タグ別アーカイブ: エネルギー伝送

電磁界と空間エネルギー

はじめに(2020/03/24)。(2020/11/07)追記。この記事の半年後、『電圧と電流』すべてが逆だった (2020/08/24)に漸く電気回路における『エネルギー』の意味を捉えたと言えた。
電気磁気学はあらゆる電気現象を理解する基礎物理学となっている。しかし、物理学理論では空間に『エネルギー』が質量から独立して存在すると認識していないように思える。電気回路のコイルの中には『エネルギー』が貯えられるというが、その『エネルギー』はどこに在ると物理学では認識するのか。物理学理論では『エネルギー』は何から出来ていると考えるのか。素粒子と『エネルギー』のどちらが世界構成の大本と解釈するのか。

電界と磁界
空間に電界が在るという。空間に磁界が在るという。電界や磁界は電気磁気学での空間に仮想した概念の電気物理学用語の代表である。空間に仮想した概念 (*)であるが、電界や磁界は『エネルギー』との関係を持たないのか?その電界や磁界が空間に在るという意味は何を原因として、どのような空間像を表現したものか。空間がコイル(透磁率μo)とコンデンサ(誘電率εo)から成り立つという解釈を『誰が』最初に唱えたのか、きっと仙人かも知れない。仮想した概念(*)という意味が御理解いただけないかと心配だ。その単位に含まれる、空間距離の[m]は現実に在り、それは実在概念だ。しかし電圧 [V] あるいは電流 [A] は確かに測定器で測れるから、仮想した概念とは誰も認められないのじゃないかとも思える。電圧あるいは電流を計るとは測定器の中で何を計っているのだろうか。その測定する実体はコイル内の空間に在る『エネルギー』じゃないですか?とお尋ねしたい。電圧とか電界あるいは磁界と言う概念の物理量は『何』を原因として発生するのか?その意味を以下で考えてみたい。電圧[V]=[(J/F)^1/2^] 、電流[A]=[(J/H)^1/2^] が空間構造特性値L [H]やC [F] と『エネルギー』 [J] との関係にある。

乾電池で豆電球を点灯する。これも専門用語を使えば電磁界の回路となる。スマホで発信する電子回路の複雑さとは違って、電気回路で言えば、小学校の理科の話にも成る、易しい内容である。しかし、筆者が『電流は流れず』と唱えた基本の考察対象に取り上げた回路でもある。易しいことは難しい事でもある。基礎とか基本という事の中には、とても複雑な意味が隠されている。その事に気付くかどうかは、それぞれ各人のそれ迄の生活環境、受けた教育環境即ちどのような高等教育で専門的な事を修得してきたか、また社会人になって仕事としてどの様な専門的業務に携わってきたか等にも因ろう。その点からいえば、筆者は大学の工学部で、電気工学を4年間学んだだけの所謂「工学士」でしかない。そんな筆者が述べる内容が余りにも学術機関に所属して研究をされている方々の研究業績に比べて稚拙で、乖離度が大きく全く研究と言う基準には遠く及ばない内容であろうとも思う。しかし、それも宿命と思いながら、ここまで日常の生活感覚に科学理論や物理学理論を照らし合わせながら、その論理的矛盾を追求してきた。この電気回路は高度の科学研究の対象とはならないが、どこから考えても、おそらく誰にでも考えることの出来そうな、取り付きやすい回路であろう。そんな易しい電気回路でありながら今現在の電気理論で解釈しようとすれば、余りにも矛盾が大きくて、将来の子供達への教育内容としては耐えられないと断ぜざるを得ないのだ。そんな思いから、これからこの回路を通して問い掛けようとする内容はとても気難しいことかも知れない。特に電気理論に関する教育に携わっておられる方々、あるいは電気回路に関する教科書をお書きになられておられる方々にとってはとても反感を覚えるような内容であるかも知れない。そんな何も得るものが無くても書かずにいられない切羽詰まった状況であることをご理解頂きたい。ただ一言付け加えておきたい。それは電気理論として取り扱われる技術理論が悪いという訳ではないのだ。技術法則は電気現象の技術的取り扱いにはとても簡便で、優れた歴史的文化である。その技術的解釈理論が長い科学の伝統を作りながら、今日の科学技術社会を発展させてきたのだ。そんな社会的文化でもある、技術概念を簡単に捨てる訳にはいかないのも当然である。電気技術者として過去に少しは関わった筆者もその辺の意味を十分理解した上での訴えなのである。何が良くない点かが分かり難いとも思う。それは科学技術理論と自然世界の『真相』とは異なるという事を理解してほしいという点である。誠に言い難いことで恐縮なのだが、自然の『真相』は易しくて、きわめて純粋であるという事に尽きるのだ。だから、自然科学理論として社会を導いてきた、その技術法則を自然界の物理的「真理」と捉える考え方、その如何にも権威的な教育の姿勢が間違っているという事である。筆者が我慢できない解説、それは電気回路の電線内を『電子』が『電流』の逆向きに流れるという非論理的な伝統科学論に支配されている事である。『電子』が通ると解釈すると、その回路の『エネルギー』伝送機能と電磁現象の光速度流が見えない科学論になるから。今も手元にある、「科学革命の構造」トーマス・クーン著、中山茂訳 (みすず書房)が。その『パラダイム』に関わる科学理論と自然現象について論じたいと思う。難しい学術論の形式的内容にはならないから、誰でも考えられる内容で論じられると思う。それはどこの家にもある生活用品の懐中電灯の話でしかないから。しかも数式を極力使わないで、日常用語で述べたいと思う。

