タグ別アーカイブ: 光量子

光量子空間像(D線)

光量子と波の概念
現代物理学理論における光量子、光子はその基礎認識で、必ず振動数あるいは周波数に基づいている。物質から光が放射される時、そのエネルギーは連続的な周期性を持って放出される。単発で放射されることはなかろう。だから光量子の検出には周波数、振動数を伴うことになる。振動数を一粒の光が持ち得る訳は無いのだ。振動する一粒の光量子など無い。エネルギー放出時における一群の光がそれぞれの周期的な時間差で起こるだけである。どんな波も横に振れる波動性は本質的に持たないのである。水の水面波も、進行方向への縦のエネルギー流でしかないのである。表面の水面を見れば、確かに横の上下に波打つのが観察される。しかしそれを「横波」と解釈するのが誤りなのである。波は表面だけではなく、水中深く底まで伝達するのである。水底に向かう波をどのように解釈しようとも横に振れるものなどない筈である。みんな『エネルギー』の縦波なのである。シュレーディンガーの有名な波動方程式も横波が基本になっている。それは筆者には受け入れ難い方程式である。

式の意味
光量子の空間像を「空間エネルギー密度流」として次式で表した。

このエネルギーの縦波と言う空間像の意味を少し考えてみる。この光量子の一粒は1辺が光の波長λの立方体として捉えている。そのエネルギーの内部分布が波頭値H[J/㎥]の衝撃波状の指数関数形である。(1)式のHζの積のζは丁度1波長で値がゼロの繰り返しとなる為のものである。0≦ζ≦1である。しかしこの波形は正弦波でない為、周期関数形としての取り扱いが困難である。周期波形でありながら、数式での周期関数表現が出来ない。数学の関数がない。この光量子の式の表現する事の意味で、重要な1点は光に質量がなく、エネルギーそのものが光速度で伝播するということである。光と言うエネルギーは空間での極限の現れである。

式の具体的例題
実際に空間像の意味を捉えるには、具体例で考えるのが良かろう。ここで、ナトリュウムの演色反応で有名な色のD線を取上げて、(1)式のエネルギー空間像を計算してみよう。波長スペクトラムの5889.97 Åと5895.93Åがそれらしい。そこで、波長λ=5890[Å]を具体例に選ぶ。その光量子一粒のエネルギー量εDは

 

 

 

 

となる。このD線の波頭値は

 

となる。しかし、この値ではその大きさの意味が分からない。光量子の寸法で考えてみる。下にその寸法を図示した。進行する波頭で、厚み1Åの微小体積dvの波頭エネルギー密度を算定してみよう。

 

 

 

 

 

 

 

 

 

 

(4)式の体積dv内でのエネルギー密度波頭値Hは(5)式のように計算され、数値的にも納得できよう。そこで、この波頭値Hから、このD線の光量子エネルギーを求めれば、(6)式として算定される。その値は(2)式の結果と同じのは当然である。波頭値Hと自然対数の底e=2.718との比がエネルギー分布の平均値に等価であることになる。その平均値(H/e)の光量子体積倍が丁度光量子1粒のエネルギー量になる。

結び 光速度一定とはの記事を書きながら、光量子空間像を認識しなければ、光速度の意味が分からないだろうと、その参考にと古い記事光とは何か?-光量子像-の中の一部のファイルを取上げって載せた。なお(1)式の意味についてはその記事に示してある。

光量子一粒の形状を1辺が波長λの立方体として解釈している。この体積の取り方が妥当であるかどうかは断定できない。他の形状がより実際に合うかも知れず、その場合はそのように取ればよかろう。一つの空間エネルギー像としての描像を具体例で提示したものである。兎に角、ε=hνではその空間像を認識できないだろうから、これなら誰でも理解し易かろうという空間像を図に表現したものである。勿論自分が納得することを求めて導きだした解釈である。今までこのような具体像は無かったと思い、これが一つの物理学の求める易しさの道ではないかと思って。

 

 

エネルギー その見えざる正体

見えないもの 世界を光によって見ることが出来る。しかし、その光を見ることは出来ない。光がどんな形をしているかは分からない。その光の形を科学的に検証して確かめることも出来ない。しかし光は世界の実在的物理量で、空間に実在する。光は空間エネルギー分布波であると言っても、そのエネルギー波を検出をする測定法は無いだろう。何しろ1秒間に30万キロメートルの速度で通過する空間エネルギーの密度波であるから。そのエネルギーの分布状態を計る測定法が見つかれば夢の世界が広がるのだが。 見えるもの 見えないもの  にも見えないものについて述べた。その科学的に測定・検証できない電磁波の空間エネルギーについて述べようと思う。エネルギー程自然世界の根源を成しながら、その姿を見ることが出来ない不思議なものもないと思うから。大学教育に求められる「電気磁気学」 はその眼に見えない空間エネルギー波が光の本質であることを理解することを求めたものである。その見えざる正体を電磁波の中に観ることを論じたい。 眼で見えない物を心で観る夢としたい。 

