴う『負電荷』の空間場になっているように思われる。単純な電気理論から考えると、負の『電荷』の空間場で、隣り合う原子同士の間でダイヤモンド結晶になる訳が理解できないのだ。電子が回転しながら隣の原子同士が結合する姿が現実世界の空間概念で描けないから理解できない始末にいる。そんな理解能力の無い者が現代物理学理論のバンド理論の意味を考えるなど誠に恥ずかしい極みではある。しかし、初めてバンド理論を学ぶ若い方々も同じような疑問を抱くのではないかと思うので、少し考えを述べてみたい。電気材料を導体、半導体および絶縁体と三つに分けてバンド理論の基礎が説かれる。全てに価電子帯と伝導帯がある。半導体と絶縁体にはその帯の間に禁制帯と言うバンドギャップが存在する。それらのバンドの『帯』と言う幅で表現される意味は電子の持つエネルギーの量の大きさに関係したように見受けられる。電子が回転運動していることに因る運動エネルギーの量の大きさを意味しているのかと思う。電子には質量があるから、その御蔭で運動エネルギーの解釈だ可能である。水素原子は原子構造が単純だから、電子のエネルギー量は基礎物理学では良く算定されて議論されているが、シリコン原子の電子になれば、その運動エネルギーは算定は可能なのだろうか。どの程度の回転速度になるのだろうか。その算定が出来て初めて、新しい半導体の技術開発にバンド理論の意義が生きて来る訳と考える。決して理論が理論の為の理論であってはならない筈だ。『電荷』の実在性はその理論構成に具体的に生かされてこそと思う。リン(P)やヒ素(As)の不純物が添加されると実際の電子のエネルギー量はどの程度のジュール[J]になるのだろうか。

太陽光発電理論と電子 量子力学の理論として大まかに理解している事は、原子や分子にエネルギーを与えると、原子の外殻周回電子がそのエネルギーを受け取って、電子の質量の運動エネルギーの増加を来たし、遠心力と釣り合う様な電子軌道の膨らみを来たすと理解している。光などのエネルギーが電子の運動エネルギーとして吸収される訳をどのように理解すれば良いかも分からないので困惑している。更に何らかの原因で逆に電子の軌道が下のレベルに落ちると光としてエネルギー放射を来たすらしい。勝手な解釈と言われれば、致し方ないが電子の運動エネルギーと光との変換過程が理解できない。量子力学の基本理論を理解している訳ではないが、太陽光発電での半導体は太陽の光を吸収して、電気エネルギーに変換する発電機能設備である。発電パネル内で、電子が光エネルギーを吸収してエネルギーの高い状態で伝導帯に入る。その伝導帯では電子が自由電子となり、原子の束縛から解放されると解釈して良いのだろうと思う。伝導帯の電子はどの程度のエネルギー増加になっているのかを知りたい。発電パネルから次は電気回路を通して負荷に電子はエネルギーを運ぶのかと理論のつながりを考えるのだが、電気回路内の電子による電流概念となると、どうも電子はエネルギーを担う役割は想定されないことになっているようだ。一体半導体内で光エネルギーを受け取ったかと理解するが、回路理論になるとそのエネルギーを担う電子と言う概念は無いようであるため、どこか論理的な繋がりが無いようで理解に苦しんでしまう。もう一度述べる。量子力学における半導体のバンド理論では原子の周回電子のエネルギーの増減を論理構成の基本に据えている。伝導帯の電子は増分エネルギーを電子質量の運動エネルギーとして余分に担ってエネルギー供給機能を果たす役割が期待されているようだ。そこでの電子は速度の増加としての特別の電子になるのであろうか。次に半導体理論によって理論付された電子に関係して、その太陽発電パネルをエネルギー源として捉える電気回路理論では、折角のバンド理論で担ったエネルギーの増加分を電流の根拠である電子には求めていないのである。当然のことであるが、電気回路論では電子に質量に関わる概念は意味を持たないから、電子における『電荷』と電界との間の電気磁気学理論に基づく論理しか考察対象には成らない。だから原子構造論における電子エネルギーに関する運動エネルギーは全く無意味に成る。総合的に全体を見渡した時、半導体パネルで受け取った太陽光エネルギーは電気回路のエネルギー伝送にどのような機能で関わり、負荷に太陽光エネルギーを供給することになると考えるのだろうか。『エネルギー』を基本に考えると、太陽光線も電気回路を伝送する電気エネルギーも負荷に供給されるものも、みんな同じ『エネルギー』でしかないのである。電子の『電荷』は理論的に『エネルギー』を持ち得ないのである。

過去の関連・関係記事 今迄に取上げた考察記事は半導体、電荷およびエネルギー論については次のようなものがある。

非力学的エネルギー(エネルギー論)

エネルギーの実在性 世界を構成する根源要素は何か?それを論じる学問は物理学の中でも、素粒子論の分野であろう。素粒子と言う用語感覚から、それは粒子的な意味の物を連想する。『質量』を基本的に含意したものに思える。それは力学的エネルギーに関係した、何か運動エネルギーを伴う現象で捉えられるように思える。『質量』に基づく運動力学論の対象として捉えられるものであろう。そこで不思議に思うのである。光は『質量』を持たないと考えられるから、素粒子論の対象には成らないのかと?即ち光は素粒子ではないと定義しているのか。光は世界を構成する根源的『エネルギー』である。『質量』を論理構成の基礎に据えた場合のエネルギー論は、そのエネルギーを力学的エネルギーと言って良いように思える。それに対して、もう一つの分類に入る『エネルギー』が非力学的エネルギーと分けて捉えて良かろう。世界の構成要素の根源はその非力学的エネルギーに託されているように考える。