空間エネルギーと『エネルギー保存則』

『パラダイム』と言う用語の定義で、トーマス・クーン氏も一度撤回せざるを得ない程激しい攻撃にさらされたとも言われている。その用語の持つ意味本来の意味と更に通常科学などの用語の新しい捉え方など合わせて、その論説の優れた先見性も中々受け入れられ難かったからかと思う。『パラダイム』の意味も新たな捉え方で筆者には適切な用語と理解したい。そう訳者あとがきをみて思った。また、英和辞典にも、模範、典型の標準的意味と別に、パラダイム:⦅思想・科学などを規定する方法論・体系⦆として適語が示されている。

空間エネルギー

この言葉・用語が受け入れられ難いのだろう。その理由は、『電流』あるいは『電子』『電荷』など電気理論の根幹である概念と対立する物理概念・量であるから。検索すれば何か精神論と関係付けられた意味が載っている。そのような意味も考えれば必ずしも否定しかねる面もある。人が言葉も文字もなかった、人類生誕の時代も社会的意思の疎通が成された訳であれば、それぞれの思いは精神的な意味のつながりで可能であったとしか思えないから。生きとし生けるすべてがその心のつながりの中に居るのかも知れない。しかしここでは、この『空間エネルギー』と言う筆者が唱える用語の意味は全く物理現象として身の周りの自然界に溢れている物理量を指すのである。その代表が光である。また配電線路が有れば、それは電気エネルギーである『空間エネルギー』の流れの設備であると見える。『空間エネルギー』は質量から独立した『エネルギー』が空間に存在するという事を述べるものである。それは物理量として自然の世界、空間に実在するものを対象に観ているのである。しかし、それは測定することも出来ず、見ることも出来ないものであるところに、認識し難さの大きな壁があるのかも知れない。光の1波長のエネルギー分布を観測する事など夢の世界の話であるから。『空間エネルギー』が理解されにくい最大の原因は『電流』、『電荷』あるいは『磁束』などの基本物理量・概念をすべて飲みつくしてしまう概念・意味を持っているからであろう。だから考えてみれば、空恐ろしいことに挑戦してきたのかと思わざるを得ない。『禪』とは何か?

掲げた懐中電灯の回路で、乾電池から豆電球までの間は導線で繋がれている。その部分を図にエネルギー伝送路とした。電線が何の役割を持っているか。電池は何を貯えたものか。豆電球は何を光に変える電気製品か。光とは何か?豆電球が熱くなるのは何故か。こんな<問答>は、誰でも日頃の日常生活で不図思う疑問に関わるものではなかろうか。このような事を、科学理論・物理学理論の諸概念と突き合わせながら、考えてみよう。

〈第1問〉電池は何を貯える製品ですか。

『電子』ですか?『エネルギー』ですか?『電流』ではありませんね!多数決で決める訳にもいきません。電気技術者は、物理学者は何と答えられるだろうか。

〈第2問〉豆電球は何を光に変える製品ですか。

『電子』ですか?『エネルギー』ですか?

〈第3問〉電線で囲まれた空間の物理的意味は何ですか。

何の意味もないのですか?

〈第4問〉電球から放射される光や熱はどの様な物理量ですか。

『エネルギー』ではないですか?