電磁波はエネルギー波

図1.電磁波とエネルギー分布 正弦波の電磁波はマックスウエル電磁場方程式の解釈により、電界E と磁界Hの直交したベクトルの波動として表現される。その電界と磁界の偏微分形式で方程式に表現されている。しかし、電界や磁界が空間にあると考えるなら、その空間にはエネルギーがあると解釈される筈であるが、エネルギー分布についての解釈は電気磁気学の電波伝搬現象には見えないようだ。エネルギー波という解釈の記述について見た記憶がない。何故なんだろうか。電波伝播現象ではない静止電磁場については電界エネルギー「(1/2)εE^2^[J]」とか磁界エネルギー「(1/2)μH^2^[J]」とかの解釈がされているにも拘らずである。光速度伝播での電磁界については空間エネルギーという概念が消えてしまう人間の不思議な科学的習性を観なければならないのかと。そこで、今回はその光速度伝播の電磁界についても空間エネルギーが実在するのだということを伝える為に、その正弦電磁波のエネルギー分布を描いてエネルギーの実在性を解説しようと考えた。電磁波の本質は電界や磁界ではなく、エネルギー波なのである。それが光が空間エネルギーの縦波だという解釈に通じる事の要になるのである。図のように、正弦波の波長λとすれば、その半波長 λ/2 の繰り返し正弦波分布波となる。実はこのエネルギー密度分布波δ[J/㎥]の空間伝播現象を解説しようと考えたとき、このエネルギー波の表現法に困惑してしまった。そのことで、前の記事、瞬時電磁界と概念になった。エネルギー波が電気磁気学で取り上げられない訳の一つに、その空間表現が困難であるからかも知れないと考えるに至った。それが見えないものを観る困難かとも思う。しかし、エネルギー単位量子という捉え方で電磁波のエネルギー縦波伝播現象の解釈が欠かせないと考え、その意味を解説したい。

エネルギー単位量子

図2.エネルギー単位量子 ε=(λ/2)(δの平均値)[J]  見ることのできない空間エネルギー分布密度波を、空間に図形表現してみたのが図2.である。石や花のように眼で見ることが出来るものは空間に描ける。平面表現であっても絵にして伝えられる。しかし、空間に実在すると言っても眼に見えない、形の表現のしようがないものを示す事は困難である。質量に付加される運動エネルギーは質量体とその速度を併記すれば、理解できよう。しかし、質量のないエネルギーは目に見えないから形に示せない。これは『禪問答』の部類かもしれない。そこを何とかご容赦頂いて論じさせて頂く。空間を伝播する電磁波は正弦波波長の半分の長さの空間エネルギー密度波の繰り返し波形である。今仮に単位面積あたりを通過するエネルギー波を考えれば、単位面積1[㎡]で長さλ/2[m]の体積のエネルギーε[J]の光速度の縦波伝送として捉えられる。それをエネルギー単位量子と定義する。

見えざる正体

見えない空間エネルギーは光の視界を遮ることもないから、そこに在るとは見えないのだ。電気コイルの中や磁石の周りにエネルギーが在ってもそれは目に見えないのだ。地磁気のエネルギー流が在ってもそれは目に見えないのだ。見えざる正体それが空間に実在するエネルギーなのだ。世界を構成する基であるエネルギー・素原の光がその代表なのだ。その見えざる正体のエネルギーが理科教育に求められる本源だ。サーフィンが夏の海に運動力学の絵を描く。津波とサーフィンは同じ水力学の形を見せている。波のエネルギーとは何かと尋ねれば、振動数が何とやらの解説が検索に出て来る。エネルギーの実在性が見えない理科の解説は間違いである。

『課題』が残る。光の波長はこの「λ/2」を捉えて今まで論じてきた。正弦波波長と光の波長との関係を明確にしなければならない。

過去から今まで

32  『静電界は磁界を伴う』 -この実験事実に基づく電磁界の本質ー

1.まえがき 現代物理学の基本概念に電磁界概念がある。しかし、マックスウエル電磁場方程式には時間的に変動しない電磁界いわゆる静電磁界に対してエネルギー伝播の概念は含まれていない。この解釈から「電荷も電流も時間的に不変である限り電気と磁気とは別々の現象である。」(1)という当然ともいえる結論が得られる。しかし、マックスウエル電磁場方程式をエネルギー伝播という観点から考察したとき、筆者は「電界あるいは磁界のみが単独に存在するような場は有り得ない。」という結論に到達せざるを得ない。・・・

と書き出した、1987年(昭和62年)4月の解釈から少しも進歩していない同じ事を論じ続けているようだ。

プランク定数の概念

光とは何か 

光の物理的意味をどのように理解するか。光を振動数や電磁波の横波で論じていてはその本質を理解できない筈だ。光は粒子であり、波動であると言われる。確かに粒子のような性質で解釈できる現象を示し、また波動であると解釈できる現象をも示すであろう。その粒子性と波動性の両方を備えた光の空間像を空間エネルギー分布像 光とは何か?-光量子像-として提唱した。また、光の物理的特性はプランクの定数h[Js]によって決定的に特徴づけられる意味が分かっている。すべての光がプランク定数hによってそのエネルギーの評価が出来るという画期的発見に支えられて、光の特性を理解できると考えてよい。

光とプランク定数

光を述べる教科書には必ずプランク定数が登場する。プランク定数がどれ程重要であるかは、教科書をみれば良く分かる。ところが、物理学での光は振動数で解釈されている。光に振動する物理的実体など全く無いと考える筆者には、その振動数という意味が理解できない。改めて、振動数とは何を意味しているかをエネルギーの縦波との関係で解釈したい。合わせてプランク定数の物理的意味を光エネルギーの空間像との関係でもう一度示しておきたい。

光の空間エネルギー像

光は空間エネルギー分布波の縦波の連続波である。その事は実験で証明できない空間エネルギー密度波での解釈であれば、科学論として受け入れられないかもしれない。しかし、最初から光を振動数で解釈する物理学理論に疑問を持っていた。『エネルギー』に対する電気技術感覚からの違和感であった#脚注(1)。

光の物理的最小単位

光は空間を光速度で伝播する物理的実体である。空間内にある体積を占有する物理量実体である。その実体をどのように認識するかが問われていると考える。光を振動数で解釈するのであれば、光の何が振動しているかを明確に示さなければならない筈だ。筆者は光の実体として、振動数に変えて空間エネルギー分布の最小単位εの連続の縦波で解釈する考え方を提唱したい。

