タグ別アーカイブ: エネルギー分布密度

魔法の電線路

前記事、電気工学から物理学を問う  の問題意識を説明したい。

電線路電力電線路と電力密度 電気回路の基本となる単相交流回路である。電気工学技術理論が誠に合理的に非の撃ちようが無く完成されている。実用的には何も困ることが無い。昨年の電気主任技術者第一種の問題(理論)にも、球状電極の電荷分布の問題があったようだ。それ程『電荷』は電気現象解釈の基本的概念となっている。その電気技術論に異論を唱えるなど社会的常識からは正気の沙汰でない。だからこそ電気技術理論がそのまま自然界の『真理』であり、物理学理論の根幹として疑われることなど何もないとなる。自然科学で『電荷』を自然界の基礎としての実在物理量と社会的合意の形成を成して来た。電磁界という電界と磁界で理論構築した原理原則は完璧と見られている。学術理論にとって、それは『電荷』の御蔭でもあろう。『電荷』を否定したら、電気力線を描く論拠を失う。『電荷』を否定したら電流の論拠を失う。電流の論理構築が困難になれば、磁界、磁力線を描く論拠も失う(電気技術の理屈からすれば本当は電圧時間積分で良いのだが)。しかし自然は誠に巧く出来ている。『電荷』など無くても電線路は『エネルギー』を電源から負荷までチャンと送り届ける。

魔術的電線路解釈 自然科学理論の常識論からかけ離れた論を呈すれば、魔術の論理と見られるかもしれない。たった一つの『エネルギー』を頼りに考えて来た。殆どすべてを捨てて来た。春の新学期も始まる教室では、皆さんが電気の授業を行うに『クーロンの法則』の原理原則論をとても高度の数式に因る厳密な論理性を持って話され、展開する時期かもしれない。しかし、電線路空間内の『エネルギー』の挙動を教えた方が自然の意味を理解し易かろうと思う。私が解釈する先に進んで頂きたい。目に見えない現象だから、解釈法は千差万別であろう。電圧は電線路空間のエネルギー分布によって決まる技術的評価・計測量である。そんな感覚で捉えるまでにはいろいろ考えた。そんな経過を記事にして来た(参考記事#1,2,3,4)。そのエネルギー分布が電線導体と空間の間でどのように分布するかはその人の感性によって解釈するより方法が無いかもしれない。一応、図には電界と磁界の意味を空間のエネルギー分布密度δ(r,t)との関係で解釈して示した。電界、磁界を理論構築に欠かせないと言うならばという意味で、一応解釈を式で表現しただけである。その式の根拠は、空間をどのような捉え方ですべきかという哲学的な解釈が必要であろう。真空空間の定数に真空透磁率と真空誘電率がある。真空の解釈をどうするかは、如何にも哲学的である。平成2年頃電磁気現象を家に引きこもって、遣る瀬無い人生をぶつけていた頃の思索のテーマであった。その次元はヘンリー[H]とファラッド[F]である。真空にコイルとコンデンサをどのような意味で捉えれば良いかと考える愚かな毎日である。しかも単位長さ1[m]当たりである。やっと今頃になって、その距離の意味を捉えたと思う。L[H/m]やC[F/m]の単位長さ当たりという意味の長さの空間的方向を。電線路で言えば、電線路の『エネルギー』の伝送方向であるとはっきりした。それは『エネルギー』伝送速度即ち光速度の方向の長さであると成る。実際に真空中に導線を張ってエネルギーの伝送実験をした訳でないから、科学論としての証明は出来ないが空間の『エネルギー』伝播解釈は『電荷』否定の具体的な視点となろう。電線は一般に絶縁被覆電線を使うから、エネルギーはその絶縁材料部分を通って高い密度で伝送されるだろう。物理学では『エネルギー』は質量をその拠り所としているが、ただ電界、磁界についてはそのエネルギー空間密度は認識して解釈しているようだが、実際にその『エネルギー』が空間に実在していると解釈するかどうかになると、極めて曖昧である。空間に『エネルギー』が実在すると解釈すると、その『エネルギー』は何が保有する『エネルギー』なのかを述べなければならなくなる。その理屈を論じることが難しいから、曖昧にしているのだろう。電子のエネルギー無限大の問題を指摘したのはP.A.M.ディラックであったと思う。視点が違うかも知れないが。『エネルギー』の単位ジュール[J]と[H,Fおよびm]の単位からすべての物理量を評価したのが、エネルギー[J(ジュール)]とJHFM単位系である。

