タグ別アーカイブ: 光速度

光エネルギーと速度と時空

光の速度は何故決まる?

光は空間のエネルギー分布密度波の縦波である。その速度が何故、秒速30万キロメートルなのか?それも『疑問』の宝物。空間には空間定数という真空透磁率と真空誘電率の二つが定義されている。

単位系・JHFM自然系 も光と空間定数の関係から導き出したものである。光速度 c[m/s] は

c=1/(μo εo)^1/2^ [m/s]

と真空透磁率μo[H/m]と真空誘電率εo[F/m]の空間定数との関係で捉えられる。そこに時間の次元秒[s]とヘンリー[H]とファラッド[F]の関係が生まれる。[(HF)^1/2^] = [s] と関係付けられる。その訳が理解できた。

人はモノの速度を目で追うことで感覚的に理解する。それが視覚感覚の機能でもあるのだろう。同じ現象でも、1[m] を通過する時間何[s]という捉え方はしない。しない訳ではない。100mの競争で10秒切るかどうかが注目される。それでも1mの距離の通過時間を気にかけることは普段はない。

エネルギーの伝播実験 光速度を超える信号伝送手段はないから、伝送速度を計ることは困難なため無理ではあるが。(次の実験で、電源スイッチを投入した時刻を負荷端で瞬時に知ることは無理であるから。)

エネルギー伝播 電気回路のエネルギー伝播現象を考えてみよう。電気回路の伝送路は基本的にインダクタンスと静電容量の分布定数回路になっている。その様子を図に示した。実際には2本の電線が張ってあるだけで、外見的にはそこにインダクタンスやコンデンサがつながっている訳ではない。図では単位長さ当たりL[H/m](一区間に上下二つのLが有るが、等価的には一つのLと考えてほしい)とC[F/m]の分布定数回路となっている。実験的にエネルギー伝送現象を確認するには、実際にある値の LやCを変化させた分布回路として、原理的には可能であろう。負荷終端には電線路の特性インピーダンスと等価な抵抗負荷とする。負荷で到来波のエネルギーを消費し、反射波を防ぐための条件である。電源は十分大きなエネルギー量を貯蔵したコンデンサとする。スイッチSをオンする。瞬時にエネルギーは伝送路に流れ込む。そのエネルギー波が負荷に到達する、その波形を電圧vで観測する。恐らくその波形は雷の衝撃波形に似たものになろう。負荷端のエネルギーは電圧vの2乗で波形を理解できる。その電源からのエネルギー伝送現象は回路定数を大きくすれば、エネルギー伝送時間は長くかかる。定数が小さければ伝送速度は速くなる。その意味は誰もが理解できよう。電線路の静電容量やインダクタンスが大きければ、エネルギーが静電容量に貯蔵される余裕が大きく、インダクタンスが大きければ、そこを通過するのを阻止する反発が強くなる。だから分布定数が大きい程エネルギーの伝送に長い時間がかかることになる。即ち回路定数によって、エネルギーの伝播速度、光エネルギーの速度が変化する訳である。この辺の現象は電力系統の管理技術者には当たり前の感覚的認識になっていることであろう。電気エネルギーはエネルギーの空間分布波としてみれば、光のエネルギー分布波と同じ訳で、光の真空空間の伝播速度即ち光速度がその空間定数で決まるのが当たり前と理解できよう。空間の長さ1m当たりの静電容量とインダクタンスがその空間を通過する光エネルギーの「時間」を規定する訳である。だから、JHFM自然単位系で、時間の秒[s]が空間定数の[√(HF)]になる訳である。ここには速度という見方と逆の、1mを通過する時間は幾らかという [s/m]の見方になっている。それも速度と意味は同じである。

不思議の極み 空間定数の「真空透磁率」を誰が何時決めたかが分からない。μo=4π×10^-7^ [H/m] はあらゆる計量単位の基準として定められた筈だ。誠に不思議な数値である。4πは球の全立体角 ステラジアン [㏛]と解釈する。すべての実用計量単位MKSAがこの空間定数の真空透磁率μo[H/m] が基準になった事によって決まる。そこに選ばれた単位が電気回路のコイルが持つ電気的空間構造の特性機能の評価量を表す意味のインダクタンスの単位ヘンリー[H]である。この定数を決めた時点で、真空空間が持つ空間のエネルギーに対する誘導性という物理的定数だという認識の下で決めたのだろうか。空間が誘導性のインダクタンスの機能を備えていると認識して確定したのだろうか。この基準を決めたことに因って、空間にはもう一つの真空誘電率εoという定数が確定されたと考える。その単位もやはり電気回路の静電容量という機能要素の物理的評価量の単位ファラッド[F] で示される。それがεo[F/m] である。この意味もまことに不思議な単位である。決めた時点で、空間が電気回路の静電容量の次元を持っていると認識して決定したのだろうか。それなら誠にその確定については慧眼の至りと驚かざるを得ない。しかし、それらの空間定数が何処で、どのような機関又は人に決められたかが分からない。しかしその空間定数があった事のお陰で、現在幸運であったと確信して使っている、自然単位系JHFMを闇の中で、1990年春に見つけた。

その夏7月に何の説明もなしに、大学職員が大勢で我が家に御出でになられて、玄関で白紙に拇印を押させてお帰りになられた。後でそれは筆者に対する分限免職の承認と見做す捺印のようだった。その拇印も誠に不鮮明であったようで、後には他の機会の、たぶん庶務課での茶碗から採取の鮮明なものに変わっていたようだ。誠に国家公務員の人事行政の意味も知らない筆者の無知のために、多くの皆さまに御迷惑をお掛けし、それが原因で招いた当時の過ぎてしまいましたが、失礼をお詫びいたします。と言っても今でも全く理解不可のまま、無知の上塗りでぼーっと日々が過ぎ、流され続けております。

真空誘電率 εo=(1/36π)×10^-9^[F/m] とこれまた誠に気持ち良い数値である。そこに自然空間における光のエネルギーの伝播速度が決め手となっていることが、これまた自然の美を意識せざるを得ない。

光速度をc[m/s]とすれば、

c^2^μoεo=1

である。不思議は美しさでもあるのか。

電圧・電流とエネルギーと時空

今、電気回路のエネルギー問答 を書き始めた。その途中で、一つまとめておきたいと思った。その問答の中の一つの答えでもある。物理学理論では、エネルギーは主役ではなく、何か端役あるいは誘導量という捉え方で理解されているように思う。しかし、電気技術から見た場合、電気回路現象を考えると回路内を伝播するのは光と同じエネルギーしか見えない。それでは電圧とか電流という電気量は何を表現したものかと、そこに戻ってしまう。また物理学理論では、あまり重要視されていない空間概念がある。それが誘電率と透磁率である。世界を支配している物理量の代表が光エネルギーであるとの認識に立った時、その光速度を規定する原因がその伝播する空間特性にあると考えざるを得ない。

光速度=(透磁率×誘電率)^-1/2^ =  1/√(με) [m/s]

ただし、μ[H/m] 、ε[F/m] から、[(HF)^1/2^]=[s] である。

空間の誘電率は空間長1m当たりの静電容量[F]、空間の透磁率は空間長1m当たりの誘導値(インダクタンス)[H] で、その空間を伝播する光エネルギーの空間共鳴現象としての伝播特性を呈すると解釈する。光を世界基準の物理量と見做した時、その伝播する空間の長さと時間を規定する「時空」概念として時間[s]と長さ[m]の時空基準を光エネルギーと速度が決めていると見做せる。この何もない空間が電気回路のインダクタンスやコンデンサの回路定数の単位ヘンリー[H] やファラッド[F] との関係で解釈できることの中には、そこに物理量『エネルギー』という空間伝播実体である光の『エネルギー』が空間分布として存在するからと理解する必要がある。光には振動する実体はないのだ。観測技術としての評価概念が振動数である。

上の解釈で電気量を解釈したとき、

電圧の2乗、電流の2乗と次元

その2乗値の単位はエネルギー[J] との関係で図のように認識できる。

次の問答の記事の答えともなるが、電線路には回路特性として単位長さ当たりの静電容量と誘導インダクタンスを備えている。その電線路単位長当たりの静電容量をε[F/m]とすれば、その電線路には1m当たり εv^2^[J/m] のエネルギーが線路空間に存在するとなる(係数1/2は省いた)。このように考えた元に、例えば電流を取り上げて考えた時、アンペアの単位が[C/s]と言う電荷の時間微分値であるということである。電線路の電荷の時間微分とはどんな意味か分かりますか。電流計で測る点で、その電線内の電荷がどんな意味と捉えるのですか。電流波形で描く時間軸のある時刻の電流値とはその電線の中に電荷が時間的にどのように存在し、変化していると考えたら、その電流の意味を納得して理解できるのか?その辺の電流概念への疑問から、どう考えても電流概念棄却の結論にならざるを得なかった過去がある。1987年8月に決断した研究会資料:電気学会、電磁界理論研究会資料 EMT-87-106 である。その5.むすび に・・・電磁気学の基本概念である電荷や電流までも疑い、棄却さえしなければならなくなってしまった。云々と記した。

次に電流 i^2^[J/H] は線路定数の誘導量インダクタンス[H]との関係で、流れるエネルギー量に関係した捉え方ができないかと考えたが、今のところ答えに到達していない。(2019/08/19)追記。電線路にはその単位長さ当たりのインダクタンスという流れを制限する回路要素がある。μ[H/m]の分布定数があるとすれば、電線路の単位長さ当たりμi^2^[J/m]の流れる伝送エネルギーが分布していると考えることはできる。同じく負荷のインダクタンスL[H]とは当然の関係で、Li^2^[J] の貯蔵エネルギーとなる(1/2は省く)。

負荷抵抗R[Ω]の次元も[(H/F)^1/2^]である。抵抗も空間特性は誘電容量と誘導容量の意味を持っているものと見做せる。この見方をとれば、i^2^Rの単位は[J/H][(H/F)^2]=[J/(HF)^2]=[J/s]=[W]という意味で納得できよう。

JHFM単位系 1990年(平成2年)春にまとめた単位系である。マイケルソン・モーレーの実験とマックスウエル電磁場方程式の関係から得られた。色々あって、1998年4月2日に初めて日本物理学会で発表させて頂いた。物理的概念とその次元 日本物理学会講演概要集 第53巻、1号、1分冊、p.13.  関係記事 エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18) 。

まとめ 電圧及び電流という電気量はその根底には深い知恵が潜んでいる。その科学技術量を理解するには、自然との間の深いつながりを紐解かなければならないだろう。その辺に考えるということの意味があるのだろう。単に法則や原理ということで、それを鵜呑みにしていては本当の自然の深い意味を知ることはできなかろう。電圧と電流もその2乗に意味があるのであって、その平方を電気量の概念として実用化しているのだった。電圧、電流はその測定器があるということとの関係で、如何に優れた量であるかということになる。しかし負の電荷の電子が電線の中を流れているという解釈は誤っている。

電気物理(電圧時間積分とエネルギー)