物理的最小単位

表現式ε=hνには空間的な意味を観えない。しかし波長λで表現すれば、空間寸法内のエネルギー量と観ることが出来よう。波長λに因るその光の最小エネルギー量を物理的最小単位εと解釈する。その光の最小単位が占める空間寸法をどのように解釈するかの問題は残るが、波長λに関係付けた体積と考えて良いだろう。このエネルギー量の ε[J]が波長λの空間長さ内に一塊りとしてある分布形を成す物理的実体と看做す。全く質量の無い空間エネルギーの実在体。このエネルギー感覚が物理学理論・概念には無いように思う。その認識が理解されるかの問題と思う。

波長について(2018/09/04)追記

今まで、光の波長λ[m]について無意識にエネルギー分布波の繰り返しの波長として取り扱って来た。その波長は標準的な正弦波の波長とは異なる。一般には正弦波の一サイクルを1波長と定義している。正弦波の一サイクルはエネルギー波で見れば二つのエネルギー波から成り、エネルギー波の2波長分となる。例えば正弦波50[Hz]の電圧波ではエネルギーの波100[Hz]となる。従って電磁波の周波数および波長に対して、エネルギー分布波の周波数は2倍、波長は二分の一の長さとなる。光の物理的実験の経験が無いから実際の光の波長観測の意味は分からない。この事から、振動数νと波長λについての意味もエネルギー波で全て評価して来たので、一般的な定義と異なることを指摘させて頂きたい。

光量子空間像と概念

光の正体で示した図である。(2018/09/03)追記。この光量子空間像の表現には波長とエネルギー分布波形で、波頭値の意味が分かり難い。波長との関係を次の図で示す。

波長とエネルギー分布模様

大よその波長比較として、赤、緑、青および紫外線を念頭に取上げてエネルギー分布模様を描いた。その光の先頭値である波頭値の比較を(波頭値比較)として図の左側に描いた。光の波長で、その作用の強さが異なる訳は周波数の高い程エネルギー分布の波頭値密度が高いからだと解釈する。その波形分布式を次に示す。

光の空間像 

光のエネルギー分布波形を時間を止めた瞬間でのエネルギー分布波形の一つの表現式である。この波頭値Hλ[J/㎥]が波長の4乗に反比例する場合の式である。この表現式はエネルギー分布が進行方向に均等分布平面波との一つの条件での式であり、条件で変わる筈である。光のエネルギー分布の軸性(光の偏光に関係すると考える)は考慮していない波形である。

  プランク定数の物理的概念

光の最小エネルギー単位εの空間寸法λは空間を通過する時間の周期τで置き換えられる。すべての光はその最小エネルギー単位εとその空間通過時間の周期τとの積が一定であるというプランク定数の物理的意味を持っている。特別目新しい内容は無いが、プランク定数の物理的意味は光の空間エネルギー分布形態で解釈する処にあると言えよう。

 

#脚注(1)

  • 金澤:物理学が問われていること 日本物理学会講演概要集 第55巻2号2分冊310頁(2000)
  • 金澤:プランク定数の次元と実在概念 同上 56-1-2、p.310. (2001)

光量子の波動関数形と作用

はじめに(過去と光量子像) 過去のファイルから光量子像を拾い出す。

光量子像 光は質量的な粒子ではない。横波の振動体ではない。曖昧な波動ではない。『エネルギー』の空間密度分布の光速度の縦波流である。

光量子と指数関数 雷様の光エネルギー放射現象の衝撃波形からの類推による導出波形関数が(1)式である。決して科学実験により証明は出来ない光量子像であろう。実験での証明が科学論の本質だと言われれば、この光量子像は科学論の範疇には入らないことになろう。自然現象に対する個人的『勘』に基づく提案でしかない。この式の導出過程などについては光とは何か?-光量子像ーに述べてある。

求められる人間像に程遠い未熟の人間のまま、科学常識から程遠い非常識の自然感覚から求める世界を彷徨う。見えない物を見たような嘘を言うと非難されるような光量子概念の提案をして来た。目で見えない物を見たとは言えない。しかし、心・感性で観ることもあろう。物理学理論のある時は「粒子性」でまた或る時は『波動性』で同じ現象を解釈し分ける。「粒子性」という場合の粒子とは質量の塊のような物を言うのか、そこに電荷という得体の知れない物を纏った電子のような粒子を念頭に描くのか、なかなか素人には理解できない。時には電子を雲のような捉えどころのない波動のようなものと言うようだ。そんな不明確な捉え方に満足出来ずに、2001年『プランク定数の次元と実在概念』を未熟な内容のまま発表した。その基には雷様の衝撃波形が自然現象波形のモデルとして意識に在った。電力設備の管理上雷の衝撃波は重要な研究対象でもあった。雷の衝撃電圧波形は急峻な立ち上り波頭の指数関数減衰波尾長の波形で認識している。決して正弦波には成らない。しかしその衝撃波表現法にも不満足である。指数関数表現式は時間が無限大に成っても決して現象がゼロには成らない式である。自然現象解釈式には指数減衰式が基本的に使われる。原子核分裂崩壊現象も半減期が幾らと言うように同じ指数減衰関数式で解釈される。プルトニュウムの半減期が何万年と言うような場合の解釈式なら問題にしなくて良かろう。普通の一般的自然現象では無限にゼロに成らない事はなかろう。そんな無限大に続く現象は自然界には無い。宇宙もすべて変転の中に在る。星座も消滅し、新たに産まれ来る天体の星座もある。光の一粒と言う空間エネルギーは波長と言う周期で必ずゼロに成らなければならない。その意味を指数関数式に含めた結果の式が(1)式である。

指数関数と波動関数形 エネルギーの縦波波としての光の表現。

波動関数形 変数xに対する波動関数形として③を選んだ。ただし、変数xの範囲は1≧x≧0で定義する。この変数については、光量子の(1)式では変数ζを使っている。それは無次元数で、波長λや周期τで正規化している。無次元の変数xで、③の場合にx^2^e^(x-1)などと高次とすると、関数波形はもっと急峻な形状となる。なお指数関数についての関連記事がある。指数関数の形と特性(2013/07/03)、指数関数の微分・積分(2015/02/10)および周期関数(科学技術と自然と数学) (2016/01/13) 等である。

