タグ別アーカイブ: 光度

照明と配光曲線

古代人の松明や燈明に比べ、電灯照明は人の生活領域に時間・空間で革新をもたらした。しかし、白熱電球が懐かしくなる程技術の生活環境変化が激しい。

照明には独特の計測用の単位が定められている。その単位の意味が捉えにくいものであっても、その光の放射特性に関する法則や解釈法は、電波伝播特性の解釈に極めて重要な考え方が含まれている。マックスウエルの電磁方程式が光の伝播特性を説き明かした式である事から、照明の配光曲線と電磁波特性はほとんど同じ意味で取り扱えるのである。ただ違いは、照明が人の視感度のフィルターを通した波長成分に対してであるのに、電波はすべての波長成分に対して成り立つ点であろう。写真772照明の量的表示単位が特殊である原因は、人の目の感度が光の波長によって大きく異なる事に因る為である。いわゆる「可視光線」と言う見える波長に限界がある為である。380㎜μ(ミリミクロン)から760㎜μの範囲しか見えない事になっている。その人の視感度を比視感度曲線で解釈する。上の単位の関係を『比視感度曲線』との関係で図解しておく。写真7733つのグラフで示した。σ(λ)で表現したのが『比視感度曲線』である。人は紫外線も赤外線も眼には見えない。しかし電灯などの光源の放射光の波長は様々な成分の分布光線から成り立っている。その放射光束は単位ワットW(=J/s)で解釈する。Φ(λ)[W]で仮想的に図のようなものと仮定してみた。人が明かりとして認識出来るのはその光の内の或る一部しか感じないのである。その人の感じる光の量の大きさを図にしてみれば、σ(λ)・Φ(λ)の積のような大きさと考えられる。その各波長成分を積分すると、光束Fとして解釈できようと言うものである。しかしこれらの単位やその解釈もいろいろ問題があり、上の図のように簡単な捉え方で正しいとは思えない。一応教科書的説明を示しただけである。
配光曲線とは?配光曲線一つの例として、笠付き白熱電球の場合の光の放射分布の強さを表現してみた。蛍光灯の平板天井灯などでは完全拡散光源と看做せて、配光曲線は球状分布で解釈できる。その光の強さを表す用語を光度と言い、その単位はカンデラでI [cd]で表す。光度は光源からある方向に放射される立体角当たりの光束量の意味である。立体角については球と立体角をご参照ください。ある角度θの光度をI_θとして、それを全空間立体角4πステラジアンで積分すれば、光源の総放射光束Fルーメンとなる。しかし、この総光束量は光の最小仕事当量Mによりエネルギーのジュールに換算可能のように定義されているが、それは厳密な意味を持たないと言わなければならない。ジュールとルーメンの間には光の波長と人の感覚との関係ゆえに、光束ルーメンをエネルギーのジュールで換算する事は出来ないのである。そこに照明計測量の評価の問題が存在する。配光指向特性指向特性 配光曲線の形状で、その光の放射強度の指向性が照明範囲や雰囲気に関わってくる点で重要である。その例で、三角関数の余弦のべき乗 (cos θ)^n^ の数例を示す。反射面で、平行光線を放射する探照灯(昔戦時中の夜空を何本もの探照灯が敵航空機を捉えるために交錯していた場面が目に浮かぶ)などは I_0 一本の軸線がそのまま特性となる。それはパラボラアンテナ(放物面鏡)の電波反射特性と同じものである。この配光曲線の光度I_θの値はその方向に拡散進行する光の道筋をも示す。その道筋を『光路』と言う事にする。如何にも光の直進性も兼ねた言葉として有効と思う。パラボラアンテナと正反射に光路の例がある。