はじめに
物理学の中で電気現象を取り扱う科目は電気磁気学になろう。その電気磁気学の中味を確認すると、電気工学の内容と殆ど変りはない。電圧と電流がその電気回路現象の解釈の基本概念となっている。微視的な現象を論じる量子力学などは原子・分子構造やバンド理論の抽象的な理論が主体となって、少し電気磁気学と言う分野からはかけ離れてもいる。しかし、電界・磁界と言う電磁場とその中の電子の振る舞いと言う意味で見れば、電気科学技術の基本理論がそのまま基礎概念として電気物理の基本になっているように思える。専門用語には、簡単に理解できないものが多くある。π電子等と言われると、電子の『電荷』の実像さえ理解できない処に、πとは何じゃ?と狐に抓まれた気分になる。磁界と言えば『磁束』で解釈される。磁場空間に磁束が通っていると言う科学の常識概念も、教育の場ではアンペアの法則に因る電流概念との関係で理論構築されている。電流原器の定義からもアンペアの法則が電気現象の物理的真理であるかの如く威厳をもって説かれる。一方ファラディーの法則も電磁誘導現象の解釈の基本を成している。電圧と磁束と時間の関係で電気現象の理解に欠かせない法則となっている。一般に電線路周辺空間にも磁場があり、その空間にも磁束が関係していると看做すであろう。磁束はアンペアの法則の電流によって発生すると解釈すべきか、あるいはファラディーの法則に因る『電圧時間積分』で発生すると解釈するべきなのか悩ましい意味を含んでいる。『磁束』と言う空間に実在するとは理解仕兼ねる概念が、科学技術の解釈に有用なものとして長く理科教育によって基礎共通科学常識となっている。『電荷』と同じく『磁束』と言う物理概念が如何なる空間的実在性を持っているかを明確に示す事が電気物理の命題であると考える。具体像として認識できない抽象性ではこれからの科学の社会的理解が得られないと危惧せざるを得ない。電気物理はそれらの基礎概念を明確にする事から取り組まなければならない筈だ。今回は拙い電気回路現象の知り得る範囲から、電圧時間積分と言う電気工学の考え方で、『磁束』と言う意味を取上げて電気コイル周りのエネルギーを考えてみたい。電気技術ではリアクトルと言い、理論ではコイルと言う電気エネルギーの空間貯蔵回路要素の話になる。電圧時間積分と言う技術用語を初めて知ったのが、ロイヤーインバーターの不思議な電気回路現象であった。それ以降磁束はアンペアと言う電流では捉えるべきでないと確信してしまった。もう50年も前のことである。現在はその延長として『電流は流れず』と言うところに居る。とても金属導体中を流れる『負の電荷』の逆流等と言う物理概念が電流だなどと言ってすまし込んでいる訳にはいかないのだ。この記事を書く意味は、理学と言う理論に偏り過ぎた意味を科学技術と言う現実的な応用の中に隠れた真実を見直す事によって理解して欲しいとの願いからであった。教育の中に間違った真理らしき内容が多く含まれている現実を修正しなければならないと思った。ロイヤーインバーターで洗濯機用の単相誘導電動機を運転した頃の『電圧時間積分』の意味を磁束との関係で取上げようと準備しながら、その前にコイルの基本的意味を別に解説したいと考えてのことである。理学と技術の意味を考える例題として有用と思ったから。

コイルと電圧時間積分

 電気回路にコイルが含まれると、そのコイルはエネルギーを貯蔵する働きでその機能を特徴付けて解釈される。このような電気現象のエネルギーに因る捉え方が電気物理として特に考慮して欲しい点だ。コイルの中の空間にエネルギーが実在すると言う感覚的認識が必要なのだ。二分の一にインダクタンスと電流の2乗の積の式で覚える数学的な電気知識でなく、コイルの電気導体で囲まれた空間内にある『エネルギー』の空間物理量を認識して欲しい。コイルに掛る電圧とは何か?その電圧がエネルギーとどのような関係にあるかをこの記事を書きながら、考えてみたい。ただ電圧と電流で回路を解析するだけでは、それは電気技術論でしかなく、電気物理と言う自然現象の奥深さを知る自然観には程遠いと言う意味を理解して欲しい。電圧も電流も電気技術解釈用の技術概念でしかないと言うことを。然し、その電圧、電流と言う科学技術概念が如何に実用性で優れたものであるかを知る為にも、電気回路現象の真の姿を理解して初めて可能になることを知らなければならない。電線路で囲まれた空間に磁界とか、電界とか理論付をする意味を考えれば、その空間に何かがあるからそのように捉えるのだと言う意味位は察知出来よう。電線路導体で囲まれた空間に『エネルギー』が存在し、また流れているからなのである。その『エネルギー』は光速度と言う途轍もない速度で空間のエネルギー分布の欠損が生じれば補う。実験的にそのエネルギーの流れを計測など出来る筈もない。その『エネルギー』を科学技術概念の電圧と電流と言う計測量で捉えて、実用的理論に構築した意味が如何に偉大であるかを知らなければならない。しかし電線の金属導体内を電子や電荷が流れている訳ではない事は自然現象の真理として理解することと科学技術概念の意味とは異なることも知らなければならない。電圧時間積分についてコイルの端子電圧vとした時、積分 ∫vdt [Wb] は磁束の意味になる。ファラディーの法則の積分形である。このコイルに印加される電圧の時間の長さが何故磁束になるのか。コイルに掛る電圧とはどんな物理的意味を持っているのか。それらの疑問を解くには、すべてエネルギーとの関係で明らかにしなければならない問題だ。しかし、磁束もその次元は[(HJ)^1/2^](単位換算表を下に示す。)、電圧の次元も[(J/F)^1/2^]とエネルギーの単位ジュール[J]とは異なる。電気技術単位もエネルギーのある観方の解釈概念で有れば、最終的にはエネルギーとの関係を明らかにして、理解する必要があろう。その事をコイルのエネルギー貯蔵機能と言う点に的を絞って考えたい。ここで、別に電気物理(コイルの電圧)として先に纏めて置くことにした。追記。前に記した記事:LとCと空間エネルギー (2017/08/02) も参考になろう。

考察回路2例 電源は直流電圧とする。抵抗とインダクタンスの並列回路、回路(1)と直列回路、回路(2)の二つの回路例を取上げて、そのコイルLの動作機能を考えてみよう。電源電圧を直流としたのは交流電圧よりも電圧値が一定であることから、電気現象の意味を理解し易いだろうとの事で選んだ。コイルに直流電圧を掛けることは一般的には考えられない事例であろう。回路例(1)ではもろにコイルに直流電圧を掛けることになるから結果的には危険な電源短絡事故となる。一応保護ヒューズを電源に入れて配慮した。

空間の電気量 物理学では時空論と言う言葉が使われる。物理現象は空間の中に展開される電磁現象とも言えよう。光は空間世界の王者でもある。それは空間に描く時間とエネルギーの営みでもある。そんな意味で、光が描く空間長と時間の関係は『エネルギー』と言う実在物理量に因って理解できる筈だ。1990年(平成2年)の秋頃に、完成した自然単位系がある。措置と言う強制牢獄への穴に落ちる少し前のこと。自然現象を理解するに科学技術概念だけではなかなか複雑過ぎて難しい。空間とエネルギーだけで電気用語の意味をまとめた表を載せる。すべての電気量がエネルギーのジュール[J]との関係で算定できる。電気量の次元を換算するに使うに便利である。余り物理学では、空間の意味にファラッド[F]やヘンリー[H]を意識していないようであるが、時間の次元も[s=(HF)^1/2^]で関係付られる。光の速度を決めるのもこの空間の物理的関係に因る。この空間の誘電率、透磁率の物理的意味合いを明確にする課題がまだ残されている。それはどうしても哲学の領域にもなるかと思う。科学と哲学の課題でもある。空間で『エネルギー』がどのように共振現象で伝播するかの解答が。何方かの挑戦を期待したい。

回路(1)の電気現象 スイッチによって二つの場合を考える。

(a) S1:on 、S2:off の抵抗負荷。電源スイッチ S をオンする。回路解釈は直ちに一定電流i=E/R[A]になると理解する。技術論としてはそれで十分である。然し物理現象としては、負荷抵抗に供給されるエネルギーは電線内を通って供給される訳ではなく、電線路で囲まれた空間を通して供給されることを知らなければならない。厳密には突然スイッチの周りのエネルギーギャップの空間が閉じられるのだから、複雑な空間の動揺を伴った後オームの法則通りの平常状態に落ち着くのだ。電気技術で負荷電力P=E^2^/R [W]と計算される。ワット[W]=[J/s]である。電圧の単位は[V]で抵抗の単位は[Ω]である。[V]と[Ω]で、どのように単位換算されて電力が[J/s=W]となるのか。その物理的意味をどのように解釈するのか。このことに関連して、やはり別に電気抵抗体の物理として考えをまとめた。

(b)S1:off 、S2:onでSオンする。実際はスイッチSオンすると同時に、電源短絡事故となろう。コイルのインダクタンスがL[H]であれば、電流はi= E/L∫dt [A]で直線的に増加する筈だが、そこには空間的な別の意味が関わっている筈だ。コイル空間が真空であったとすれば、エネルギーの空間貯蔵に空気中と異なる意味が含まれるかも知れないと言う疑問はある。コイル内の空間にエネルギーが貯蔵されると言う意味は、その空間のエネルギー貯蔵限界があると言う点を知らなければならない。ただ空気中の磁束量の限界と言う空間破壊の解釈は聞かない。電界の空間破壊は高電界30kV/cmと良く聞くが。それも磁場と電場と言う違いはあるが、空間のエネルギー貯蔵限界に因る物理現象の意味である。コイル電流i[A]に因って、コイル内に磁束[Wb]が生じると言うのがアンペアの法則に基づく解釈である。次元を考えれば、電流[A=C/s]からどのような物理現象として、磁束[Wb]が発生すると言うのだろうか。電荷には磁束を発生する物理量的な次元の意味が在るのかを問わなければならない。電気技術論として1800年頃に発見された知見が現在の物理学概念として本当に有用なのか。電荷と磁束の間の空間に起きる次元変換の物理的見解が必要と思う。そこには『電荷』の物理的空間像が示されなければ、答は得られないと思う。なお、電圧時間積分は電流i=(∫Edt)/L の中に含まれている。磁束φ=Li と同じ式ではある。

回路(2)の電気現象 R-Lの直列回路で、やはりLの機能を考えてみよう。既に、電気物理(コイルの電圧)としてまとめたので大よその意味は分かろう。コイルのスイッチS’:off で電圧を掛ければ、指数関数的に電流i がE/Rの値まで増加し、コイル電圧はエネルギー貯蔵した状態で零となる。

『問』 その状態でスイッチ S’ をオンとしてコイル端子を閉じるとする。その後の電流はオンしたスイッチ部を通るか、コイルL内を通るか。

『答』 尋ねたいのは、コイル端子を閉じたときコイルの貯蔵エネルギーは電流 i に因るのか、それとは別にコイル内の空間に貯蔵されたものと考えるのか、どちらで理解するかを答えて欲しいのだ。電流 i が電源に繋がった導線部 S’ を流れずに、わざわざコイル内を流れるとは考え難かろう。然しコイル内にはエネルギーが貯蔵されていると解釈しなければならない。そのコイルのエネルギーは電流に因るのか、コイル内の空間に貯蔵されたものと考えるのかを問うのである。ただ時間と共にそのコイルエネルギーも空間に放射あるいは抵抗で熱化されて無くなる。

回路の電流 回路(1)と回路(2)の電流値の様子を考えてみよう。

電流値 電圧が 100V 、抵抗値10Ω、 インダクタンス10[mH]として図に示した。回路(1)の(b)の場合で、コイルに電圧を印加した時、電源投入後何[ms]で電源短絡となるかは分からない。? 記号で示した。その状態をコイル内の磁束が飽和した為と技術的には考える。物理的には、コイル内の貯蔵エネルギーの受け入れが出来ない限度を超えたからである。また、回路(2)では、スイッチS’ を投入した瞬時にコイル端子は回路から切り離された状態になり、抵抗のみの回路となる。その時コイルのエネルギーはそのまま分離されてコイル内に留まり、時間と共に消えることになる。