光量子の作用性と波頭エネルギー密度H[J/m^3^] 光量子の波動関数形(指数関数)で光を認識すれば、光の一粒の波頭Hが光の作用性に大きく関係していると見做される。

波長λと波頭値H 光量子ε=hν=hc/λで、xに比例する。しかし作用性、波頭値のエネルギー密度で観れば、xの4乗に比例することに成る。光の波長が短くなれば、いわゆる振動数が高くなれば、その作用性は波頭値のエネルギー密度で効いてくると言う解釈ができる。なおここでは変数x=1/λで無次元ではないが、空間距離x/λのようにζは正規化した光量子表式(1)の無次元変数で解釈する。

まとめ 眼で見ることもできない、実験で証明することもできない科学認識は専門的には多分認められないだろう。しかし曖昧な粒子性と波動性の混合解釈論では、その論理は自然の眞髄では通らない話ではなかろうか。見ることが出来ない物には『電荷』も同じ事のように思う。雷が水蒸気の熱の放射現象だと言っても、専門的には、学説では理解されないかもしれない。雷は決して実在しない『電荷』などの現象ではない。上に一通り光量子の自己流(自分にとっては確信論)の解釈をまとめた。しかし大きな矛盾も抱えている。それは光の作用性で、波長の寸法が数千オングストロームで、原子、分子寸法との兼ね合いでの関係性が理解できていない。水素原子H2の放射スペクトラムと言う物理学の最初の解説で、1Åの寸法とその水素原子放射光の寸法の関係を論じることが出来れば良いのだが。追究しようと思うと、光の波長の意味が理解困難にもなるのだ。波長λに対してエネルギー分布空間の長さが波頭部分に集中している場合への解釈が残されてはいよう。

キログラムの定義改定とアボガドロ定数

科学理論の信憑性を問う。お願いしたい事がある。筆者がこれ程までに、自然科学の基礎理論に疑念を抱く様な世界標準の話にしないで欲しい。どうか筆者が抱く疑念を的確に誤りと論断して欲しい。誰もが知らない事として無視しているとしか思えない。只通り過ぎるを待つ世界のように思える。
日本物理学会誌 解説 キログラムの定義改定に向けた質量標準の開発動向 (Vol.69, No.9, 2014 p.604-p.612) を興味深く読み進んだ。数式が少なく、何とか読めるので期待した。専門的用語も始めてみて勉強になった。-Keyword-ワットバランス法やX線結晶密度法の意味する内容が何かも分かった。納得できた訳ではないが。読みながら、最初に壁に突き当たった事は、図3として説明されている意味である。その図の描き写しが下図である。シリコン結晶の単位胞

何しろ、干渉計にも触れた事が無く、X線回折法の原理も中々理解できない。そんな素人が上の図3を見て、シリコン結晶の単位胞を一辺aの立方体と読み取る。図の中のシリコン原子の数はとても8個には見えない。ワザワザこの図で説明するのに、どういう意味を込めたのかが分からない。全てのシリコンの結合手は4価とすれば、2価しか描かれていないものもあり、その辺も分かりにくい。何故8個のシリコンと成るのか。アボガドロ定数算定の基準数である8個の意味で壁に当たってしまった。(アボガドロ定数N=8M/(ρa^3^) の8である。)X線結晶密度法を検索した。産総研で測定したアボガドロ定数、物理定数を決定する国際機関で採用 にその意義が示されてある。この産総研の記事で質量標準の改定の意味も示されていよう。

学会誌の解説記事を読んで思う事 キログラムの再定義方法とワットバランス法およびX線結晶密度法のそれぞれの意味が解説されている。具体的な質量原器に代わる標準原子質量の改定の手法の比較で示されている。しかし、その中で、基準とする定数がとても多いと感じた。最初の疑問は、質量とエネルギーの関係で、E=mc^2=hνの周波数νで光子のエネルギーを認識する解釈が、エネルギーを光子の数量(無限数でもエネルギーは同じとの解釈?)に無関係で論じる論理について行けない。質量mが幾らでも良いと同じ意味になろう。1万個の光子も1個の光子も同じエネルギー量という量子論は技術感覚からは納得できない。次の疑問。質量定義には、アボガドロ定数とプランク定数のどちらかを不確かさの無い定数として定義してしまえば、・・という解説。プランク定数の空間的概念を捉える解釈を、光とは何か?-光量子像ーに示した。元もと、プランクが測定した実験の測定値の物理的意味が曖昧である。エネルギーの何を測定したかが不明である。計測法の基礎概念を明確に示さなければ、質量原器の算定も定義に危うさを残す。光そのものの振動数の意味をどのように解釈するかも問われる筈だ。光は振動等していない。エネルギーの縦波である。質量算定基準に、電子のモル質量、微細構造定数、リュードベリ定数などが必要という。更にアンペア、ケルビン及びモルの定義にも、電荷素量e、ボルツマン定数k、アボガドロ定数Nから算定されるように読めるが、そんな存在もしない電荷などで定義するとは信じ難い。現在も、アンペアの定義を平行導線間に働く力の計測で解釈している。導線内に電流等流れていない、電流は流れず

キログラムの新しい定義がもたらすものという解説 キログラム、アンペア、ケルビン、モルの基準がそれぞれプランク定数h、電荷素量e、ボルツマン定数k、アボガドロ定数N_Aに移行するとの事。ここで、電荷素量やアンペアの定義が平行導線間の力測定によると言う点で、全く未来性がない。物理定数でなく、専門業界定数としか見えない。アボガドロ定数とは何か にも疑問を呈したが、今回国際機関で採用された定数値は気体の高分子にも適用できるアボガドロ定数なのだろうか。電流の測定値の桁数との誤差論はどう修正するのだろうか?厳密性という意味が理解できない。