〈第5問〉『エネルギー保存則』の『エネルギー』とはどの様な物理量ですか。

降り注ぐ太陽光線は保存されますか?その前に太陽光線が『エネルギー』と思いますかと聞かなければなりませんね。トマトもキュウリも太陽光線の『エネルギー』、それを栄養の一つとして食べて成長していると考えたら間違いですか?それを『エネルギー保存則』の意味と考えられませんか?『質量』と『エネルギー』は等価という意味に繋がりませんか?

懐中電灯回路のエネルギー論

上に挙げた幾つかの〈問題〉は電気回路の中に、『空間エネルギー』の存在を理解するか、認識するかの人の意識の問題に掛かっている。ここに在るのは『パラダイム』に関わる問題なのである。その専門性が故に細分化され自然科学と言う広い自然界を包含した学問の哲学性が衰退し、どんどん知的魅力に欠けつつあるように思われる。しかし、日常生活に直結した科学技術の分野の先鋭化は益々経済的競争に資する形で進んでいる。そこに自然の真理と科学技術理論との関わりの乖離が進んだ。理論の矛盾が遠くに霞んでいるように観える。その意味を懐中電灯の中に示したい。残された『パラダイム』の問題として。

回路電磁空間。

乾電池と豆電球を導線で結べば、電球に電圧V[V]が掛かり、電流I[A]が流れる。これが電気回路解釈の基本法則で、「オームの法則」である。この法則から見れば、導線が2本で十分電気現象を理解できる。豆電球の抵抗値が何Ωと分かればすべて解決する。電線で囲まれた空間など殆ど意味がない。殆どの人はその空間など意識しなかろう。電池のマイナス側から『電子』が流れ、電池のプラス側に戻れば、それで科学理論の原理は全て解ったと言っても良い科学論の『パラダイム』に在る。1864年、有名なマックスウエルの電磁場方程式が登場した。電磁波が空間を伝播するという事をその方程式に表現してまとめた。電気信号が空気中を伝わるという科学的発見の理論方程式である。後にヘルツと言う人が無線通信(空気中の電気信号の伝播)の実験に成功した。その後の100年に亘って、電気送電網が生活に灯りをともし、近代生活を支えて来た。今は「携帯通信機」が誰もの生活必需品になっている。情報革命ともいえる時代を生きている。光も電磁波の一種であるという。光の速度は「特殊相対性理論」でとても理解できない数学的記述で、どこで測っても、例えば地球の速度との相対速度にも無関係に『光速度一定』の規範に在ると説かれる。レーマーの光速度測定実験に照らしてその確かさを信じれば、筆者には「特殊相対性理論」の唱える意味がさっぱり理解できない。筆者にはPCや通信機の回路の意味さえ何も知り得ない電子回路の通信技術全盛時代だが。みんな空間を伝播する電気信号理論の筈だ。そんな科学技術が先導する社会に生きて、懐中電灯回路の導線で囲まれた「空間」の電気磁気学的意味を紐解いてみようと思う。光も電波も、それを伝える媒体(昔はエーテルが伝える媒体と考えたこともあった)が何もない真空空間を伝播するというのだ。その電気的な現象が有るのに、何故懐中電灯の回路で、電線で囲まれた空間に電気的意味が無いと考えるのか?電線路空間には本当は電界と磁界と言う電気磁気学の専門用語の空間概念があるという事になっている。しかしオームの法則ではそんな意味は全く考えない。技術法則は誰でもが理解し易く出来ている。しかし少しでも専門性がその威厳を持って、介入してくるととても複雑な理論に化けるのである。オームの法則が電気現象の自然世界の真理を唱えたものかと言えば、それは必ずしも正しくはない。ここで「間違い」と言う言葉を使うことがとても複雑な心理的負担を感じるのだ。「間違い」ならオームの法則は教科書から消して良いかとなるが、それは困るし、正しくないと言わなければならない。しかし「間違い」とそう言わざるを得ないその訳は、本当は電線の中を『電流』が流れられないから。また『電子』が『電流』の代わりに電線の中を逆向きに流れると解説されるが、それも「間違い」である。自然の『真理』と社会的技術概念との間にはとても曖昧で、複雑な意味が隠されているのだ。何故マックスウエルが空間を電波が伝播すると唱えたのか。懐中電灯の電気と電波の電気は違うのだろうか?空間に『電界』と『磁界』があると電気磁気学理論では解説される。しかし、懐中電灯の回路では電線の間の空間に電磁界が在るとは考えなくても、オームの法則だけで立派な電気技術者として社会に貢献できる。それで電気回路の専門家として、いわゆる科学理論の『パラダイム』の専門家集団の一員として立派に責任を果たせる。しかし自然世界の『真理』として『電子(電流の逆向き)』を流さなければならない訳・理由は無い筈だ。金属導体は本質的に『エネルギー』を反射する。『エネルギー』伝播に何の障害にもならない空間がマックスウエルが唱えたように有るのに、その空間を通らない電気現象あるいは『エネルギー』などない筈だ。導線で囲まれた、導かれる空間にこそ電気現象の本質があることを考えて欲しい。光と同じ電気『エネルギー』は空間しか光速度で伝播できないことを理解してほしい。この科学的認識の前提には、光の空間エネルギー分布縦波認識が必要ではあるが、それは別に学習すればよいだろう。振動数では光の1波長の空間のエネルギー分布波は理解できないから。

