タグ別アーカイブ: バンド理論

半導体とバンド理論を尋ねて

追記(2018/05/16) 反省を込めて追記。既に前に同じような記事を投稿していた。半導体とバンド理論の解剖 (2014/01/25) である。さらに太陽電池の解剖 (2014/02/06)にも有る。辿れば、その前年のトランジスタの熱勘定 (2013/01/30)から始まっていたようだ。そこで、電気エネルギーと熱エネルギーが同じものであると考えていたようだ。現在は、『電荷』概念では自然現象の本質を理解することは無理であるとの認識にある。このトランジスタの熱勘定で論じた意味が極めて大切なことを示唆していたと思う。荒っぽくて、反感を買うようの記事が多くて誠にお恥ずかしい。2013年には「量子力学」とは何か?電子科学論の無責任など。

半導体の電子とは? 電力技術における電子の意味を尋ねて30年以上過ぎた。結論は『電荷』も自然界には実在しないと確信するに至った。それならば当然電子も『電荷』などとは関係ないことになる。電気回路の金属導体中を電子が通り、電流になると解釈されている。ただし、筆者は電流は流れず等と言ってきた。だから以下の記事も科学論として認知されるようなものではないかも知れないが、市民や電気の初学者が疑問に思うことに対する『問答』としての価値は十分にあるものと思う。言わば統合的な理屈の自然科学論として見て欲しい。専門的な領域を超えた論理として。さて、現代物理学理論の根幹を成すものに量子力学がある。その代表的な適用が半導体である。半導体の電子のエネルギーレベルとその動作領域の抽象的認識概念が理論構築の原点になっているように思う。フェルミ準位がその要のエネルギー基準値として存在することになっているように思える。そのフェルミ準位は半導体の物性特性に因って、そのエネルギーレベル(電子のエネルギー量)が何ジュール[J]、あるいは何[eV]と決まった値があるのだろうか。

エネルギーバンドとフェルミ準位 電気工学、電気物理と同じ電気エネルギーを取り扱うのに、その専門分野ごとに理論的解釈法や概念がまったく異なる。ただ、原子構造については原子核とその周りを回る電子から構成されているという解釈は自然科学論の基本原則として世界の共通認識になっている。原子構造が科学論の原点にある。『電荷』否定はその科学論から除外されてしまう。永年電力技術で感覚的に身に付けたエネルギーの実在性が染み付いた論理構成の習慣が『電荷』概念の曖昧性に拒否感を抱くようになってしまった。電気物理での半導体の電気現象解釈理論はバンド理論で、正しく原子構造論の電子のエネルギー論を論じているように思う。それは『電荷』概念に基づいて理論構築されている。半導体結晶は基本的にダイヤモンド結合の構造と解釈されている。電子による共有結合が基本になっているように思う。原子核の周りをどのような速度で電子が周回運動をしているかは分からないが、それぞれの電子が回転し互いの隣り合う原子同士の間では、核の周りは複雑な電子回転に伴う『負電荷』の空間場になっているように思われる。単純な電気理論から考えると、負の『電荷』の空間場で、隣り合う原子同士の間でダイヤモンド結晶になる訳が理解できないのだ。電子が回転しながら隣の原子同士が結合する姿が現実世界の空間概念で描けないから理解できない始末にいる。そんな理解能力の無い者が現代物理学理論のバンド理論の意味を考えるなど誠に恥ずかしい極みではある。しかし、初めてバンド理論を学ぶ若い方々も同じような疑問を抱くのではないかと思うので、少し考えを述べてみたい。電気材料を導体、半導体および絶縁体と三つに分けてバンド理論の基礎が説かれる。全てに価電子帯と伝導帯がある。半導体と絶縁体にはその帯の間に禁制帯と言うバンドギャップが存在する。それらのバンドの『帯』と言う幅で表現される意味は電子の持つエネルギーの量の大きさに関係したように見受けられる。電子が回転運動していることに因る運動エネルギーの量の大きさを意味しているのかと思う。電子には質量があるから、その御蔭で運動エネルギーの解釈だ可能である。水素原子は原子構造が単純だから、電子のエネルギー量は基礎物理学では良く算定されて議論されているが、シリコン原子の電子になれば、その運動エネルギーは算定は可能なのだろうか。どの程度の回転速度になるのだろうか。その算定が出来て初めて、新しい半導体の技術開発にバンド理論の意義が生きて来る訳と考える。決して理論が理論の為の理論であってはならない筈だ。『電荷』の実在性はその理論構成に具体的に生かされてこそと思う。リン(P)やヒ素(As)の不純物が添加されると実際の電子のエネルギー量はどの程度のジュール[J]になるのだろうか。