天眼鏡の屈折司令官

IMG_0653窓際で『天眼鏡(こんな呼び名があった)』を陽射しに置いた。太陽光は、そのエネルギーの強烈さを秘めている。オリンピックの採火も鏡で太陽のエネルギーを使う。陽射しの中に居れば、ポカポカと暖かい。その熱エネルギーは光が持っている。レンズを使えば、すぐに火起こしができる。平行光線の太陽光をレンズで屈折させて、焦点に集めれば木材は燃え上がる。理科や物理学で光を解釈すると、とても複雑な意味付けがされる。難しくなる。波長、振動数あるいは周波数などの言葉で説明されると、光の温かみも消えてしまう。

温かみの基は何だろう 物理学的、教科書的解釈には、日常生活で感じる感覚に応えて欲しい。温かみや温度の意味が説明できるだろうか。『エネルギー』とは何か?

屈折の司令官 レンズ、天眼鏡あるいはプリズムは光の性質を理解する大切な意味を示してくれる。『屈折』と言う現象である。光の進行方向が変化する現象である。光は基本的に曲がらず、直進する。この光の直進と言う意味一つをとっても、それは難しい意味を含んでいる。余談になるので避けたいが、光の進む空間と言う意味は惑わされ易いので、その進む空間の意味を明確に定義しておかなければ、論議が成り立たないのである。例えば、今真上の頭上に向かって、光を点滅させたとすれば、その光は頭上を真っ直ぐ進みはしないのである。地球は自転、公転しているから、光の進む空間に対して常に方向を変化させているからである。以上が余談である。ここで取り上げる光の話は、手元の狭い範囲の話であるので光の直線進行の意味は光の相対速度まで考える必要はない。屈折と光路

(2016/11/22)追記。上の図で、レンズ軸に平行な光線が焦点Fを通過すると言う解釈は間違いである。教科書の誤りを信じていた結果の間違いでした。間違いで済みませんでした。焦点距離がもしFの位置であれば、その位置にスクリーンを置けば、A点からの光はそのスクリーンの面の一点にすべて集中し、像がはっきりと映し出されることになる訳です。従って上の図は間違いであります。以上訂正させて頂きます。(2017/12/04)再追記。間違いと言うのはFと言う焦点の概念だけであり、観測対象の一点Aからの光とレンズの屈折現象の角度の説明は良く出来ていて、正しい。平行光線が焦点を通ると言う意味が無意味である。図では眼で観測する時どの位置でも殆どAの文字は見える事を表現した。どの光路からの光であるかはレンズと眼と対象の間の関係で決まるだけである。しかし眼でなくて衝立などやフイルムに像を写すとなれば、Aからの光の様々な光路を通る光がフイルムの或る一点に全て集まる事により、Aと言う文字の像が鮮明に写る事になる。そのフイルムの位置とレンズの間の距離を焦点距離と表現しているのだ。焦点距離は観測対象のレンズからの距離で変わるのである。だからレンズが幾らの焦点距離かという表現は意味がない。無限遠の太陽の写像の距離を焦点距離と言うように定義すれば、レンズ一つに一つの焦点が決まるから混乱は避けられるだろう。そのような定義にすれば、衝立、フイルムに写す写像の位置は写像距離となり、焦点距離とは異なる事になる。しかしカメラなどの実際の焦点距離が写像距離を意味しているから、レンズの無限遠の定義を使うのは困難ではある。しかし、レンズの焦点と言う概念が平行光線からの教科書の解釈である限り、レンズと光の関係は混乱し続ける問題である。

光の屈折は光が進む空間の媒質(空気、水あるいはプラスチックなどの進行空間の材質)の特性の違いで起きる境界面の現象である。上に示した図はレンズに観測対象のA点から光が入ると、そのレンズへの入射角が様々であるから、それぞれの入射光線で屈折の方向も変化する。従って、レンズから出る光の方向もばらばらの方向性を持っている。手元に天眼鏡があれば、物を見て欲しい。人の目とレンズからの像と言う意味には、余り焦点には関係ない事が分かる筈である。どんなに位置を変えても眼には物がほぼ良く見える筈だ。どの方向の光路を辿って来た光かは分からなくても、対象物はよく見える。ある一筋の光があれば、他の光路の光は無関係なのである。目での観測に、レンズの焦点など余り関係ないと言いたい。写真機、カメラでのレンズの組み合わせは、とても技術的にも工夫されていて、その場合の光の光路はもっと複雑ではある。それは写真の撮影画面の広さに全面で鮮明な像が写らなければならないからである。画面に他の対象点の光が混じれば、ボケの像になるから。フォカスの調整と言う事になる。さて屈折の司令官とは?屈折は媒質の境界面で起きる。光の進行方向が変わるのである。何故変わるのだろうか?この理由を説明するのが物理学の専門領域になるのだろう。ここで『問答』をしたい。物理学では、このような現象になると言う結論を説明しているが、その原因までの「何故か」と言う事には答えていない。ある程度詳しく媒質について明らかにされていよう。角度に関して、『スネルの屈折の法則』がある。屈折率が詳しく分かっているようだ。光の屈折で『色収差』と言うプリズムの光分散の問題がある。波長に関係ない屈折の問題に話題を絞るとしても、屈折の問題を預ける司令官の采配を論じるには、光の物理学的特性の振動数を採り上げざるを得ない。司令官と光の振動数の取り組みを論じたいのが主題ではある。レンズに入射する光が何故進行方向を曲げて、屈折しなければならないのだろうか。レンズの中に入れば光の進行方向は直進すると観る。媒質の変化する境界だけで変化する。その進行方向を変化させる仕組みを決める基準を司令官と名付けた。物理学では光は振動数で解釈される。光の一粒も光子というhν[J]と言う振動数ν[1/s]で解釈される。屈折はレンズ面への入射角を検知して、その到来の光路から進行方向を司令官が判断すると観よう。司令官は入射光の何を検知してその入射角を判断するのだろうか。司令官がもし、可視光線の振動数を判断基準にするとしたら、光の横に(物理学理論では、縦の振動数ではないと思う)振動すると言う何を検知して入射角を計量・判断するだろうか。次に、何を基準に屈折角度を決めるだろうか。そこには光の速度での時間的余裕は与えられず、瞬時性が求められる。瞬時性とは振動数を検知する余裕は与えられないと言う事である。光速度で入射する光の入射角度および屈折角度は何を持って瞬時に判断するだろうか。光の本質を振動数で捉えている限りは、この『問答』は成立しないと思う。光一粒のエネルギー分布で、その波頭値の入射瞬時ですべての方向性が決まると解釈しなければならない。光のエネルギーが暖かさそのものであり、その波頭値のエネルギー分布が光の特質を決める司令官の判断基準である。光とは何か?-光量子像ーがその意味を示している。この記事は前のレンズと光路の追加説明でもある。