むすび 記事の内容を見ると、電気物理と言いながら数式が全く無いことに気付いた。電気現象はその技術概念電圧と電流が解析の要となっている。然し、その電圧とは?電流とは?と殆ど疑問に思われてはいないようであった。30年前に『電荷』概念の空間像を描けないと疑問に思って、何か世間の囃したての中に揉まれながら、人生意気に感じて頑張っている内に、とうとう浦島退屈論の仕儀となってしまった。やっと御蔭さまで、電圧と電流の物理的空間像が描ける境地に辿り着いたようだ。電圧の2乗が次元[J/F]、 電流の2乗が次元[J/H]でその空間の空間エネルギーを捉えたものであると。電気回路の空間構造のコンデンサ機能の[F] とコイル機能の[H]とでその空間のエネルギー貯蔵量を捉えることが出来ると安堵の境地。やっと技術概念の物理的意味が理解できた。電圧-その意味と正体ー (2016/05/15)ではまだ疑問との格闘にあったようだ。然しその記事の文末に導体近傍のエネルギー分布を確信した記事が記してある。その実験的検証が在ったことで、ここまで来れたと感謝する。

電磁気学の要-Axial energy flow-

1.はじめに
電気磁気学は自然科学の基礎知識として、その習得が科学技術・理科教育で求められる。力学と相まって物理的学習内容の基本となっている。その教育に基づく共通理解が社会的科学認識の基となるから極めて重要な分野である。社会的な科学常識は、お互いに科学論を展開するに、その共通理解の重要な基になる。『電荷』や『磁束』はその電気磁気学の要の基礎概念として、誰もが共通に理解していると思っているだろう。しかし、その中で『電荷』はじめ『磁束』さえもその実像は突き詰めると極めて曖昧な概念であると考えなければならなくなった。だからそのような基礎概念に論拠を置いた科学論は本質的に矛盾を含むものに見えて来る。現在の理科教育の教科書の内容では真の自然現象理解に極めて不十分な内容であることを認識しなければならない事態になったと考える。その意味を「磁気とは何か」と言う視点で考察し、その曖昧な意味を掘り下げて、電気磁気学理論の持つ不完全さを解説したい。軸性エネルギー流-Axial energy flow-を理解することが電気磁気学の眞髄に到達する要点であることを示したい。この事の持つ意味は、今までの科学常識に因って成り立ってきた専門家の意識改革を迫る極めて重大な社会的問題でもある。

2.原子構造と周回電子像の持つ意味
原子核の外殻を周回する電子に原子の周期特性で捉える役割を担わせた原子像があらゆる科学論の基盤として社会の科学常識となっている。この根源的科学常識を疑い、批判することに成らざるを得ない『電荷』概念否定の道を通って来た。その道の長い思索を通して辿りついた到達点は、あらゆる自然現象が『エネルギー』の空間に展開する姿として認識する事であったと理解した。その意味で、改めて現在の原子構造論の電子周回論はその中味を深く突き詰めなければならないと成った。

(2-1)原子像への疑念 『電荷』否定の論理の行き着く先に待っていたのが原子像への疑念であった。その疑念の具体的な点を挙げれば、次のようなことになろう。図1.で示した原子像は曖昧なまま、どのような規則で表現すれば論理的かさえ理解できないままの一つの参考にとの表現図で示した。

  • 何故電子が周回運動しなければならないか。
  • その電子の周回運動の軌道(立体角4π球面か平面か)と回転速度の方向性を何が決めるか。
  • 電子は粒子とか波動とか極めて曖昧な空間認識像で捉えられ、論理的明確さが観えないのはなぜか。
  • 実在するという電子像の、その質量と電荷の空間像が何故示されないのか。
  • 原子という空間構造体をまとめる『構成力』は何か。

原子と言う極めて極微な空間構造体が世界の構成元素として実在していることは、そのこと自体が不思議で有っても、疑いはない。その中味を解剖して明らかに示す事はおそらく無理な話であろう。だから曖昧さは残って当然と考える。1911年以降にようやく原子の構造の論議が始まったのだろう。J.J.Thomson の陰極線発見(1898)が電子として認知されたことが原子の周回電子像の基になったのであろう。その後の量子理論が決定的に電子に電磁気現象すべての舞台で、主役の役割を担わせたこととなったと思う。単純な電気回路のオームの法則さえ導体電線の中を電子が流れる解釈が決定的な電気回路常識となって、現在の科学論の基礎となっている。量子力学での電子には必ず質量が付きまとった素粒子となっている。運動エネルギーでの解釈に質量が必要だから。然し量子力学で伝導帯を自由電子として電気エネルギーの伝送の役割を担っても、電気回路になれば電子が金属導体中を流れるが、電荷だけしか必要としないから質量の意味はどこかに消え失せてしまう。電子とは質量と電荷の混合粒子と思うが、電気回路では電子流はアンペアと言う電荷の時間微分しか意味を成さない事になっている。電気回路では電気エネルギーの伝送速度は光速度に近い筈だが、電子では決してその光速度でエネルギーを伝送する役割の責任は果たせない筈だ。それでも質問が有っても難しい量子力学を勉強してから考えなさいと説明逃れがIT等の質問に多く見られる。電気回路の現象が光速度でのエネルギー伝送として説明できない事は、電磁気現象を本当に理解していることにはならないのだ。そんな単純な日常生活に関係した電気回路の意味から考えても、原子構造論の周回電子論はとても信用出来ないのだ。

(2-2)共有結合に論理性はない 高等学校の1、2年生の時に化学を習った。原子結合で共有結合と言う負の電子同士が誠に魔法のような理屈で互いに結合の担い手となることを教えられた。クーロンの法則の同じ電荷間に働く排力が、何故共有結合ではその訳が説明されずに、無視されるのかと言う疑問が消えない。何故負電荷同士の電子が結合の役割を果たし得るのか。まさか電子質量間に働く万有引力でもあるまい。基本的には電気磁気現象が原子構造体を構成する理論であると考えれば、原子間の結合を担う『力』とは何かと言う疑問になる。また、その基となる原子その物を構成する力は何かとなる。核の結合そのものも『力』が必要な筈だ。陽子と中性子の結合論には中間子論があるが、その意味を理解するだけの能力はないし、電磁気現象としての解釈では理解困難な様に思う。原子間、分子間あるいは原子等の構造体を構成するにはどんな『力』が必要なのか。

  力としてpdfで挿入した。初めて試してみたので見難いかもしれない。中に(3)式として『質量力』などと言う力を入れた。何も特別な意味ではなく、万有引力と言う意味を質量間に働く力と言う意味で表現しただけでしかない。丁度二つの電荷が空間に有れば、電場が生じ電界ベクトルと電荷間に働く力と言う空間像と同じ意味で捉えだけである。たとえば地球と言う質量が有れば、その周りには重力場と言うベクトル空間が有ると看做すだけである。ただそれは、自然現象として空間を解釈する万有引力と言う理論が『眞』であるかどうかは別問題であろう。 電荷間の力の解釈と同じ意味で(3)式は万有引力の一つのベクトル表現法でしかない。(2)式の磁荷mは物理学理論でも実在しないと成っている。(1)式の『電荷』q[C]も否定すれば、一体どんな力を世界の結合の力として捉えれば良いかとなる。もちろん(3)式の質量力などは論外であろう。 そこに「磁気とは何か」と言う事を尋ねなければならない問題が浮上する。

3.磁気とは何か それは「磁気の本質」を問うことになる。電気磁気現象の要が『磁気とは何か』に明確な認識を持つことである。2つほど問題を提起したい。

  • コンパスは何故磁界の方向を指すのか。
  • マグネットを向かい合わせると、そのギャップlの長さに因って何故磁気力が変わるのか。その物理的原因は何か。

電気磁気学では、磁束量φ[Wb]が磁界解釈の基礎概念となっている。ファラディーの法則として、電気理論の根幹を成す重要な概念でもある。アンペアーの法則として、電線導体電流との関係でも重要な磁束で、欠かせない基礎概念であるとの意識にある。インターネット検索でも専門的な解説がある。電子スピンなどと関連付けて解説される。然しその解説に因っても少しも理解できないのは筆者だけだろうか。マグネットから空間に磁束Φが放射(?)されている図で表現される。磁荷は存在しないが磁束が存在するとは、その磁束は何が創りだすのかとなる。変圧器のファラディーの法則から、そろそろ磁束が励磁電流によって発生するなどと言う間違った解釈はやめても良い筈だ。磁束はファラディーの法則の式の積分形で『電圧時間積分』で決まることを知らなければならない。然しだからと言って、それで磁束が自然界に実在する物理量だと決めつける訳にはいかない。磁束も電流と同じく、科学技術概念としての人が創りだした便利な解釈用の概念でしかないのだから。それでは本当は磁束とは何をそのように概念化して利用しているのかと言うことになる。そこが重要な点であり電気磁気学の要となるのだ。答えは空間のエネルギー流でしかない。それは軸性エネルギー流-Axial energy flow-である。巷の解説では、電子スピンと言うが電子がマグネットの表面でスピンをしてその電子から空間に磁束が伸びていると言う意味であろうか。その磁束とは空間にどのような実体を成すものと認識しているのか。コンパスが磁界の方向を向くと言う現象も、やはり力が働いたから向きが決まる訳である。この軸性エネルギー流と言う概念は物理学理論ではなかなか受け入れ難いものであろう。それはもともと物理学には空間にエネルギーが実在すると言う認識が無いように見受けられるから。物理学理論では質量が無いとエネルギーが論じられないように思う。電気コイルの磁気エネルギーと言う時、そのエネルギーは空間の何処に存在していると解釈するのだろうか。コンデンサのエネルギーと言う時、そのエネルギーはどこにどのようなものとして存在していると解釈するのだろうか。電荷はエネルギーには成れない筈だ。磁束もエネルギーではない筈だ。マグネット間のギャップ l が小さくなれば、磁石の引き合う力は強くなる。何故強くなるのかの意味を説明しなければならない筈だ。磁束が太くでもなると言うのだろうか。それでも説明には成っていない。物理学理論でも、電気技術論でもマグネットの表面の磁束密度は一様と仮定すると言う条件を設定するのが一般的である。そこが間違いである。マグネットギャップを変化させると、ギャップ内の磁気模様が全く変わってしまうのである。ギャップを狭めて行くと磁場の強い処はマグネット周辺に移動し、中心部分には磁場は無くなるのだ。磁場一様等と言う条件は成り立たない事を知らなければならない。磁場とは磁束などと言う線束が有る場ではないのだ。ハッキリ言えば磁束など無いのだ。ただエネルギーがマグネット軸に対して回転して流れている現象なのだ。それを軸性エネルギー流と名付けた。要するに空間に質量など無関係に、『エネルギー』が実在している認識がなければならないのだ。光の空間エネルギー分布流と同じ意味である。光のエネルギーを振動数で解釈している限りは、電気磁気学の眞髄には到達できない。

4.磁界の空間像 磁界とは『軸性エネルギー流』である。図に表せば次のようになる。図のマグネット棒と磁界の関係。それはマグネット近傍空間には左ねじの尖端をN極として、ネジを回して進む時の回転方向にエネルギーが流れていることを示す。この回転エネルギーが地球の表面にも流れている訳で、地磁気が具体例としての考える論題としてよかろう。地球の磁気は北極がマグネットのS極で、南極がマグネットのN極である。地球表面を自転の向きに即ち東西南北の東向きにエネルギーが流れていることを知らなければならない。地球の自転が何によって起きているかは、そのエネルギー流が何故在るかを理解することが出来れば分かった事になるのだろう。その自転の物理的意味について解釈を下す事は科学論か哲学か悩ましいこと言えよう。兎に角、このマグネット近傍空間のエネルギー回転流が磁場と言う概念が持つ空間の意味である。光が空間を光速度で伝播する空間エネルギー密度分布波と捉えることと繋がる意味でもある。この質量に関係ないエネルギーの実在性を空間に認識することが電気磁気学の要となるのである。