太陽光発電理論と電子 量子力学の理論として大まかに理解している事は、原子や分子にエネルギーを与えると、原子の外殻周回電子がそのエネルギーを受け取って、電子の質量の運動エネルギーの増加を来たし、遠心力と釣り合う様な電子軌道の膨らみを来たすと理解している。光などのエネルギーが電子の運動エネルギーとして吸収される訳をどのように理解すれば良いかも分からないので困惑している。更に何らかの原因で逆に電子の軌道が下のレベルに落ちると光としてエネルギー放射を来たすらしい。勝手な解釈と言われれば、致し方ないが電子の運動エネルギーと光との変換過程が理解できない。量子力学の基本理論を理解している訳ではないが、太陽光発電での半導体は太陽の光を吸収して、電気エネルギーに変換する発電機能設備である。発電パネル内で、電子が光エネルギーを吸収してエネルギーの高い状態で伝導帯に入る。その伝導帯では電子が自由電子となり、原子の束縛から解放されると解釈して良いのだろうと思う。伝導帯の電子はどの程度のエネルギー増加になっているのかを知りたい。発電パネルから次は電気回路を通して負荷に電子はエネルギーを運ぶのかと理論のつながりを考えるのだが、電気回路内の電子による電流概念となると、どうも電子はエネルギーを担う役割は想定されないことになっているようだ。一体半導体内で光エネルギーを受け取ったかと理解するが、回路理論になるとそのエネルギーを担う電子と言う概念は無いようであるため、どこか論理的な繋がりが無いようで理解に苦しんでしまう。もう一度述べる。量子力学における半導体のバンド理論では原子の周回電子のエネルギーの増減を論理構成の基本に据えている。伝導帯の電子は増分エネルギーを電子質量の運動エネルギーとして余分に担ってエネルギー供給機能を果たす役割が期待されているようだ。そこでの電子は速度の増加としての特別の電子になるのであろうか。次に半導体理論によって理論付された電子に関係して、その太陽発電パネルをエネルギー源として捉える電気回路理論では、折角のバンド理論で担ったエネルギーの増加分を電流の根拠である電子には求めていないのである。当然のことであるが、電気回路論では電子に質量に関わる概念は意味を持たないから、電子における『電荷』と電界との間の電気磁気学理論に基づく論理しか考察対象には成らない。だから原子構造論における電子エネルギーに関する運動エネルギーは全く無意味に成る。総合的に全体を見渡した時、半導体パネルで受け取った太陽光エネルギーは電気回路のエネルギー伝送にどのような機能で関わり、負荷に太陽光エネルギーを供給することになると考えるのだろうか。『エネルギー』を基本に考えると、太陽光線も電気回路を伝送する電気エネルギーも負荷に供給されるものも、みんな同じ『エネルギー』でしかないのである。電子の『電荷』は理論的に『エネルギー』を持ち得ないのである。

過去の関連・関係記事 今迄に取上げた考察記事は半導体、電荷およびエネルギー論については次のようなものがある。

太陽電池の解剖

半導体の利用分野に太陽電池がある。エネルギー源としての太陽光発電である。太陽光を電気エネルギーに変換するエネルギー変換装置である。そこに半導体が使われる。アモルファスSiと言うシリコンの結晶構造でない非晶質体が利用されているようだ。太陽電池の単位セルの構造や製造過程も企業毎にいろいろ違いがあるようだ。基本接合はpin構造で、p型とn型で、i型(真性半導体)が挟まれた構造になっているようだ。従ってその場合には、pn接合には成っていない訳である。半導体の特性は、そのpn接合部での『電子』と『正孔』の云々というバンド理論で解釈される筈であるが、pin接合ではそんなバンド理論の説明は困難であろう。しかし、それでもそんな太陽電池の解説には相変わらず同じ論理の説明がなされている。全くその解説では、半導体の動作原理を理解することができない。理解できる人は自分から見ればやはり科学論の天才に思える。しかし本当の気持ちは複雑だ。IT、量子力学論の科学書等何処を見てもバンド理論であり、フェルミレベルである。誠に恥ずかしい自分の未熟さを曝さなければならない。半導体とバンド理論の解剖に始まった関連論である。