隕石突入の衝撃波

隕石の衝撃波

2月15日ロシアに隕石が落ちた。自然現象としての驚きの衝撃を受けた。どこに落ちるか分からない、予測不能の宇宙の事件だ。なかでもその衝撃波のすごさに驚いた。自分なりに解釈しておきたくなった。強烈な摩擦熱の発光現象だ。熱の高温度発光・爆発現象だ。閃光を伴い、後に物凄い空気圧の衝撃波に襲われたようだ。建物が破壊される程の爆発力だ。

衝撃波 その本質をどう解釈するかだ。図にまとめてみた。空気が熱膨張して、その圧力波が衝撃波の基である。その強さは波頭のエネルギー密度の大きさ H[J m^-3^]で決まろう。しかも空気伝播のエネルギーの縦波の単一衝撃波である。空気を媒質とした熱膨張エネルギーの伝播であるから、音速の伝播速度なのであろう。熱による空気膨張だから、「ボイル・シャルルの法則」に従う現象である。ただ、圧力膨張エネルギーは空気を移動させる訳ではない。水の津波エネルギーと同じく、空気にそのエネルギーを乗せて、伝播放射させるのである。衝撃の強さは空気に乗ったエネルギーの波頭が障壁に衝突した時その破壊力を現わす。その破壊力を今回の隕石衝突映像で何度も見せて頂いた。建物に到達したとき、ガラスが微塵に砕け散る様子が見えた。その衝撃波に耐える障壁なら、その波は反射して、逆の方向にその障壁が新たな波動源として広がるであろう。硝子のような瞬間の圧力に弱い障壁は硝子の表面積に到来する圧力の積分で衝撃波頭密度が急激に上昇するから、一溜まりもなく粉砕されてしまう。その圧力上昇は空気の圧縮として襲う訳である。この現象を思うと、光が硝子に入射するときの『屈折現象』の事に思いが繋がる。波とは不思議なものである。一度方向が決まると、どこまでもその最初の方向性を保ちつづけて、エネルギー伝播を成し遂げる。ぶつかるまで方向性を変更しない縦波である。光と同じエネルギーの縦波と観る。衝撃波は基本的に単一波である。光で、『光子』あるいは『光量子』と言うが、その本質も単一波と解釈できる。光も横に振動する実体など何もない。光一粒と言う事も横波の振動概念を捨てなければ、その解釈の曖昧さは消えない。光とは何か?-光量子ーで一粒の光の姿を空間像に示した。波動の数式による解釈の科学的常識はシュレーディンガー波動方程式による解法のようである。それは波動が振動すると言う基本認識に立っている。だから、周波数や振動数の変数の導入が欠かせない。衝撃波のような単一波はその解析のルールには当てはまらない。コンピュータ波動分析で、周期性の無い衝撃波はどのように解析するかが興味ある疑問である。空間エネルギー分布像の認識が基本的に重要となる。エネルギーそのものの空間伝播現象の認識である。質量に付帯するエネルギーでない、エネルギーそのものの実在性の認識である。運動エネルギーや位置エネルギーでない概念である。質量に依存するエネルギーは質量と共に移動伝播する現象になってしまい、隕石突入の場合で、衝撃波のような質量(空気)の移動しない波動現象は運動方程式で解けないのではないか。理科教育で、『エネルギー』の実相を認識した改革が必要であろう。

熱輻射理論に関する考察

光とは何か?-光量子像ーで光量子一粒の空間エネルギー像を示した。今でもプランクの定数の意味を感覚的に捉えきれないでいる。その最も大きな疑問点は光の波長と原子寸法の関係である。可視光線が3800~7600Å(オングストローム)の波長であるのに対して、原子構造のおおよその寸法が数Åでしかない。どうしてもプランク定数が光を考えるに不可解な数に思える。

写真593

写真594

 

上に示したファイルは、古い考察の紙片である。プランクの輻射理論に対する疑念を表明した原点でもある。ファイルの式(1)と(2)は物理学古典論文叢書1 『熱輻射と量子』 東海大学出版会、1991年第7版 p.239. のM.Planck の式を書き表した。式の意味を解釈するとき、その次元を理解しなければならない。しかし、その式(1)と(2)の次元は技術的に測定不可能と判断せざるを得ない。対象が『黒体』と言う坩堝のような発熱構造体に関する光分布スペクトラムの測定と言う事になっているようだが、どのように式の示す次元の物理量を測定するのだろうか。測定の仕組みが納得出来ない。(3)と(4)式は光一粒の空間像を自分なりに解釈した表式である。プランクの定数はそのまま使っているが、数値や意味に納得している訳ではない。このような現代物理学体系に対する根源的な批判は科学者理論には許されない事かも知れない。しかし測定をどのようにするかを確認する事が最初にする科学的論理であろう。この記事は単純な電灯の配光曲線を考えながらの寄り道である。