電圧と空間と電界

マックスウエルが唱えた方程式には、電界と磁界と言う理論の根幹をなす概念がある。電気現象は空間の中に存在するという意味である。右の図のような電池の配置で空間の電気的意味を考えてみよう。乾電池1個なら電圧は1.5ボルトである。その乾電池を2つ繋げばその電圧は2倍の3ボルトとなる。乾電池も電気にはプラスとマイナスがある。このプラスとマイナスという意味も中々意味深な概念で、哲学的論題になる。世界に「マイナス」と言う物の存在は無いのだ。電気だけの特殊な、不思議な世界観のもたらした概念なのだが。身の周りに「マイナス」の物を探してごらんなさい。見つかりますか?「プラス」も「マイナス」も原子論の世界で生れた概念なのでしょう。本筋の論議に戻りましょう。電池の端子から電線を張りましょう。その電線の間には、それぞれ電池の電圧が何処の電線にもかかります。その電線から別の電線を枝分かれして図のように空間に或るギャップを開けて配線した。その間の間隔は A も B も同じとする。今電線路には何も電球などの負荷は繋がっていない。さて何を問題とするか。それは空間が電気的に何か意味を持っているかどうかを考えて欲しいのだ。『電界』と言う概念について。図の AとB で空間の電気的状態が違うことを知ってほしいのだ。A とB の『電界』が違うのだ。と言う事は『空間』がオームの法則では理解できない意味を持っているという事になる。そこに電気現象の本質が隠されているという事だ。世界は空間で出来ている。空気と水の空間で、音も光もその速度が違う。今、A とB のギャップを1㎝とする。Bの方の電池の電圧をどんどん高くしてみよう。とても高い1万ボルトの電圧としてみる。するとそのギャップの空間が何か異常な空気になるかも知れない。 近くの田圃の上に送電線が通っている。多くの電気エネルギーを送る電気設備だ。電線の間が大きく離れている。何故そんなに間隔を開けなければならないのかと理由を考えるだろう。その空間の広がりが必要だからとしか考えられない。電気を送るには無駄と思えるような空間が必要なんだ。『電流』、『電子』が電線の中を流れるだけで、電気を送れるならそんな空間はいらない筈だ。空間が電気現象、電気エネルギーの伝送に必要だからと理解できよう。もう一つ空間の『電界』の意味を取り上げてみよう。

空間と『エネルギー』。電池の導線にもう一つコンデンサを繋いでみよう。コンデンサと言う要素の構造は金属導線を平板に広げた2枚を向かい合わせた形態である。その平板面積に比例してコンデンサの容量 C[F] が決まる。コンデンサ容量が大きいという事は、その金属平板の間の空間により大きな『エネルギー』を貯蔵できることになる。その物理的意味は単に金属の間の空間には『エネルギー』が存在するという事でしかない。細い電線でも2本あればどんなに少なかろうと、そこには『エネルギー』が在るのだと言える。『電荷』の存在と言う基本認識の『パラダイム』に属する科学論に賛同される方も、コンデンサの空間内に『エネルギー』が貯まるという意味を理解できると思うのだが、どの様な『エネルギー像』で認識なされるのかとお尋ねしたい。当然誘電体の分極と言う『電荷』概念に基づく解釈をなさるのではないかと思う。しかし、たとえ誘電体の無い真空空間でも『エネルギー』は貯まる筈と考える。それは光が電気の『エネルギー』と同じ物理量であることからの認識になる。