光電変換と空間構造 光のエネルギーを電気のエネルギーに変換して、エネルギー源とする方式である。光は光自身がエネルギーである。電気エネルギーも同じ一つの『エネルギー』である。『エネルギー』は光も、電気も違いは無い。太陽電池と言う半導体構造体の中で、光が光形態から目に見えない空間伝播(電気)エネルギーに変換されただけである。その変換過程に半導体と言う特殊な空間構造体を介して光が直接エネルギー変換作用を受けただけである。そのエネルギー変換過程に半導体の接合組み合わせがどのような機能を発揮しているかが物理学として解明されていないだけなのである。真実は理論解明されていない。科学技術が理論解明されることを待ち望んでいると観て良い。揚羽蝶の翅の光変換と同じ意味合いを半導体構造の中に秘めているとしか考えられない。色の世界を尋ねてに可視光線間の変換を空間の「Color cell」で解釈することを述べた。半導体内で光エネルギーが貯蔵され、別形態のエネルギー放射(いわゆる電気)に変換されると解釈すれば良い。全ては実在する『半導体空間構造』に秘められている。何も『電子』や『正孔』などと言う実在しない概念を持ち出す必要はない。この『エネルギー』と言う一つの実在物理量を感得できるかである。

『電子』『正孔』説の論理的欠陥 量子力学では、エネルギーを原子構造の外殻周回電子群が運動エネルギーの増減をするという軌道変換で解釈している。その時は電子質量を運動エネルギーの基礎に据えている。しかし、バンド理論や電流概念においては、電子の質量等全く論理外に置かれている。電子流で電流を解釈する時、電流値は電荷の時間微分で定義する。しかし、電子を電流の基礎に据えるなら、電子に付随する質量も一緒に考えなければならない筈だ。それでは電荷の時間微分と同じく、質量の時間微分も同時に論理の中に組み込もうとすれば、その意味をどう繕うのだろうか。質量/時間=dm/dt[kg/s]はどんな電気的解釈に繕うのか。電子科学論の無責任。持論で誠に恥ずかしい。

半導体とバンド理論の解剖

『電荷』を否定する。さて半導体の理論はバンド理論が担っている。ケイ素(シリコン)Siの共有結合で真性半導体の結晶構造を理解する。不純物元素により、P型、N型半導体となる。バンド理論で重要なエネルギーレベルの指標に『フェルミレベル』と言う概念がある。何か電子の存在確立が50%のエネルギーレベルをフェルミレベルと解釈するようだ。『電荷』を否定する立場から考えれば、そんなフェルミレベルの意味が理解できない。それは、技術的な半導体製造過程で具体的な設計に重要な役目となっているだろうか。半導体の特性決定に『フェルミレベル』を役立てられるかの問題である。 半導体に関する解説書が書店には沢山そろっている。「バンド理論」の解説である。しかしその意味するところが理解できない。理解できないような筆者がバンド理論を解剖するとはどういうことかと訝しいでしょう。その事を少し素人なりに解剖してみようと思う。理解できないなりに、昔学習に努めた。例えば、オックスフォード物理学シリーズ5 触れ合う原子ー液体と固体の物理ー 三宅彰訳 丸善株式会社 (ATOMS IN CONTACT  B.R.Jennings and V.J.Morris) 等を読んだが、全く自分には理解するだけの能力がない。

半導体結晶とenergy band 半導体結晶構造とエネルギー順位 半導体素材はシリコンSiが主体であろう。教科書的には外殻の荷電子の数が4個で、立体空間的にダイヤモンド構造を成す結晶体と考えている。その構造を平面に表現できないが、右①のような平面図形で教科書には表されている。シリコンだけの純粋な結晶は絶縁体であろう。そこに不純物が含まれると、導体と絶縁体の中間の電気伝導特性を示すようになる。不純物の混在結晶で、半分導体に近い特性を示すという意味で半導体と名付けたのだろうと考える。そのダイヤモンド結晶の不純物により、結晶構造にひずみが生じる。上の①ではホウ素Bを不純物としてシリコン結晶内に、ドーピングさせた場合の様子を平面図に表した。・・が電子同士が対を成す『共有結合』を表す。炭素結合の秘め事に関連論。原子同士を結び付ける力は磁力であり、エネルギーの回転流であろう。電子の『電荷』等は存在しないのである。さてホウ素Bが結晶に混在すると、電気特性が何故変化するのだろうか。教科書の説明は、ホウ素の最外殻電子が3個で、結晶構造に電子の欠損が生まれ、その欠損部は丁度電子の穴、正のホールと看做せると解釈する。その電子欠損部に向かって、隣の電子が移動すると考えるようだ。その時、電子が逃げたSiに電子の欠損部が移り、また次の隣から電子が移って来ると考えるようだ。次々と電子の移動が起こり、それが電流として半導体の特性を示すと解釈するようだ。電子の移動は電荷間の電界に因る以外は不可能である。どんな電荷分布により、電子を移動する電界が生じると解釈するか。この電荷移動については力学から見た電流矛盾で考えた。ホウ素が混在しても、電気的には原子の電荷は中性の筈である。