エネルギーとは何か その『エネルギー』とは何かと多くの疑問と質問があるようだ。それは子供達に教育する側が、子供達が納得するだけの『エネルギー』の意味を噛み砕いて教えるだけの理解に達していないからではなかろうか。高等学校物理の解説で、『物が仕事をする能力』と定義らしい説明をしている。この『物』とはどのような物を指すのか。最近は余り『人』は仕事をすると言っても機械化されて肉体的重労働は無い。だから『物』は人ではない『質量』を持った『物』の意味であろう。ロケット打ち上げ時の燃料燃焼現象での『噴射反発力?』などか。実際、『エネルギー』について人によってその概念をどのように捉えているかを推し量るのさえ簡単ではない。とても曖昧なように思える。『エネルギー』は身の周りから、あらゆる自然世界に満ち溢れている。そのエネルギーを人は認識しているのだろうかと疑問に思う。何か理科教育での教育する側の『エネルギー』の認識に大きな原因が潜んでいるように思われてならない。

非力学的エネルギー こんな用語は使われてはいないだろう。だから検索に掛けても力学的エネルギーの解説しか出て来ない。非力学的と言う用語に込めた意味は文字の通り、運動力学の『質量』と『力』の関係に基づく方程式から求められる『エネルギー』即ち運動エネルギーと位置エネルギーの和とは異なる別の『エネルギー』を念頭に置いて考える為の用語である。代表的な例を挙げれば、光や電磁エネルギーあるいは津波エネルギーがその対象となろう。えェ!「津波エネルギー」が力学的でないと言うのか?と驚くだろう。それでは海洋を伝播する「津波エネルギー」をどのように運動方程式で表現しますか?海の海水と言う『質量』が運動する訳ではないでしょう。津波エネルギーの本質は確かに力学的なエネルギーなのであるが、物理学の教育的な内容として認識されていないのではなかろうか。この「津波エネルギー」をまとめに考察対象として取り上げたい。光や電磁エネルギーは明らかに力学的でないとすぐに理解できよう。『質量』の運動でない現象の例をエネルギーの速度に挙げた。兎に角非力学的エネルギーの意味がどんな意味かは力学的エネルギーの意味を明確にしておく必要があろう。それは、質量スカラーm[kg]、加速度ベクトルα[m/s^2^]そして力ベクトルf[N]の間に成り立つ運動方程式

f=mα

によって記述される『エネルギー』の解釈対象のものと言えよう。

物が仕事をする能力 『エネルギー』とは何か?の問いに対する解説として挙げられている。この記事を書きながら正しくこのように定義する物理教育の『エネルギー』に対する認識に問題があると気付いた。我々が生活するこの地球上の大気圧についてである。空気の気体に因って生命活動の基盤環境が整えられているのが大気圧である。1気圧の空間1㎥の保有する『エネルギー』は約101キロジュール程である。この1気圧の大気圧の意味を仕事をする能力とは考えないと思うが如何ですか?一応その空気も物ではある。しかし、その物が仕事と結び付くと考えるには深く哲学的な思考を要するように思う。地上の生命を育み守る仕事と言う意味で有ればそれは空気の仕事と考えても良かろう。物理学教育でこの大気の『エネルギー』を認識しない限りは「津波のエネルギー」の認識には届かないであろう。またこの空気も地球の自転運動から考えれば、地球とほぼ一緒に運動しているから運動エネルギーを持ってはいると見做されよう。人の日常生活に対してこの自転や公転に因る運動エネルギーは確かに仕事をする能力には入れて解釈することはないだろうが。

力学から非力学的エネルギーを観る 水力学の圧力水頭も力学的な概念である。海底1万メートルの空間保有エネルギーも力学的な意味の概念である。身の回りの空気の1気圧も水柱高さ10.33mの重さと釣り合う気圧にある。人の体もその気圧に因って押し潰されることなく、それと平衡して生命活動を営んでいる。物理学の力学と言うと、どうしてもある塊状の質量を対象にした運動論に限定した解釈に囚われているように思われる。何か余りにも世界認識の狭さが気掛かりなエネルギー論に思えて、それで良いのだろうかと疑問が膨らむ。空間エネルギーの一つの存在形態の評価基準『気体温度』も気体分子の質量の運動エネルギーで解釈する気体分子運動論が現代物理学の科学常識理論になっている。温度の解釈に気体分子運動論は感覚的に受け入れ難い。すべて力学的な『エネルギー』は質量に付帯し、その質量と共に移動する量と認識しているように思える。水圧のエネルギーは具体例で「津波」の伝播現象に現れる。水圧も水力学での力学的エネルギーでありながら、質量の運動エネルギーではない。『津波』も水と言う質量が速度を持つ訳ではないから運動力学の運動エネルギーではない。『津波』は水の持つ圧力エネルギーが水媒体空間を伝播する現象である。運動方程式に乗らない水力学のエネルギーである。『エネルギー』が独立した物理的実在なのである。非力学的エネルギーとは、質量の移動を伴わない光や電磁エネルギーあるいは熱エネルギーなどを指す。体温も非力学的エネルギーである熱エネルギーの評価量である。そこに、空間媒体の質量に関わりながら、その質量の運動や移動に伴う『運動エネルギー』や『位置エネルギー』とは異なる『エネルギー』を非力学的エネルギーに分類した。しかしその津波の『エネルギー』は本来は『力学的エネルギー』に分類されるべきものであるが、理科教育での重要な『エネルギー』として認識すべきと言う意味で、『非力学的エネルギー』として取り上げた。