プランクの輻射式の解剖 折角なのでここでプランクの式を簡略化した結果を示す。

プランク輻射式の解剖

 

写真596

この表式は温度による変化を一本のグラフで表現できる簡略性がある。上に示した特性のグラフがそれを表す。絶対温度1000Kであるが、温度が変化してもグラフの形状は変化しない。ただ、最大強度の波長λmの値が温度に因り変わるだけである。1000Kでは、可視光線が含まれない結果になる。この事は、ヴィーンの変位則をプランクの式に統合した結果であるから、ヴィーンの変位則に問題が有る為の結果と見られよう。その点の考察はしていない。また、プランクの式でよく論点に挙げられる指数部のー1の意味など不要である。この資料は既に公開済みのものである。

ヴィーンの変位則の考察 式は λmT=2.9×10^-3^ [mK] である。例えば、可視光線の中心波長  λm=5550Åとすれば、その時の絶対温度 T は5225Kとなる。余りにも実情と違い過ぎるのではなかろうか。

低温光源 発光源が高温度に因る現象が上の場合である。しかし、ネオンサイン、蛍光灯およびLEDと熱源発光現象でない物になっている。LEDの放射法則の公式を編み出してこそと思う。

自然は『光と舞台空間』

自然はとても大きな意味を含んでいる。宇宙の果てから、ウイルスの生命まで広大な具象の世界である。それを理解するのに数式で捉えきれない事は分かっている。

空間定数のベクトル評価 ここに示すファイルは日本物理学会第64回年次大会(2009)で作成し、事情により発表出来なかった資料の一部である。講演概要集第64巻で、標題:プリズムと光量子の分散(p.405) およびエネルギーが質量の素(p.20)の2つに関する物(勘違いのようですみません。2006年第61回の光量子エネルギーのベクトル解析と力密度 f=rot(S/v)とベクトル算法の関連資料でした。ベクトル算法で気付きました) 。上の①図は空間定数が電磁エネルギーに対してどのような意味を持つと解釈するかを示したものである。クーロンの法則を斬るの冒頭で論じたマックスウエルの電磁場方程式が無用の長物だと論じた意味も上の図の中に在る。資料4枚程で説明しようと思う。先に投稿様式が間違っていて、再投稿になる。

兎角自然科学は、狭い専門領域に細分化され、特殊な専門業界にしか通用しない様式での解釈の狭量意識に囚われ過ぎてしまった。それが現代科学の姿に見える。誤解されそうだが、私が主に論じる対象分野はすべての自然科学の論拠となる基礎概念に関するものである事をお断りしておかなければならない。それは理科教育の教科書の内容に関する物になろう。応用科学は凄まじい勢いで、進展し続けている。例えば、医学生理学や情報関連技術の研究対象は私が論じる批判対象ではない。あらゆる自然科学の根底として、理科教育で対象とする内容について論じている。ただ、それが「素粒子論」になると、最先端の研究内容そのものが批判の対象になるのである。大学が『電荷とは何か?』『光の振動数とは何か?』に真剣に答えようとしないからである。

自然科学は日常生活の場面で、市民が理解できる『言葉』で解説できなければ、その専門性は疑わしいと考える。そんな意味から、自然世界を解釈する基本的視点を示したかった。宇宙の果てから、ホタルイカの世界まで光が満ちている。光が直進すると言う意味一つを考えたとき、放たれた光はどこに旅立ち、どこに収まるか。その光一粒は世界の実在物理量である。決して消滅してしまう訳ではない。何処かで何かに代わるだけで、新たな世界の一部として変換されてゆくだけである。『万物は輪廻転生』の世界であると言う東洋的解釈が有る。世界を大まかに捉えるには、光を介して広大な宇宙を舞台とした輪廻転生の姿としてとらえる視点が欲しい。前の記事、空間が世界を創造するで、世界とは?空間とは?その素原『エネルギー』とは?等とその極限物理量光との関係を考えて見ようとした。ここでは、全ての世界の根源は『光』一つのエネルギーの極限的実在物理量で構成されていると言う基本認識で論じている。光が素粒子である。光量子エネルギー分布 上の①図のエネルギー空間分布δq(r,t)は光を取り上げれば、②図の光一粒の解釈量である。このエネルギー空間分布式については、光とは何か?-光量子像ーにその意味を解説した。そちらをご覧いただきたい。

その光を光量子エネルギーと観たとき、そのエネルギーの速度は『光速度』と言う空間の特性によって決められる値になると見る。その速度が空間定数値で決まる意味を③図に表した。光速度ベクトル③図のベクトル計算で、単位ベクトルの取り扱い方が普通の数学と異なるかも知れない。(自己流解釈?それは、ベクトルの逆数を、分数をどのように解釈するかの数学的規定が無いので、自分なりの規定に基づいたためであろう。数学での「ベクトル計算」は具体的目の前の『空間』を考えるより、抽象的なベクトル概念での解釈になっているように思う。例えば微分演算子rot x などでも、ベクトルxを空間の長さで微分する訳であるが、空間の長さをベクトル量と意識して計算しているだろうか。長さは、その対象空間の方向性を加味した長さ(ベクトル量)として捉えないと抽象的で、曖昧な空間論になり易い。ベクトルでの割り算の問題と思う。)

光を含めた電磁エネルギーが空間を伝播するとき、そのエネルギーには空間的軸性と直交性の二つの特性が存在すると見られる。上に述べた事を空間上に表現してみれば④図のようにまとめても良かろう。エネルギーのベクトル性以上がエネルギーの舞台空間での振る舞いに関する大まかな捉え方の解釈です。