半導体と回路素子 半導体と回路素子 現在の科学技術を支えている基本が半導体製品である。送電系統の大電力制御の半導体製品から、pcのcpuや情報端末まであらゆる基本製品が半導体に支えられている。なかでもその基本となる幾つかを拾い上げて、半導体の特性とその解釈理論を考えてみよう。簡単な製品で、a diode、b transistor、c LEDを取上げて考えてみよう。

diode  最も単純な半導体機能はダイオードにある。カソードKに対してアノードAが高電位になる順電圧がかかると、ダイオードはスイッチオンで、導線で繋がったとみれば良い。電源電圧が逆になれば、ダイオードはスイッチオフで、回路が遮断される。こんな電気的動作、スイッチング動作を自動的にダイオードが電圧の逆、順方向を判断して、自動的に切り替える特性を備えている。こんな自動制御機能が半導体の優れた基本特性となる。このダイオードで、電気回路のエネルギー流を一方向だけに切り替える pn 接合の結晶構造の意味をどのように捉えるかである。それが何故かの『疑問』であり、『問答』の原点である。ここで視点を変えて、セレン整流器に触れておこう。古い整流器としての実績がある。調べると、セレンSe(99.99%以上の純度)はp型半導体とある。セレンは周期律の酸素の列にあり、6価であるから結晶構造はダイヤモンドとは異なるだろう。セレン整流器はセレンに錫ーカドミュウム混合体を吹き付けて整流作用を作り出していたようだ。この場合も、半導体のスイッチング機能としてはシリコンダイオードと同じ原理であろう。整流作用の解釈には、幅広い観点からその本質を見極めなければなるまい。

transistor 次に能動的制御性を備えたトランジスターを考えてみよう。b 図にそのnpn型を記した。そのトランジスターと言う電気回路素子は、特性としてp型のベースBからn型のエミッタEへの信号(普通電流と言う)供給を制御すると、コレクタC側の負荷への供給エネルギー量(出力信号)を自由に制御できる機能を持った素子である。簡単に電流制御半導体素子と言えば良いのだろう。しかし、このトランジスターの空間構造がnpn接合になってはいないのだろう。n型半導体にp型半導体をドーピングして製造されているのじゃなかろうか。三層構造でなく、ドーピングの二層構造ではなかろうか。もし内部接合部の構造が明確に三層のnpn型に構成されているなら、基本特性は2個のダイオードを逆接続しても得られる筈だ。そんな単純なpn接合には決してなっていない筈だ。コレクタ側の接合はダイオードの逆バイアスとなる。だから、ベースーエミッタ間を制御しても基本的にはコレクターベース間は逆バイアスで、ダイオード基本特性から決してスイッチオンの状態には成らない。即ち負荷制御は出来ない筈である。トランジスターの科学技術は現代社会の全てを支える根幹を成している。しかし、その科学的理論は極めて曖昧な論理が世界を支配している。

LED 三つ目に発光ダイオードを取り上げよう。中村修二氏の功績で、青の光源が得られた。窒化ガリウムGaN系で光の三原色の一つ青色が得られ、三原色が揃ったと言えよう。そのLEDの半導体構造がどのようになっているかが良く分からない。製造過程がどのように成されるかが分からないから、その出来上がった完成LEDの接合部の空間構造の接続状態を認識できない。しかし、pn接続の間にドープ発光不純物(?)が有る訳でもなさそうだ。カソード(n型)基盤の上で、p型アノードの近くにドーピングされているのかと思える空間構造だ。この発光分子材がどのように電源供給エネルギーを吸収して、一定の周期で放射する発光エネルギーに変換するのかが発光色の周波数となる訳である。エネルギー変換機能の詳細は発光物質のエネルギー貯蔵・放射特性で決定されると観て良かろう。白熱電球のフィラメントにタングステンが優れている訳は素材の蒸発や加工性エネルギー変換効率など様々な要因から利用されて来たと同じく、LEDの場合もその素材の発見に掛かっている訳で、分子構造等の空間的エネルギー変換特性は中々捉え難かろう。理論で示すことが難しいのである。技術の利用は理論に関わりなく進展する。殆どの科学的発見は常識的理論から導き出されて来ただろうか。

思考実験 暗中模索の中で、手掛かりを得たい。半導体とはどんな性質なのかを探りだしたい。決まり切った解説からは新たな手掛かりを得ることは難しかろう。少しでも無理に物理的意味を捉えたいとすれば、上に考えた『疑問』を具体的にすることかと思う。問答実験で別に取上げる。