5.ギャップに因る磁気力の変化およびコンパスの指示の訳  (3.磁気とは何かの答)マグネットの引き合う力は不思議だ。検索すれば、その力の原理を知りたいと質問がある。然し、その解答は的確な説明とは言い難い、何か誤魔化しで逃げているようにしか思えない。残念であるが、本当は分かりませんとでも答えて欲しいのだ。解答者も教科書の解説を習得したからと言って電気磁気現象の眞髄を分かっているとは言えないのだから。決して磁束(自然世界に実在する物理量ではない)と言う科学技術概念では、マグネット間の空間にある『エネルギー』の姿は理解できないのだから、ギャップの長さで磁気力が変化する意味は分からないだろう。教科書に無い意味磁界・磁気概念の本質の記事の意味を知らなければならない。次にコンパスが磁界の方向を指す訳は何か?それも同じような原理の力の問題である。磁束がコンパスの中を通って空間の磁場の磁界と繋がるから、その方向を向く。と解釈して良いのだが、磁束が実際に実在する物理量でないと言うことを認識すれば、その解釈ではやはり正しいとは言えないだろう。試験問題でコンパスがどの方向を向くかという問題なら、磁束の考え方で正しい答えは得られる。知識としてはそれだ宜しいのだ。自然現象を理解するという意味には、この例のように答えられればそれでよいという考え方と、もっと自然世界の本質・真髄を知るべきだという考え方と多様な意見がある筈だ。それは一人ひとりの生き方の問題となるのだろう。磁気が軸性エネルギー流の目に見えない現象だと言うことを知ることに因って初めて、広い電気磁気現象の意味が矛盾なく理解でき、心から安心した納得に至れるのだと思う。それが安堵と言うものかも知れない。地磁気とコンパス(2012/09/13) が一つの解答となろう。

6. 磁気原子像と原子結合 『電荷』否定に因る原子像はどんな姿か。今年は原子周期表の記念の年らしい。8の周期性で特性が決まる原子を周期律表でまとめられた意味は驚嘆に値する知見と言えよう。その周期性から原子構造が周回電子像で解釈される結果に現在の原子構造が共通理解の基を成して来たと思う。周期性は他の原子との結合特性から認識出来るものでもあろう。原子が結合するのは原子の表面が互いに他の原子との安定した接合面を持つ事が出来るからであろう。もし周回電子が原子結合の任務を担うとすれば、その電子は立体角4πの原子表面をどのような道筋で回転運動をしながら、となりの原子と安定した接触面を保てると考えるのだろうか。その空間運動状況を原子結合に結びつけるには、原子核が周回電子の運動を可能にする何次元ものスピン運動をするか、魔術師か忍者の雲隠れ抽象空間を想定できるようでなければ、電子の運動と結合面の空間像を頭に描くことは無理じゃなかろうか。こんな論議は決して科学論の場では誰もが取り上げたくない事だろう。それは教科書の指導内容と異なる反社会的のことで、教育体制に混乱を生むから。科学論は現在の教科書の指導内容の枠からはみ出さないようにしなければならないとの意識が無意識的に思考の根幹を支えているのだろう。まさかこんな基礎の科学概念が否定される筈はないと誰もが教科書の指導内容や科学常識を信じているから。

(6-1)ダイヤモンド結合 炭素は結合手が4で、宝石のダイヤモンド共有結合や有機分子のベンゼン核など結合の代表的な論題となる元素であろう。炭素同士の強固な結合が抽象的な原子表面上の軌道周回運動電子によって生まれると言う曖昧な論理を何故信じなければならないのか。また炭素原子表面は空間的に4面体(直方体)か球面を4等分した接合面と看做すべきだろう。従って、有名なベンゼン核の亀の甲羅の平面的な六角形の構造が何故出来るかにも論理性が観えない。原子結合面は空間的な立体面から出来ている筈だから、結合手が2本と1本でのベンゼン核表記法は有り得ない。まずい記事ながら、参考に炭素結合の秘め事を挙げて置く。

(6-2)マグネット原子構造 軸性エネルギー流と言う空間のエネルギー像は『電荷』に代わる電磁結合の統一的理論構築の未来像になると考える。結合エネルギー:不思議の砦 (2018/12/02) で示したマグネット結合の図を再掲したい。マグネット同士を接合すると、接合部でのエネルギー流は隠れるように思える。砂鉄に因ってある程度は確認出来よう。このマグネット同士のN、S間での結合が原子結合の結合手になるとの解釈論を2009年に発表した。その時の図を示したい。

『電荷』否定は陽子、中性子などの素粒子の電荷概念の否定だから、当然原子核内もエネルギー粒子と捉えなければならなくなる。その核のエネルギー粒子の影響がそのまま原子表面に現れると言う考え方を取る。その結果の原子結合は当然の帰結として、図のようなマグネット結合になる。

7. むすび 2009年日本物理学会秋季大会で、“電荷棄却の電子スピン像と原子模型”の標題で関連の発表をした(日本物理学会講演概要集 第64巻2号1分冊 p.18. )。それは丁度10年程前の解釈である。今振り返っても、その内容は現在の認識と殆ど変らないようだ。10年間の思索を通して、よりこのマグネット結合原子構造の解釈に強い確信を得ている。電気回路の電磁エネルギー伝播現象即ち電気磁気学の実像を光速度伝播特性として理解出来たからだ。『電荷』や『磁束』が科学技術解釈概念だと言う意味は、それらは自然世界に実在する物理量ではないと言うことであって、物理学と言う自然世界の真理を探究する学問で使う用語・概念としては適切でない事になる。

論文: 25pWD-13 “磁力密度 f=rot(S/v)” 日本物理学会講演概要集第63巻1号2分冊 p.310.(2008) 。これは磁気がエネルギー回転流であることを論じた論文である。このいわゆる電磁力と言う力については、長岡工業高等専門学校で、既に履歴書が『以下余白』として消されたままの1年8カ月後(?)の昭和62年3月末に、『静電界は磁界を伴う』の電気学会発表の準備中の深夜の睡眠途中で閃いた思い付きであった。その後、「電磁エネルギーの発生・伝播・反射および吸収に関する考察」電気学会 電磁界理論研究会資料、EMT-87-106.(1987) に(29)式として記した。それは静電界と言うコンデンサ極板間に電圧に応じて、コンパスの指す磁界方向が変化すると言う電磁界現象が存在する事実の理論的解釈論として示さなければならなかったのである。コンデンサ内も電磁エネルギーの流れによってその現象・状況が決まると言う実験結果に基づく発見事実である。ここに科学基礎概念に対する意識革命の必要性が隠されている。

(付記) 関連記事。電気回路理論と電気磁気学の関係(2017/12/06) 。電磁力の本質(2017/10/17) 。

 

 

エネルギー その見えざる正体

見えないもの 世界を光によって見ることが出来る。しかし、その光を見ることは出来ない。光がどんな形をしているかは分からない。その光の形を科学的に検証して確かめることも出来ない。しかし光は世界の実在的物理量で、空間に実在する。光は空間エネルギー分布波であると言っても、そのエネルギー波を検出をする測定法は無いだろう。何しろ1秒間に30万キロメートルの速度で通過する空間エネルギーの密度波であるから。そのエネルギーの分布状態を計る測定法が見つかれば夢の世界が広がるのだが。 見えるもの 見えないもの  にも見えないものについて述べた。その科学的に測定・検証できない電磁波の空間エネルギーについて述べようと思う。エネルギー程自然世界の根源を成しながら、その姿を見ることが出来ない不思議なものもないと思うから。大学教育に求められる「電気磁気学」 はその眼に見えない空間エネルギー波が光の本質であることを理解することを求めたものである。その見えざる正体を電磁波の中に観ることを論じたい。 眼で見えない物を心で観る夢としたい。 

電磁波はエネルギー波

図1.電磁波とエネルギー分布 正弦波の電磁波はマックスウエル電磁場方程式の解釈により、電界E と磁界Hの直交したベクトルの波動として表現される。その電界と磁界の偏微分形式で方程式に表現されている。しかし、電界や磁界が空間にあると考えるなら、その空間にはエネルギーがあると解釈される筈であるが、エネルギー分布についての解釈は電気磁気学の電波伝搬現象には見えないようだ。エネルギー波という解釈の記述について見た記憶がない。何故なんだろうか。電波伝播現象ではない静止電磁場については電界エネルギー「(1/2)εE^2^[J]」とか磁界エネルギー「(1/2)μH^2^[J]」とかの解釈がされているにも拘らずである。光速度伝播での電磁界については空間エネルギーという概念が消えてしまう人間の不思議な科学的習性を観なければならないのかと。そこで、今回はその光速度伝播の電磁界についても空間エネルギーが実在するのだということを伝える為に、その正弦電磁波のエネルギー分布を描いてエネルギーの実在性を解説しようと考えた。電磁波の本質は電界や磁界ではなく、エネルギー波なのである。それが光が空間エネルギーの縦波だという解釈に通じる事の要になるのである。図のように、正弦波の波長λとすれば、その半波長 λ/2 の繰り返し正弦波分布波となる。実はこのエネルギー密度分布波δ[J/㎥]の空間伝播現象を解説しようと考えたとき、このエネルギー波の表現法に困惑してしまった。そのことで、前の記事、瞬時電磁界と概念になった。エネルギー波が電気磁気学で取り上げられない訳の一つに、その空間表現が困難であるからかも知れないと考えるに至った。それが見えないものを観る困難かとも思う。しかし、エネルギー単位量子という捉え方で電磁波のエネルギー縦波伝播現象の解釈が欠かせないと考え、その意味を解説したい。

エネルギー単位量子

図2.エネルギー単位量子 ε=(λ/2)(δの平均値)[J]  見ることのできない空間エネルギー分布密度波を、空間に図形表現してみたのが図2.である。石や花のように眼で見ることが出来るものは空間に描ける。平面表現であっても絵にして伝えられる。しかし、空間に実在すると言っても眼に見えない、形の表現のしようがないものを示す事は困難である。質量に付加される運動エネルギーは質量体とその速度を併記すれば、理解できよう。しかし、質量のないエネルギーは目に見えないから形に示せない。これは『禪問答』の部類かもしれない。そこを何とかご容赦頂いて論じさせて頂く。空間を伝播する電磁波は正弦波波長の半分の長さの空間エネルギー密度波の繰り返し波形である。今仮に単位面積あたりを通過するエネルギー波を考えれば、単位面積1[㎡]で長さλ/2[m]の体積のエネルギーε[J]の光速度の縦波伝送として捉えられる。それをエネルギー単位量子と定義する。

見えざる正体

見えない空間エネルギーは光の視界を遮ることもないから、そこに在るとは見えないのだ。電気コイルの中や磁石の周りにエネルギーが在ってもそれは目に見えないのだ。地磁気のエネルギー流が在ってもそれは目に見えないのだ。見えざる正体それが空間に実在するエネルギーなのだ。世界を構成する基であるエネルギー・素原の光がその代表なのだ。その見えざる正体のエネルギーが理科教育に求められる本源だ。サーフィンが夏の海に運動力学の絵を描く。津波とサーフィンは同じ水力学の形を見せている。波のエネルギーとは何かと尋ねれば、振動数が何とやらの解説が検索に出て来る。エネルギーの実在性が見えない理科の解説は間違いである。