雷の正体

正体と言う言葉の意味は、「表面的に捉えにくい隠れたその現象の本質」と言う位に解釈している。雷の本質は電荷に基づくとの解釈が専門家や電力技術者の間での科学常識である。ここでは、その常識に反論する事を記すのが目的である。雷は電荷には関係ない。この雷は『電荷』には・・の意味に戸惑う方は、『電荷』と言う虚像を後でご覧ください。『電荷』は実在しないと言う意味。単に『エネルギー』に因る現象と捉える論説である。 上の絵図のように、雷とは光の稲妻と言えよう。先ず雷の特徴を拾い出してみた。雷とは必ず雲の存在が基に成っている。科学論で、雲が発生すると何故『電荷』が関わると解釈するかと言えば、それは「稲妻」の放電と言う用語の解釈が基になるからであろう。稲妻放電は何も電気の放電現象でなくても、火花の光放射が電気現象での、放電のフラッシュオーバーと全く同じものであるからであろう。電気現象を二つほど拾い上げておこう。火花の光放射の様子は雷の現象と同じものである。電気工学が『電荷』の現象と捉えている訳だから、雷が電荷の現象と解釈するのは当然である。しかし、雷の特徴を考えたとき、なんで電荷によると考えるかを改めて見直さなければと思う。そこで、『問答』形式で考えてみよう。その前に、雷に関する過去の記事を挙げておこう。電気現象と捉える「高電圧工学」の衝撃電圧波発生回路と波形の微分方程式解法の論理的矛盾を論じた。雷と指数関数 もう一つは光と質量に関する論である。雷と不立文字 『問』 ①雲が必ず必要である。の訳は?『答』 雲の発生と気象変化。空気中の水蒸気と上空の冷気との出会いが雲をつくる。雲は空気中の水蒸気を水にする現象である。水蒸気は水分子が熱エネルギーにより体積膨張した気体である。上空の冷気で体積が収縮し熱エネルギーを上空に放出する。水蒸気の体積収縮が上空の低気圧を生み、地表面からの高圧・高温空気の上昇気流を生み、地表の周辺に対する低気圧状態になる。水分子におけるボイルシャルルの法則の自然現象の具体例である。同じ意味の繰り返しですが、雲の発生空間領域は、地上からの水蒸気含有空気の連続補給を要請する。供給水蒸気の保有熱エネルギーは、水の中に留まる事は出来ず、放出せざるを得ない。どこに放出するか。雲海近傍の空間に放出せざるを得ない。雲の発生空間がそのエネルギー放出領域となる。大気中の水蒸気について、参考に水蒸気密度の式ー大気中ーを見て頂ければ。 『問』 ②雲の下端が、雷の発生起点となる訳は? 『答』 上の解釈から、その下端近傍がエネルギー放出領域である事からの道理となろう。 『問』 ③、④エネルギー発光空間と放射光。の訳は? 右に稲妻の放射発光源の一部を取りだして、その意味を考えてみよう。フラッシュオーバーと言う発光現象は屈曲した筋状の光放射軌跡を描く。我々がその光の筋を観察すると言う事は、光が我々の目に放射されて、届くから見えるのである。稲妻は光を全方位に向けて、光エネルギーを放射しているのである。こんな稲妻と放射光の絵図で取り上げたかった事は、(何が光になったか)という物理的意味を考えたかったからである。 何が光になったか 光は日常生活で、世界を認識する基本物理量である。科学論では、光子、光量子等の用語で捉える光一粒との観方が基本になっている。その光について、『光一粒は何が変化して生まれたか』を説明できなければ、科学論として完全とは言えまい。『電荷』論に因る限り、おそらく説明は出来なかろう。結局『光』とは何かが明確に認識できなければ答を得る事は出来ない。『振動数あるいは周波数』で光を認識することは実験的な観測、測定の手法としてそれ以外の方法が無いから、止むを得ないのである。実験的に共通理解の判断を求められる事から、止むを得ない物理量概念が「振動数」である。しかし、その科学解釈論の依存概念である「振動数」は光一粒には無い。物質、原子あるいは分子から光が放射される時、その状況は光一粒ずつを単独に放射する訳でなく、エネルギーの放射形態が近傍での協調性を保ちながら全体で周期性を持って放出するから、次々と光一粒の連続的な放射が繰り返される、その状況を観測することになる。だから実験に因る計測上で「周波数、振動数」として捉えられるだけである。「振動数」が科学論の基本概念として重要であると言うのは、それは科学的な実験上の単なる「便宜的認識手法概念」でしかないと見做さざるを得ない。以上の光の基本解釈の上で、光は何から変化したのか?を問うのである。光の速度を考えれば、その光一粒の空間的実像を観測し、把握するなど無理である。計測器はそんな光の実像を捉えられないのである。せいぜい「振動数」と言う繰り返しの波としてしか観測できない。基本的認識で、自然界は極めて単純であり、単純さ故に複雑な様相に変幻自在な姿を生みだす。という観方(私はこの用語を目で見るのでなく、自分の勘・感性・心と共鳴すると言う意味で使う)に従う。光は『エネルギー』そのものの究極の姿である。何も他の物から変化するのでなく、エネルギーそのものの一つの自然界の巡り来る姿である。雷の本質がエネルギーである事から何も不思議な事ではないのである。実験的に観測は出来ないが、「振動数」から解放された『光一粒』の実像認識を示した。光とは何か?-光量子像― 。「振動数」を実際に測定する方法がある訳ではなかろう。計測上の実験的手法・解釈法での便法でしか無かろう(2013/08/19)追記。 稲妻の光の軌跡が何故細いのかについて考えたい。(2013/08/19)現在のところ、未だ答えが得られていない。ただ『電荷』で解釈することには無理がある。空間を『電荷』がどのように移動して、プラスとマイナスの『電荷』間でどのような物理現象により、光発光現象へのエネルギー変換が可能なのかの説明が出来ないから。『電荷』中和現象なのか、それ以外の『電荷』間の変換現象なのかの解釈が出来ないから。『光』変換後の『電荷』はどこに行くのか。素粒子論の論理性を尋ねる『問答』である。