電力密度 ※の理論的解釈の1/2の係数を絶対的なものと理解できる訳ではないのだが、一応常識に従えば、空間の座標r点の電力密度prは2倍の・・となる。それはその空間点のポインティングベクトルS [J/sm^2]でもある。単位面積当たりの1[s]当たりに通過する『エネルギー』量でもある。その伝送空間全体に亘って積分すれば瞬時電力になる。そのエネルギーの挙動を電圧分布分と電流分とに分けて捉える捉え方にははっきりと結論を得ていない。電圧分布は電源周期によって光速度でエネルギー分布に対応する筈であるが、負荷吸収のエネルギーに因るエネルギー分布欠損は電圧分布エネルギー全体がその電圧維持のために流れて負荷への電力供給を賄うと解釈すべきとは思うが。以上先の単純な電気回路問答、電気工学から物理学を問う を取上げた物理学の参照基準との意味の説明を兼ねて述べた。

(参考記事)

  1.  エネルギーで見る線路電圧 (2015/04/19)
  2. 電気の眞相(2)-電圧とは何かー (2015/07/29)
  3. 電気抵抗のエネルギー論 (2016/06/15)
  4. 電気回路のエネルギー (2016/07/02)

 

天眼鏡の屈折司令官

IMG_0653窓際で『天眼鏡(こんな呼び名があった)』を陽射しに置いた。太陽光は、そのエネルギーの強烈さを秘めている。オリンピックの採火も鏡で太陽のエネルギーを使う。陽射しの中に居れば、ポカポカと暖かい。その熱エネルギーは光が持っている。レンズを使えば、すぐに火起こしができる。平行光線の太陽光をレンズで屈折させて、焦点に集めれば木材は燃え上がる。理科や物理学で光を解釈すると、とても複雑な意味付けがされる。難しくなる。波長、振動数あるいは周波数などの言葉で説明されると、光の温かみも消えてしまう。

温かみの基は何だろう 物理学的、教科書的解釈には、日常生活で感じる感覚に応えて欲しい。温かみや温度の意味が説明できるだろうか。『エネルギー』とは何か?

屈折の司令官 レンズ、天眼鏡あるいはプリズムは光の性質を理解する大切な意味を示してくれる。『屈折』と言う現象である。光の進行方向が変化する現象である。光は基本的に曲がらず、直進する。この光の直進と言う意味一つをとっても、それは難しい意味を含んでいる。余談になるので避けたいが、光の進む空間と言う意味は惑わされ易いので、その進む空間の意味を明確に定義しておかなければ、論議が成り立たないのである。例えば、今真上の頭上に向かって、光を点滅させたとすれば、その光は頭上を真っ直ぐ進みはしないのである。地球は自転、公転しているから、光の進む空間に対して常に方向を変化させているからである。以上が余談である。ここで取り上げる光の話は、手元の狭い範囲の話であるので光の直線進行の意味は光の相対速度まで考える必要はない。屈折と光路

(2016/11/22)追記。上の図で、レンズ軸に平行な光線が焦点Fを通過すると言う解釈は間違いである。教科書の誤りを信じていた結果の間違いでした。間違いで済みませんでした。焦点距離がもしFの位置であれば、その位置にスクリーンを置けば、A点からの光はそのスクリーンの面の一点にすべて集中し、像がはっきりと映し出されることになる訳です。従って上の図は間違いであります。以上訂正させて頂きます。(2017/12/04)再追記。間違いと言うのはFと言う焦点の概念だけであり、観測対象の一点Aからの光とレンズの屈折現象の角度の説明は良く出来ていて、正しい。平行光線が焦点を通ると言う意味が無意味である。図では眼で観測する時どの位置でも殆どAの文字は見える事を表現した。どの光路からの光であるかはレンズと眼と対象の間の関係で決まるだけである。しかし眼でなくて衝立などやフイルムに像を写すとなれば、Aからの光の様々な光路を通る光がフイルムの或る一点に全て集まる事により、Aと言う文字の像が鮮明に写る事になる。そのフイルムの位置とレンズの間の距離を焦点距離と表現しているのだ。焦点距離は観測対象のレンズからの距離で変わるのである。だからレンズが幾らの焦点距離かという表現は意味がない。無限遠の太陽の写像の距離を焦点距離と言うように定義すれば、レンズ一つに一つの焦点が決まるから混乱は避けられるだろう。そのような定義にすれば、衝立、フイルムに写す写像の位置は写像距離となり、焦点距離とは異なる事になる。しかしカメラなどの実際の焦点距離が写像距離を意味しているから、レンズの無限遠の定義を使うのは困難ではある。しかし、レンズの焦点と言う概念が平行光線からの教科書の解釈である限り、レンズと光の関係は混乱し続ける問題である。