『課題』が残る。光の波長はこの「λ/2」を捉えて今まで論じてきた。正弦波波長と光の波長との関係を明確にしなければならない。

過去から今まで

32  『静電界は磁界を伴う』 -この実験事実に基づく電磁界の本質ー

1.まえがき 現代物理学の基本概念に電磁界概念がある。しかし、マックスウエル電磁場方程式には時間的に変動しない電磁界いわゆる静電磁界に対してエネルギー伝播の概念は含まれていない。この解釈から「電荷も電流も時間的に不変である限り電気と磁気とは別々の現象である。」(1)という当然ともいえる結論が得られる。しかし、マックスウエル電磁場方程式をエネルギー伝播という観点から考察したとき、筆者は「電界あるいは磁界のみが単独に存在するような場は有り得ない。」という結論に到達せざるを得ない。・・・

と書き出した、1987年(昭和62年)4月の解釈から少しも進歩していない同じ事を論じ続けているようだ。

光の屈折と分散

初めに 光の実像をどのように認識するか?光は目の前の空間に実在する。眼で物を観ることは眼に光が入り、その光の一粒(?)ずつの総体として物を脳機能に因って理解する。取り入れる情報は光のエネルギーである。光のエネルギーを物理学でどのように解釈しているかと言えば、プランクの定数と光の振動数の積で捉えている。そんな数式で表現されても、光のエネルギーとはこれこれだと、感覚的に捉え切れないのじゃなかろうか。振動するとは何がどのように振動しているのかを説明して貰わなければ解りっこない。振動数と光のエネルギーを結び付けて理解できる方が物理学の世界を語れる事になっているようだ。振動数の意味が理解できない筆者が語る内容はきっと伝統的な物理学教育現場にとっては逆賊者か反逆者の教義ぐらいに思えるだろう。その辺の事情も良く分かるが、やはり光の「振動数」とは何かを明確にする必要がある。意味不明な『振動数』では物の理屈の物理学には成らないと思う。『振動数』が意味する内容は、気体分子運動論で熱エネルギーを解釈する論法の『質量』の振動論に通じる意味であると思う。すべてエネルギーは『質量』が有って初めて存在する事になっている。光の『振動数』も光子と言う光の粒が気体分子運動論の分子と同じく何か隣り同士の光子が体当たりしながら、その体力を競う能力を持って運動エネルギーとしての存在感を発揮する様子を描いているように思える。しかし光子が『質量』を持つとは言えないから、その辺は曖昧のまま説明できない高度な数学的概念が理解できるまで頑張って努力しなさい、そうすれば分かるようになるから。と御高説に至る。おそらくマックスウエル電磁場方程式の電界・磁界の横振動波を思い描いて解説するだろうが、電界や磁界が振動する訳ではなかろう。電界・磁界には光のエネルギーの空間像を見て採るだけの頼りになるものが見えない。エネルギーと結び付いて理解できない。子供達も検索で光に質量は無いのにどうしてエネルギーがある事になるのかと質問する。エネルギーは質量が持つ運動エネルギーだと物理学教育で教えているからだろう。電気回路内は質量の無いエネルギーだけなんだけれども。質量と電荷を持つ電子が必要になる原因もその辺に在る。光のエネルギーを『振動数』で認識するなら、その振動数の意味を明確に分かり易く解説して欲しい。検索で屈折現象の解説がされている。光の伝播媒体で、速度が異なるから異種の媒体の接触境界で屈折すると説明されている。それで正しいと思う。しかし物理学とは、「何故」と問う事から始まる。何故媒質に因って速度が異なるのでしょうか?振動数では説明にならないでしょう。媒体が違っても振動数は変わらない筈だ。変わるのは波長だ。さて屈折する理由は何か?その何故かを問題にするのが物理学の要になる。電磁力の本質と言う記事を書いて、電気現象の空間ベクトルの話に移ろうと努力の甲斐もなく、光とレンズに足止めされたまま動きが出来ずにのた打ち回っているような気分だ。無所属の悲哀をかみしめながら引き籠り状態だ。仕事をと考えても、考えることが科学常識の否定のような事ばかりでは世間で許され、受け入れられる席などやはり無いかと気遅れのままお恥ずかしい限りだ。止むをえず科学理論の常識にまた逆らうような事ではあるが、物理学の未来像への提言をまとめて置こうかと考えた。日常的科学常識に支えられている科学世界の現状を批判するとは、大人気も無く嫌われると分かっていても言わなければならないと思う哀しさ。少しは専門的技能として電気工学と電気回路論から身に染み付いた質量の無い『エネルギー』感覚が筆者の世界観の根底を成している、その『エネルギー』から観る世界・自然界を描きだせればと願っている。ここまでの話には、数式は無い。数式は必ずしも科学論には必要とは限らない。『電荷』が存在するとお考えの方は、その『電荷』の具体的空間像をお示し頂きたい。数式は無くても説明できる筈ではないでしょうか。プラスとマイナスの『電荷』の違う空間的理由を。光も同じ意味で簡単な日常用語で説明できると思う。『振動数』とは何が振動しているかを。

屈折と分散に隠れた意味 ここに書いたことは誰もが当然のこととして分かっていた。筆者だけの不明であったので削除させてもらった。光の散乱・分散分かり易い高校物理の部屋 に在る。しかし、一般に光の速度は一定の光速度と認識しているが、それは媒体が真空でしか通用しない現象と考える。空気中も真空と必ずしも同じとは言えなかろう。確かに空間定数は空気中も真空と同じと解釈しているが、夕焼け(水蒸気含有量)などは分散現象であろう。真空と空気中での光の速度の差は無いと言えるのか?(2017/12/04)以上追記。

屈折現象 何が屈折を起こす原因か?昔“何も足さない 何も引かない”と言うコマーシャルがあった。何か『エネルギー』一つを背負った旅ガラスの心境に思えた。捉えどころのない『エネルギー』だが、光の振動数より分かり易いとここまで引き摺って来た。

光エネルギーの屈折 光は電気エネルギーと同じく、空間に存在するエネルギー密度分布波である。質量など必要としない、エネルギーそのものの空間分布の波である。上の図は学会での発表に使ったもので、プリズムを想定して描いた屈折現象の解説である。光エネルギーあるいは光は光速度で空間を伝播する。その光速度は、障害の無い真空自由空間では何故毎秒30万キロメートルであるのか。その訳は真空の空間が握っていると考えたい。エネルギーが通過するに許された空間の支配条件に従わざるを得ないということであろう。光と同じ電気エネルギーが伝送線路の電力用ケーブルを伝送される状況と比べて考えてみよう。ケーブルは電気絶縁物で充填されている。その中でのエネルギー伝送速度は遅くなる。ケーブルの単位長さ当たりの誘電率と透磁率でほぼその伝送速度は決まる。プリズムのガラスの媒体特性も誘電率と透磁率で評価できるだろう。その媒体の空間定数の値で光の伝播速度が決まるだろう。真空は何も伝播媒体が無い空間であるが、その真空でも誘電率と透磁率が科学技術の単位系を決める根本的定数として決められている。真空透磁率μo=4π×10^-7^[H/m]がMKS単位系の拠り所と決められている。その空間媒体の定数が光エネルギーの伝播速度を規定している。プリズムのガラス中の速度もその定数によって決まる。

光エネルギーの速度 図は波長λの光が空間を伝播する状況を透磁率と誘電率に因って解釈したものである。電力系統のエネルギー伝送と自由空間での光伝播とは同じ物理的現象として解釈すべきである。ここには少し数式が入っている。平方根と分数と三角関数と若干の空間的定数概念[H/m]、[F/m]の空間的ベクトルの方向性を基にした数式である。この図で伝えたい事は光には正弦波の周波数が無く、波長λの繰り返しのエネルギー密度分布波の縦波が空間媒体の定数によって規定された速度で伝播するエネルギー波であるという事である。一波長でエネルギーなのである。媒体は構成成分の分子構造体であろうから、その構造体の物理的特性(空間エネルギーに対する吸収・放射の共鳴度とでも言えば良いかは明確ではないが、何らかの影響度を及ぼす強さ)に因って速度の影響を受ける筈である。その特性が誘電率と透磁率によって決まると解釈する事を示した図である。上の図は真空の空間特性と所謂光速度C[m/s]の意味である。分散は波長λに因って光のエネルギー密度分布波が異なるため、光伝播空間の媒体特性に因って、通過速度に影響が生じることは容易に理解できよう。実験的には分散が起こることは周知の事実であるから、その物理的理由をどのように解釈するかの問題であろう。光の空間的エネルギー分布を計測するなど不可能なことであろうから、科学的な検証は不可能であろう。光のエネルギーを振動数で解釈するという論理で、屈折や分散の物理的意味が感覚的に心に響くかは、高校生に尋ねて見れば分かるであろう。光エネルギーは1波長でエネルギーなのである。光を検出するには周波数や振動数でしか計り様が無いから、振動数が理論的な概念に組み込まれているだけなのである。数式を示してもそれが物理学の目的ではなかろう。自然は不思議の宝庫であり、魅力に溢れている。解ったと言うにはまだ早い。

分散 色収差はカメラなどの光学技術で問題になる。しかし技術は、技術者はその問題を解決して製品の質を高めて来た。しかし物理学は分散の物理学的意味を明らかにしているだろうか。解らない処を噛み砕いて何故かと考える事の大切さを教えているだろうか。不思議と思う事を伝えているだろうか。意味を教えないで伝統的教育法に従った数式を覚えさせるだけて済ませていないだろうか。

電気理論は手品師の世界

理論は真理か?何か手品師の舞台を見ているような感覚の世界だ。
『瞬時電力』とは何か? 『瞬時値』と言う物理量を捉えることが現象のより深い理解につながるかという考えで、その用語を多く使って来た。本当の意味を考えて使って来たかと自分に問えば、殆ど感覚的により真相に近いだろう位の思いであったのかも知れない。
科学理論と言う論理的な厳密性で構成されているとの理解の中で、より根本的な誰もが常識として共通に納得している事象や用語でさえも、その意味を自分は分かっているのかと自問すると、不思議にも分かっていない事に気付く。それも十分分かっていると自負していた電気現象に関わる話でさえも。

瞬時電力とは? IT検索すると、その意味を尋ねる質問者が居る。電気回路の電圧や電流波形はオッシロスコープで観測できる。電圧や電流の瞬時値は波形として見慣れているから、その意味など全く気にもしないで、瞬時値と言う電気量の定義など疑いもしない。

瞬時値の単位と時間 瞬時電力p[W]は波形観測が出来る。単位はワット[W=J/s]である。瞬時値とはどの程度の時間感覚の意味なのか?瞬時だから、時間の長さは『ゼロ』でないのか。

瞬時値と単位と時間 (1)回路と測定の電圧計、電流計そして電力計の測定値V[V] 、I[A]および P[W]は十分長い時間での平均値のような『実効値』を計測している。しかし交流回路であるから、それぞれの値は時間的に変動している訳で、その波形の各時間における値を瞬時値と言っている。回路の瞬時値波形は抵抗などを通して簡便に測定できる。瞬時電力p[W]は掛算に因らなければ波形は得られない。電力の単位[W]は図(2)瞬時電力波形のpの単位も[W]である。電力と言えばワットである。そのワットと言う意味は何かと考えて見る。ワットが流れている訳ではない。流れるのはエネルギーのジュール[J]であろう。[J/s]とはどういう意味か?エネルギーが流れると考えれば、時間当たりとなる。しかしそれでは何か『瞬時値』と言う意味と感覚的にも腑に落ちない。結局の結論としては、瞬時値であるからある時刻における時間微分値と言う意味としか解釈のしようがない。瞬時電力p= lim _⊿t→0 (⊿E/⊿t)=dE/dt[J/s]としか捉えようが無い。となるとdE[J]とはその線路点のどのようなエネルギーを意味しているかと、また疑問となる。ここまで自己を追い詰めて、疑問の渦に自分を引き込む。抜けられないかと不安が解決策を見つけ出してくれる。不思議だ!それが次の話になる。科学技術の競争と言う世界から離れた場所だ。

電力の物理的意味(自分への問答) 正しくこの電力p=dE/dtの意味が手品師の隠した「種」に思えて来た。誠に不思議の極みである。位置x点での電線路空間のエネルギー分布dE(x)がその意味を隠している。『光速度伝播』が電気理論の隠した種でもある。『エネルギー』と『光速度』、この二つが種明かしの要だ。dt=dx/c[s]にあり。距離dxと時間dtの関係を支配するのは『光速度c』だ。電線路空間距離位置x点における瞬時電力はp(x)=c dE(x)/dx の『エネルギー』の空間分布の勾配である。昭和62年の『静電界は磁界を伴う』のマックスウエル電磁場方程式の解釈に適用した『エネルギー』と『光速度』の関係と同じ解釈につながっている。とは言っても新たな疑問が待っていた。

思考実験―単相電線路の瞬時電力とは?- 単相交流回路は一般にはその亘長を考慮する必要が無い。だから電線路電圧は電源から負荷端まで同じ電圧と考える。もし少し電線路の長さが長いとしたら、その回路の電気現象をどのように捉えたら良いだろうか。電源は電線路の電気状態を電圧と周波数で制御するだけである。電源は負荷の状態を認識できない。ただ電圧保持に必要なエネルギーは電線路の要求に見合う様に供給するのみである。負荷電力が大きければ、電圧保持に必要なエネルギーが多く必要なだけである。50Hzで、相当電線路が長いとすれば、線路電圧は電源からの距離によって異なる筈である。即ち、電線路定数(C[F/m] ,L[H/m])によって決まるエネルギー伝送速度c[m/s]によって支配される。電源からの距離xの地点での電圧値は図のように、x/c[s]だけ遅れた位相の電圧となる。これが電気回路現象を支配する基本原則である。言わんとする意味は、電流も電線路の位置により異なるのである。電線路空間内を『エネルギー』が伝播速度で流れているのであり、或る位置x点での瞬時電力pxはその点の電圧と電流の積で評価するが、『エネルギー』の光速度に近い伝送速度の現象下での認識が必要になる。もし電線路亘長X=3000kmのような場合を考えると、その電圧分布は丁度半波長の波が乗った状態と考えて良いだろう。当然電源での瞬時電力もx点の瞬時電力も、また負荷点の瞬時電力も同じではない。さらに、もし負荷がスイッチSオフとしたら、電源の供給『エネルギー』は電線路の分布回路要素C,Lおよびコンダクタンスgの機能によって支配されるから、帰還する電源への『エネルギー』をどのように処理できるかも問題になる。送電電力系統での開閉サージ電圧が定格電圧の7倍にまで跳ね上がる現象も観測されていると本で読んだ。電線路の『エネルギー』の往復反射での電圧上昇現象である。電気現象を解釈する電気理論は電気工学の電圧、電流概念が如何に便利で優れたものであるかは誰もが否定できない。しかしそれは科学技術の応用としての技術理論であり、自然の物理的本質を唱える理論ではない事だけは理解して欲しい。電気現象の本質は光速度での『エネルギー』の伝播現象であることを。電気回路の電力とは何ですか? (2016/12/16)から考え始めて、今年は電気回路解析の『時定数』の意味を取り上げ、電線路空間の『エネルギー』の振る舞いについて考察した。電力概念も難しいと知った。

課題 電線路空間を伝播する『エネルギー』の本当の姿はどのよであるか?線路定数から、電圧分布エネルギーはCv^2^[J/m] 電流分布エネルギーはLi^2^[J/m]で電線路単位長さ当たりの値を捉えようとしても、その『エネルギー』の電線路空間内での分布などは全く捉え切れない。ただ電気現象の本質を理解するには、電線路空間内の『エネルギー』とその光速度伝播認識が欠かせない。未だ手品師の「種」を明かせない。x点の瞬時電力pxに負荷電力prがどのような関係で影響し、そのエネルギー分布勾配が生じると考えれば良いかなど全く不明である。また、三相交流回路に対して、単相交流の方がその電圧エネルギーの線路往復流に因り原理的には複雑な現象となる。多くを未来への課題としたい。

コンデンサとエネルギーと電荷

特にこの1,2年コンデンサの電気現象を考えて来た。IT検索したら、高校生などの質問があって、それに教えられた。一応高校の物理の教科内容になっているようだが、考えると中々一筋縄では答えられない。疑問だけが残る。次の二つの記事が筆者に教えてくれた質問であり、それに答える解答者の解説でもある。さすがに解答者も考えたことであろう。筆者も解答するつもりで、別の視点から考えてみよう。ただその視点が社会的な合意を得るのに困難なものであろう。科学論は一般に過去の先人が築いて来た伝統ある共通認識の基礎認識の上に、新たな発見とか深みを付け加えるもので、そこに新たな共感や賛同を得て互いに達成感を広げるものであろう。社会的な安定した常識の意識が望まれる。それに対して、筆者が述べる科学論は、伝統的な科学常識の教育に携わっている方々に違和感と嫌悪感を抱かれるような内容が多いと自覚している。だから人と融和を重んじるなら殆ど書けない内容ばかりであることも知って居る。気に障る場合はご勘弁願います。『電荷』否定とその概念矛盾認識がその原点に在り、世界の根源要素は『エネルギー』であるとの解釈に基づいているので。余りにも科学常識論からかけ離れ過ぎているから、社会的混乱と言う点で迷惑な事でもあろう。
(1)コンデンサと静電エネルギーについて 高等学校の物理Ⅱの問題を学習して、疑問を提起したものだ。理科の指導内容にはその教科特有の専門用語が使われる。言葉の意味を的確に理解することは、はじめて学習する者には難しいこともあろう。質問者がどのように理解しているかが気になる用語がある。それは『静電エネルギー』である。その『エネルギー』とは何処に在るどんなものと理解しているのだろうか。それは『電荷』でもないし『電界』や『磁界』でもない。静電容量はコンデンサの空間構造の『エネルギー』を貯蔵する容積である。コンデンサ容積内に貯蔵する『エネルギー』を『静電エネルギー』と言っていると思うが、質問者はそうではなかろう。その『エネルギー』を『電荷』で結びつけて空間に実在するように理解するのは無理であろう。物理学での『エネルギー』は電界あるいは電圧に依り受ける『電荷』の移動に対する仕事量の合計値としてエネルギー量ジュールに換算した物として教育されているから。質量に働く力と移動距離で評価する基本的『エネルギー』概念だけで解釈しているから。電気エネルギーは全く質量には無関係の『エネルギー』なのである。光と同じ『エネルギー』なのである。『電荷』があると、どこに『静電エネルギー』が実在すると言うのだろうか。『電荷』の中に在るのだろうか、それともその周りの空間でしょうか。それは教育者側に問う『問答』でもある。結局『電荷』や『電子』の具体性が曖昧なまま、その存在が科学理論の複雑な絡み合いの中に常識化されている処に問題があるように思う。

電荷と静電エネルギー 『静電エネルギー』とはどんな意味で解釈しているかを、筆者の理解する内容で確認したい。物理の教科を教えた事もなく、間違っていると悪いので基本的認識を図に依って考えたい。先ず『静電エネルギー』とは『電荷』が持つエネルギー(?)と理解するのか?『電荷』でなくて空間が保有する『エネルギー』なら大いにその解釈で結構なのだが、どうも物理学理論から推論するとそうではないようだ。『電荷』と言うのも実際は『電子』等に付帯したものとしての、それが持つ『電荷』量という意味で解釈すれば良いのだろうと思う。教科書理論では『電荷』が単独に存在すると言う、質量の無い独立した概念とは捉えておらず、質量に付随した概念として解釈されているようだ。だから『電荷』と言う時は、それは『電子』か『イオン』かの意味で捉えて良かろう。図は中心に『電子』の抜けた原子の集まりで+Qクーロンの原子集団があるとした。現実にはプラス電荷同士が集まるのもクーロン力から考えればなかなか理解し難いのだが、大目に見ておこう。さてそのプラス電荷が空間に存在した時、周辺の全空間には電気力線と言う電界の歪み空間を作り出すと考えて良いのだろう。それが教科書の電界の意味であろうから。全空間の中心が張る立体角は4π[st.rad.(ステラヂアン)]である。半径r[m]の球表面は電界強度E[V/m]のベクトル空間と看做す。そこに何か『電荷』があれば、その電荷には中心の電荷+Q[C]に依る力が働く理論に成っている。それは遠隔力か近接力かも考える必要があるが、先ず空間の電場と言うものをどう解釈するかであろう。その空間は電界があるが、『エネルギー』は存在しないと解釈するのかどうか。空間に『エネルギー』があると解釈すれば近接作用力が有力になるが、教科書のようにただ電界を抽象的に捉えているなら遠隔作用力とする見方になろう。筆者は電界が在れば、それはそこに『エネルギー』が存在することと同等であると解釈するがそれはここでは伏せておく。元々電界なる概念の実在性も理解できない筆者であるから。前置きはそれくらいにして、『電子』に掛かる運動を考えてみよう。『電荷』だけでは運動に依る『エネルギー』の意味を捉えられないのが物理学理論(単位[eV]の概念問題もあるが)だと思う。必ず質量が無いとエネルギー論は成り立たないように思う。『電荷』には力が働いても運動方程式の加速度α[m/s^2]が生まれないから。どうしても質量にお出まし頂かなければならない宿命にある。『電荷』だけでは無理でも『電子』の質量に依りエネルギー論が可能になる。そうするとまた困ってしまう。よく無限遠から『電荷』をその位置まで持って来るにどのような仕事をするかとなる。その仕事がエネルギー論には欠かせない。仕事の解釈は力によって質量を動かした時、力ベクトル f [N]と移動距離ベクトル r [m]のスカラー積で仕事量のスカラーw= fr [J] で捉える。その仕事量は質量を動かすことに使われた消費エネルギーである。普通消費エネルギーと言う場合は、その『エネルギー』は熱として空間に放射される感覚で捉える。しかし、仕事量の幾分(1/2?)かを質量の『エネルギー』増加に変換する場合もある。そこに、電磁気学理論での『エネルギー』のもう一つの単位に[eV]がある。特に素粒子物理学理論等で『エネルギー』と言えばジュールでなく[eV]の単位で解釈するのが一般的である。それは一つの『電子』の電荷量が電界空間で移動した時に『電子』が得ると考える『エネルギー』の量を基準単位とした評価量であると解釈するが、間違いだろうか。その場合、『電子』には質量が在るから電界に因る力で、質量の加速度運動が起こるから『電子』の移動が可能であり、最終的にその質量の運動エネルギー分はどのように[eV]のエネルギー量の中に認識すれば良いのだろうか。[eV]の単位が表現する『エネルギー』の中味は『電荷e[C]』が電位差V[V]間を移動しただけで『エネルギー』を獲得する様な表現単位に思える。しかし、その[eV]単位がコンデンサの電極版間での『電子』などが保有する『エネルギー』に結びつくのか理解が難しい。『電荷』だけのそこには質量の運動力学の基本原理の加速度が見えない。実在物体を移動させる力とは質量の慣性に掛かる加速度を評価した物理学運動原理と思う。そのように質量を伴わない『電荷』のみを移動する運動エネルギー論は物理学理論には無いと思うのだが、その解釈は間違っているだろうか。このエネルギー単位[eV]で思考を整理するためエネルギー単位[eV]を尋ねてに別に取り上げた。さて、質量を伴う『電子』を対象に仕事を考えてみよう。図では、電界に因る力が『電子』に掛かれば、『電子』は加速運動をすることになろう。無限遠からrの位置まで力が掛けられれば、加速度によって相当の高速度運動に成っているだろう。それが力と運動の基本的解釈ではなかったか。そこで、その『電子』の持つ『エネルギー』は如何程と解釈すれば良いのだろうか。再び『静電エネルギー』とは何が持つエネルギーのことか?を考えてみよう。それはコンデンサと言う二枚の対向金属電極に因って構成された空間がその静電容量と言う単位ファラッド[F]の機能の基を成すものである。その空間が空気か誘電体材料かに因って機能の強さに差が生まれる。『静電エネルギー』はどこにどのようにして得られて、何が保持する『エネルギー』と解釈すれば良いのだろうか。『エネルギー』をコンデンサに蓄える仕組みは電気現象として如何なるものであるかと言うことである。このような設問形式で、問いながら考えることは高校生が初めて考える内容としてはそう難しい事ではないだろう。数式で解説している訳でないから、意味を汲んで貰えないかと思った方法だ。何が言いたいかと言うと『静電エネルギー』とは結局具体的にどんな『エネルギー』と理解しているかと言うことであり、曖昧であっては論理の物理には成らないと言う意味を理解して欲しい。誠に難しい教育の社会的問題を論じる様なことになって、読まれる方に申し訳ない思いもある。真理・真髄あるいは哲学とは社会的混乱でもあるのかと?生徒、学生にはこの問題に対処する方法は無い。教育する側、学力試験・入学試験を実施する側に考えて欲しい事だ。ようやく問題の核心に話題を絞ることが出来る。コンデンサの充電現象についての物理的(物理学教科書的ではない)解釈に入ろう。それは『電荷』概念に因るコンデンサ充電問題における矛盾についての考察である。その基本的観点は電気現象がすべて『光速度』の現象である点であろう。