光の屈折は光が進む空間の媒質(空気、水あるいはプラスチックなどの進行空間の材質)の特性の違いで起きる境界面の現象である。上に示した図はレンズに観測対象のA点から光が入ると、そのレンズへの入射角が様々であるから、それぞれの入射光線で屈折の方向も変化する。従って、レンズから出る光の方向もばらばらの方向性を持っている。手元に天眼鏡があれば、物を見て欲しい。人の目とレンズからの像と言う意味には、余り焦点には関係ない事が分かる筈である。どんなに位置を変えても眼には物がほぼ良く見える筈だ。どの方向の光路を辿って来た光かは分からなくても、対象物はよく見える。ある一筋の光があれば、他の光路の光は無関係なのである。目での観測に、レンズの焦点など余り関係ないと言いたい。写真機、カメラでのレンズの組み合わせは、とても技術的にも工夫されていて、その場合の光の光路はもっと複雑ではある。それは写真の撮影画面の広さに全面で鮮明な像が写らなければならないからである。画面に他の対象点の光が混じれば、ボケの像になるから。フォカスの調整と言う事になる。さて屈折の司令官とは?屈折は媒質の境界面で起きる。光の進行方向が変わるのである。何故変わるのだろうか?この理由を説明するのが物理学の専門領域になるのだろう。ここで『問答』をしたい。物理学では、このような現象になると言う結論を説明しているが、その原因までの「何故か」と言う事には答えていない。ある程度詳しく媒質について明らかにされていよう。角度に関して、『スネルの屈折の法則』がある。屈折率が詳しく分かっているようだ。光の屈折で『色収差』と言うプリズムの光分散の問題がある。波長に関係ない屈折の問題に話題を絞るとしても、屈折の問題を預ける司令官の采配を論じるには、光の物理学的特性の振動数を採り上げざるを得ない。司令官と光の振動数の取り組みを論じたいのが主題ではある。レンズに入射する光が何故進行方向を曲げて、屈折しなければならないのだろうか。レンズの中に入れば光の進行方向は直進すると観る。媒質の変化する境界だけで変化する。その進行方向を変化させる仕組みを決める基準を司令官と名付けた。物理学では光は振動数で解釈される。光の一粒も光子というhν[J]と言う振動数ν[1/s]で解釈される。屈折はレンズ面への入射角を検知して、その到来の光路から進行方向を司令官が判断すると観よう。司令官は入射光の何を検知してその入射角を判断するのだろうか。司令官がもし、可視光線の振動数を判断基準にするとしたら、光の横に(物理学理論では、縦の振動数ではないと思う)振動すると言う何を検知して入射角を計量・判断するだろうか。次に、何を基準に屈折角度を決めるだろうか。そこには光の速度での時間的余裕は与えられず、瞬時性が求められる。瞬時性とは振動数を検知する余裕は与えられないと言う事である。光速度で入射する光の入射角度および屈折角度は何を持って瞬時に判断するだろうか。光の本質を振動数で捉えている限りは、この『問答』は成立しないと思う。光一粒のエネルギー分布で、その波頭値の入射瞬時ですべての方向性が決まると解釈しなければならない。光のエネルギーが暖かさそのものであり、その波頭値のエネルギー分布が光の特質を決める司令官の判断基準である。光とは何か?-光量子像ーがその意味を示している。この記事は前のレンズと光路の追加説明でもある。