コンデンサ充電現象の意味-『電荷』と光速度現象― 質問者のコンデンサ充電現象の話に入ろう。一定電圧の電源とコンデンサを繋いだら、どんな現象が起こるかが基本の話になる。先ず電気現象はすべて『光速度』の規範の基に在る。そこで、コンデンサ充電とはその電極板のプラス側とマイナス側に相反する『電荷』が集積された状態として理解しているだろう。物理学教科書の『電荷』の現象として考えてみよう。質問者は電源にコンデンサを繋いだ瞬間にコンデンサ電圧が電源電圧になると解釈しているのだろうが、それは止むを得ないことである。電源とコンデンサを並列に接続する図を想像すれば当然である。しかしその電気現象の本質を理解する事には初学者には無理があるのだ。元々教科書が光速度で電気現象を理解する教育内容になっていないのだから。その辺を捉えないとエネルギーが半分になると思うのも当然で、そこに誤解の意味の原因があろう。

図2.コンデンサ充電現象 どんな電気現象も過渡状態では、単純な回路要素で表現できるほど簡単ではない。ただ直流電源にコンデンサをスイッチで接続しても、コンデンサの電圧が瞬時に電源電圧になる訳は無い。それは現象が光速度の遅れを伴うことと、回路周辺の空間がその現象の伝達に影響を及ぼすからである。それは漏れインダクタンスとか抵抗などで表現する事も出来るが、決まった値ではない要素値であろう。厳密な方程式では表現できない。電流と言う技術概念量(is,ir)を考えれば、現象の光速度伝播から、それも電源側と負荷側では厳密には同じ量ではない。ここでコンデンサに充電される『電荷』と言う概念量に基づいて、その充電機構やコンデンサ電圧と『電荷』との間の物理的意味を考えてみよう。コンデンサのプラス電極とマイナス電極の『電荷』の分布を決める原理とその充電機構をどう解釈するか?プラス側のプラスの『電荷』は原子イオンが集まる訳ではないから、電極板から『電子』を引き抜き、電極板金属原子のイオンが残ると考えるのだろうか。その現象も電源側のスイッチSから始まって、コンデンサ端子に現象が伝わることになる。その時導線内にどのような電界(電荷分布に因る)が生じ、『電子』を引き抜く現象が起きるのだろうか。その引き抜き現象が終端のコンデンサまで伝播する様子をどのように解釈できるだろうか。次に、マイナス電極のマイナス『電荷』は電源の負側導線を通して『電子』が流れ込むと考えるのだろうか。そのマイナス側でも同じ意味での光速度伝播現象の解釈が要求される。単純に『電荷』が充電されると言う現象でも、その論理的解釈法を理解するにはとても難しい。『電荷』に因るコンデンサ充電現象はどんな原理で可能か?蛇足であるがもう少し述べたい。『電荷』移動は図1で考えたように電界E[V/m]が無ければならない筈だ。『電荷』は電線導体内を流れると教科書では説明されているから、電線内に電界が無ければ『電荷』は動かない。電源端子の電線内とコンデンサ端子の電線内とでは、同時に光速度を超えて同じ現象には成らない。導線内の単位長さにどんな電界が発生すると考えれば良いか。その電界の発生原理が明確に示されなければ、コンデンサを充電する『電荷』の移動を説明できない筈だ。図1でも述べたように、『電荷』では質量が無いから運動論には適さない。だから『電子』の質量をお借りして、『電荷』だけで良いのに質量まで組み入れた論理となる。コンデンサ電極には『電子』の『電荷』と『質量』を共に充電しなければならない論理になる筈だ。そこで考える、電線内の電界の発生が論理的に解説できるか。どのように電界が発生するのだろうか。抵抗降下電圧とは意味がまったく違うのである。電界と抵抗降下が同じでは、結局『電子』を動かす電界が無いと同じ事である。『電子』『電荷』を動かす電界は『電荷分布』に因ってしか図1の電気力線は説明できない筈だ。導線内に電荷分布に因る電界発生原理を示せなければ、『電子』移動の説明にならない。その『電荷』分布による導線内の電界発生の説明が出来ないなら、図1で論じた電界と『電荷』移動の意味は無用な事になる(本当は『電荷』など存在しないから意味は無いのだが)。『電荷(電子)』は加速度運動方程式に因って力を受けて初めて移動すると言うのが物理学の電気現象の原理の筈であろう。ローレンツ力の磁界加速は円運動で加速すれば中心に螺旋運動してしまう。磁界加速は今回の問題には無関係だ。電荷分布に因る電界しか『電子』は移動できない教科書理論の筈ではないでしょうか。

『電荷』とクーロンの法則 電極板に『電荷』が溜まるとは、どのような電界強度分布から可能なのだろうか。クーロンの法則は同じ極性の『電荷』同士にはその距離の2乗に反比例した排斥力が働く筈だ。どのようにクーロン力を打ち消す力が働くのか、その原理を示すことが理論の物理学としては欠かせない筈と思う。それは摩擦に因る『電荷』発生の解説が古くから受け入れられた解釈手法になっている処に原因があるようにも思う。クーロン力の強さを決める変数が距離と言う科学論の意味を是認するなら、『電荷』集合に対する力の論理的解釈法が示されて初めて電極板の『電荷』分布が論じられると思う。クーロンの法則を超える『電荷』集合の原理が。

静電エネルギー さていよいよ『静電エネルギー』とはどのような電気量で、どこに存在すると解釈すべきかを考えよう。電極板の『電荷(電子あるいは原子イオン)』を素に解釈するとすれば、その『電子あるいは原子イオン』が保持する『エネルギー』と言う意味で捉えるのか。極板に在るそれらの電荷対象は何処で『エネルギー』を保有して、どのような違いを前後で得たのか。『電荷』が『エネルギー』を保有するとはどのような『電荷』の様態の変化を生じると言うのか。『電子』が『エネルギー』を保持したり、失ったりする場合の『電子』内に起こる変化はどのような事で理解するのか。そのように考えた時、『電子』そのものに『静電エネルギー』の保持や消失の責務を負わせるのに矛盾を感じないだろうか。理論的とは、理屈の筋が通っていなければならないのである。矛盾が少しでもあれば、それをそのまま有耶無耶にしてはいけない。しかし、すぐに解決できる場合は余りなかろう。その時こそ、その矛盾を忘れずに何時か解決する時を待つ心掛けが欲しい。『電荷』が『静電エネルギー』を持つと解釈できるだろうか。式での W=CV^2^/2 [J] のV^2^[J/F]([V]=[(J/F)^(1/2)^]であるから) にその責務を持たせる以外ないように思う。『電荷』の次元[C]を『エネルギー』に関係付けて表現すれば、それは[(JF)^(1/2)^] となる。この『電荷』の意味と電圧の意味とをどのように『エネルギー』に関係づけられるかと言う問答になろう。コンデンサの静電容量C[F]は『エネルギー』を貯蔵する機能強度を表現しているが、『エネルギー』を貯蔵する空間的容積ではない。もし『電荷』が『エネルギー』を保有すると言うならば、プラスとマイナスが電極板に向き合う事の貯蔵効果は何なんだろうか。
(2)静電エネルギーの半分はどうなる? 上の(1)に続いて同じ問題であるが、この問題には『電荷保存則』と言う面の意味が強いと思う。質問者の解釈と疑問は至極当たり前の内容であろう。その質問に答えることはまた難しい。『エネルギー』が半分になるが『電荷』は保存されるという前提に在る。電圧が最終的にVになると言う事を実験的に検証できるだろうか。即ち『電荷保存則』が成り立つか?『電荷』の存在を否定する筆者が考える方向は決まってしまう。しかし、最終電圧がどうなるかに残念ながら答える能力もない。その辺の事情を電気現象としてどのように考えるかを述べたい。

電荷保存則と電圧 『電荷』と電圧は電気理論の根幹を成す密接な関係に在る。電圧は電圧計で計測できる。『電荷』は決して測定できない。コンデンサの静電容量は空間的構造体として定義されている。だから電圧が測定できれば、『電荷』は判定できるとなる。しかし、『電荷』が何ものかを確認はできない。『電荷』と考えている物が『熱』と同じ『エネルギー』だなどと言えば科学常識に反する。質問者の求めに答えようとすれば、図3のようにまとめるしかない。科学は実験的に検証しなければならないと言われるが、最終電圧がどのようになるかを計測する方法が筆者には思い付かない。『エネルギー』は電線路空間内で過渡現象の複雑な経過を経て落ち着くであろう。方程式を解く能力が筆者には無い。計測は必ず『エネルギー』を消費しなければできない。『エネルギー』だけが消失して、『電荷』が保存される理由が分からない。

まとめ 電気回路としては極めて単純なものでありながら、その現象を理解しようとするととても難しい事を改めて教えられた。『静電エネルギー』一つの技術用語さえ、長く伝統的に使われているのに、確信を持ってその実像を質問者に示せない。数式で表現される内容の奥に隠された真理はなかなか見え難い。今でも理解できないコンデンサ静電容量の物理学的・電気磁気学的解釈がある。電極版間のギャップが小さくなれば成る程静電容量が大きくなるとはいかなく意味か?ギャップの限界と『エネルギー』の流動模様に関係するか?

電荷概念とクーロン力 電気物理の最初の概念が『電荷』であろう。電気を論じるすべての基礎が『電荷』である。その基礎が理解できない、納得できないと疑問の中を彷徨って来た。高校生の質問がもう一度『電荷』の意味を問う機会となった。まとめとして、『電荷』とクーロンの法則そして電荷の『エネルギー』の関係を図にまとめて見た。コンデンサの電気現象の図は電極にプラスとマイナスの『電荷』が向き合って集まる解説から始まる。――今(2017/09/01/am:9.30)ヘリコプターが酷い騒音を撒き散らしている。誰の仕業か?――筆者は先ずその基から理解できない事に気付いたのが今から30年程前の事であった。クーロンの法則を斬る  に述べたが、コンデンサの電極に同じ極性の『電荷』が集電荷するには相当のクーロン力に因る排力が働く。その排力に逆らって同一『電荷』が集荷する理論的根拠が欲しい。そのクーロン力に逆らう力が示されなければ、コンデンサの『電荷』模様の解釈は理解できないのではないか。もう一点気付いた。『電荷』の『エネルギー』の意味である。(1)プラスの素電荷2個とマイナスの素電荷1個が電気力線の電場内で、一点に集荷した。図1の解釈から、その場合の集合電荷の『エネルギー』は如何程と解釈すれば良いのだろうか。同じく(2)のマイナス素電荷が3個集合した場合は、その総合『エネルギー』は如何程と解釈すれば良いのだろうか。(3)はとても不思議な未解決の『電荷』概念の問題である。プラスの電荷とマイナスの電荷が合体したら、『電荷』はどのような結果になるのか。プラスとマイナスの二極『電荷』概念の根本的問題に思えるのだが、高校生も不思議に思わないのだろうか。『電荷』は消えるのかどうか?

現時点の纏めとしては、『エネルギー』でなく『電荷』を電気現象の基礎概念にしている限り、残念ながら質問には答えられなくて御免なさい。

コンデンサの機能と電気スイッチ

電力回路ではコンデンサは力率補償用設備機器として考えられる。電力回路では実際にコンデンサをそれ程問題にすることは無いでしょう。しかし電気回路の解釈問題としては考えておくべき問題があるようだ。負荷回路にコンデンサを直列に繋ぐことは余りない。誘導性負荷にコンデンサを直列に挿入すれば、R-L-C回路となる。その直列回路で、コンデンサのリアクタンスを大きくするには静電容量を限りなく小さくする必要がある。コンデンサのリアクタンスを大きくすることは回路インピーダンスの総合リアクタンスはマイナスの容量性と解釈すべきだろうか。無限にコンデンサの静電容量を小さくすれば、回路電流は流れなくなり回路遮断と同じくなる。いわゆる電流を遮断する機能を持っているとみることができる。こんな単純な回路の意味を吟味することにも重要な意味がある。元々コンデンサは電気導体が繋がっていない構造を成している。回路としては所謂『電子』の通過を阻止する機能とも見える。電気導体が閉回路を構成していないのである。そんな根本的な意味で、コンデンサの物理的意味を考える考察材料として意義があろう。次の回路を考えてみよう。
1.R-L-C直列回路 ここでコンデンサの電極が離れて、原理的には導体接続を遮断しているスイッチと同じ機能を持っている事を理解してもらいたい。空中の配電線路の2本が離れて平行に張られているのも、見る視点を変えて見れば小さなコンデンサが張られているのと同じ事なのである。

1.直列回路とC  (1)コンデンサ容量をとんでもなく大きな値にした。直列の総合リアクタンスXは9Ωで、誘導性回路となる。(2)はリアクタンスゼロとなる。電源から回路を見れば、純抵抗Rの回路に見える。リアクトルもコンデンサも共に10Ωで、丁度共振状態となる。コイルとコンデンサの間でやりとりするエネルギー量が丁度釣り合って、電源からのエネルギーの関与が無い状態で、電源と切り離された回路要素となる。(3)静電容量を極端に小さくした。C=1[pF]として、そのリアクタンスはX=-3183 [MΩ](負のリアクタンス値) と完全な絶縁状態となる。即ち等価回路のように、コンデンサが回路のスイッチオフの機能を示すことになる。このコンデンサがスイッチのオン―オフ機能を持つと言う意味は、元々コンデンサの電極は離れた導体の遮断状態となっているから、特別な事ではないのだ。ここに、電気回路の『スイッチ』とコンデンサの機能に共通な意味が隠されていただけで、気付かなかったのだ。静電容量が小さければ、電極間の空間に蓄える『エネルギー』の量が少ない訳で、丁度スイッチの接点間の空間に蓄える『エネルギー』が少なくて回路遮断する機能と同じ意味なのだ。スイッチの接点間の空間エネルギー分布に繋がる意味である。それが『物理』である。覚えることで無く、学校教育の目指すべき教育内容は『理解する』である筈だ。本質を捉えることは『一つ』の事柄が広く全体に通じる視点を養える筈だ。
2.RとLCの並列回路 序でに並列回路についてもコンデンサの意味を、電気回路現象の例題として考えておこう。

 2. 並列回路とC  リアクタンス分と抵抗分を分離して考える。コンデンサの静電容量の値を変えて、コンデンサの意味を考えた。(1)は特に容量を大きくした場合で容量性負荷となる。リアクタンスは負である。(2)は共振条件でリアクタンスは無限大となる。従って、リアクタンス回路は定常状態では電源と切り離されたようにコイルとコンデンサ間でエネルギーの遣り取りがなされて、電源のエネルギーを必要としない状態になる。だから等価回路の(2)となる。共振回路の損失があるからそのエネルギー分は電源から受けることは当然であるが、考え方としては電源と切り離されると言う認識で良かろう。(3)のC=1[pF]ではコンデンサの機能はスイッチのような意味になってしまう。だから負荷はL-Rの並列回路となる。

結論 コンデンサの呈する電気現象を『エネルギー』に対してどう解釈するかを考えて来た。従来の伝統的解釈は『電荷』の正と負の概念によって解釈する方法であった。その『電荷』は存在しないと言う科学的常識離れの論を展開し、科学者の顰蹙を買って来たと思う。『電荷』概念に依った解釈法を取れば、空間の『エネルギー』の実体が不明確になり、世界に存在する質量の無い『エネルギー』を認識できなくなる。あくまでも世界は「光」と言う世界の根源要素から出来ていると言う認識に依って、コンデンサの電気現象を論じた。電気スイッチが空間エネルギーの電圧を保持した回路遮断機能と看做す観方で、コンデンサの意味を解説できたと考える。

空間とベクトル

眼前に広がる空間は実在空間である。その空間をどのように認識するかは易しいようで結構難しいかもしれない。その訳は、有名な科学者が五次元空間とか、多次元空間とかの科学論を話題にするが、どう考えても時間の次元を加えても4次元空間しか理解できないのだ。科学者の論理は難しい。そこには抽象化の論理展開が原因に成っているからなのかもしれない。5次元空間は実在空間と異なる抽象化空間だから自分には理解できないと諦める。

4次元空間(実在空間と抽象空間) 3本の互いに直交する直線の座標軸に時間の次元を加えて、眼前の空間に展開される自然現象を捉えることが出来る。ただその4次元空間と言っても、その認識する人の意識が同じとは言えないように感じる。観測者としての立ち位置をどう捉えるかという大きな問題が潜んでいる。『認識する空間』とは何かに答えなければならない問題を抱えているのだ。さらに、自分にとっては4次元空間でも実在空間と抽象空間の二つがある。

%e3%83%99%e3%82%af%e3%83%88%e3%83%ab%e3%81%a8%e7%a9%ba%e9%96%93%e5%ba%a7%e6%a8%99ベクトルと空間座標(②の図で、sinφは負になる) 図のi j k nα nβ nγ などはすべて単位ベクトルであり、大きさ1の方向性を規定する重要なベクトルである。先ず4次元の実在空間がある。眼前の空間は光に満ちている。光は日常生活そのものを照らす実在である。物理学理論を持ち出さなくても、日常感覚に溶け込んでいる。光は直進する。その速度は毎秒30万キロメートル進む。ただそれだけの意味の光の性質を元に、眼前の4次元空間に光の運動を考えてみよう。例えばビーム性の高い『レーザーポインタ』のような光源を取上げよう。その指向性の高い光パルスを1秒間真上に向けて放射したとする。その時の光の軌跡はどのように描かれるかと言う単純な問題である。その光のビームは連続的な一本の線を描くであろう。その線が直線であるか曲線であるかを問うのである。こんな余りにも素人らしい日常生活者の視点からの疑問がとても科学論には重要であると考えるのだ。光は1秒間に30万km進むから、光の軌跡もその長さは30万kmになる。さて光が直進すると言う意味はどのような意味なのだろうか。その時、光の進む空間をどのように認識するかが基本的概念になる。眼前の実在空間は光に対してどのような意味を持つのかである。自分が立っているのは地球である。地球は太陽を中心にして公転しながら自転している。太陽がどのような速度かは分からない。しかし、地球の速度を公転で考えても大よそ毎秒30kmと言われている。この地球の速度と光の速度との関係を実験で確認しようとしたのが二人の科学者マイケルソンとモーリーである。実験では上手く行かなかったが、考え方は正しいのだ。上の図の①は光が曲線を描くことを示した。光は光の放射源から空間に放射された途端に、放射源から完全に自由な光自身の空間伝播特性に従ってそのエネルギー伝播現象を示す。そのように光が直進することで決まる空間を光規定空間座標と考える。地球の空気層ではその媒体の特性の影響を受けるが、基本的には放射源の運動には支配されない。この問題は、光の相対速度を認識するかしないかの問題であり、認識する一人ひとりの解釈の問題である。光は『相対速度』でしか観測されない。その実験的証明は、レーマーの木星の衛星観測からの光速度算定実験に示されている。実験室での光観測実験では、光源と観測者が相対的に同一速度で運動しているから、光の相対速度は打ち消されて、観測できないのが普通の伝播現象である。やはり、実験に基づいた科学論を大切にすべきである。

電気工学と空間座標 空間とベクトルと言う標題で記事にした訳は、瞬時虚電力と言う電力理論の意味を分かり易く解説できたらとの願いで、考えている内に解釈の空間座標の意味を明らかにして置こうと思ったからである。『静電界は磁界を伴う』と言う実験結果の座標は実在空間座標になろう。コンデンサのギャップ空間の磁場を検出するのは普通の実験空間である。しかし、瞬時電力理論で展開する座標は独特の抽象化された、実在しない空間概念である。上の図②のように、一般に科学技術論で取り扱う空間座標は抽象化座標が殆どである。その抽象化された概念が専門家にとっては日常的にありふれた概念であるから、市民が理解するには無理がある事を余り意識せずに過ごしている。数学式で表現されると途端に難しくなる。数式で表現できる概念は、たとえ長い文章になっても日常用語で説明できる事が科学研究者の責任であろう。そんな意味で瞬時虚電力とは何じゃろうかとここに来て悩んでしまった。空間瞬時ベクトル解析法と交直変換器への適用は30年程前にまとめた論説であるが、なかなか良く出来ていると自分で書いていながら、読み直しても考えてしまう。世間知らずの無鉄砲人生の闇に翻弄されていた頃の思い出を乗せた論文資料だ。その意味を解説するに抽象化する科学技術の空間座標の意味を高校生にも何とか理解してもらえないかと思っての準備である。街なかの配電線路を見て、その中に在る自然現象としての『エネルギー』の振る舞いが日常感覚で何となく分かるようになればと思っている。

振り返って 図①の光の伝播ベクトルと空間の意味は、自由空間における光の伝播特性と周波数 日本物理学会講演概要集 第53巻第2号第1分冊 p.87 (1998)、光伝播時間算定のための瞬時空間ベクトル解析法 同上第54巻第1号第1分冊 p.77(1999) 2軸回転系の光伝播特性 同上 第55巻2号1分冊 p.77 (2000) にある。さらにこの関係でお恥ずかしい思い出がある。1999年7月中頃と思うがNatureに投稿したことがある。Instantaneous Space Vector Analysis of Light Energy of Root Element in Free Space 受付番号KO9198 とあるが、その当時に小杉文部大臣がロンドンに出向いて、この論文の処理に当たっていたように思う。その意味が理解できないが、natureからはregretと返送されて来た。これは光の相対速度を論じたもので、すでに光の速度と空間特性(2011/05/22)に示した。