『電界』と『磁界』

『電界』と『磁界』は本来空間に定義された概念である。そこで、物理学理論ではその空間にある『電界』や『磁界』は何の為に必要と考えるのか。空間に張られた電線の間に電圧が在るという事は、その電線の間隔の距離で電圧を割った値が『電界』の値で、E[V/m]と言う単位の意味である。空間に電圧が掛かっている意味だ。電線の中に『電子』を加速するための電圧が掛かっている意味はない。次に『磁界』とは何か。懐中電灯の二本の電線を広げて空間を作り、その間に磁石のコンパスを近付けると向きが変り、その空間に何かが在ると考えられる。それが電線に流れる『電流』を原因として空間に生じる磁気の意味と考える。電線で囲まれた空間に何も無かったら、コンパスが力を受ける理由が無い。空間に磁気があることは確かだ。その回路の電線を広く広げて空間を大きくする。きっとコンパスの作用する動きの強さが空間の場所によって違うはずだ。コンパスが力を受ける強さで、そこに磁界が在ると考えて良かろう。『磁界』もその大きさを電流の単位アンペア[A]で、 H[A/m]という距離との比率で評価する。電線の『電流』からの距離で評価する。その『電流』が流れないと言いながらの『磁界』であるから、筆者の理屈は矛盾していると言われそうだ。それが『アンペアの法則』と言う電気磁気学の基礎理論の意味の話になる。誰も『アンペアの法則』が間違っている等とは言わないだろう。それを『電流は流れず』という事で、『電流』の概念を否定した解釈を1987年の秋、電気学会の電磁界理論研究会で発表した。『電流』を否定したら、電気理論は使えない『パラダイム』からの離脱と言える状況になる。電気の研究者などと言っていられないことで、職業の場を失う。それは空間の『エネルギー』の実在を認識するかどうかに関わる電磁界理論の根幹を問う課題となる。現在の電気理論を、物理学概念を科学論展開時の論理的論拠として考える専門家は決して『電荷』や『電子』を否定しない筈だ。否定したら『パラダイム』からの離脱を意味するから。『電子』が『電流』の逆向きに電線内を流れるという『パラダイム』の現代科学者集団の専門性に則っているから、『電流』や『電荷』を決して否定はしない。そこにその科学理論が現代社会の規範となって、一般市民も信奉する科学常識に支配された世界となっている。そこに『パラダイム変革』の難しさがあるのだろう。

電球の機能と放射エネルギー

電球の物理現象は何だろうか。電線路空間に『電界』と『磁界』があることは理解されても、だからと言ってそれがどれだけの価値があるのかと反論され、理解されないかも知れない。さて、豆電球は灯りをともす。灯りは空間に光を放射することで得られる。光は電波と同じ電気の姿ともいえる。光は電波と波長が違うだけの空間に放射される『空間エネルギー』である。空間を飛び、伝播する電気の『エネルギー』である。電球はどんな秘術を尽くして光を作るのだろうか。簡単に理解できない魔術的物理現象を使って豆電球のフィラメントを『電子』が通過すると、置き土産に光の『エネルギー』を放射して、しかも『電子』は何も失わず『エネルギー保存則』の原理も無視して世間的に通用する科学常識と言う理論となり得るのだろうか。フィラメントと言う抵抗体のコイル内を『電子』が通過すると、どの様な機能で光の『エネルギー』を放射するのかを解説できなければ、科学の論理性が疑われる。『電子』が『エネルギー』に対してどの様な機能を発揮するのかが説明されていないのだ。『電子』論は『エネルギー』を全く無視しても、その解釈が科学論として通用している。其処が不可解なのだ。

電池の機能

乾電池も図のようなプラスとマイナスの意味を持たせた長短の二本線の記号で表示する。誰もがその記号で電池を理解するだろう。記号からプラスとマイナスの『電荷』による電圧が掛かっている意味の機能素子と思うのではないか。しかし、電池に求める技術的機能は『エネルギー』の貯蔵機能ではないのか。『電子』の貯蔵器とは思わないだろう。Energy Cell とした。「+」と「-」の記号は少しでも電気を学習すると、全く違和感もなく当たり前の科学常識として意識化される。考えてみればプラス、マイナスと言う表現で定義する物がこの世界に存在すると何故考えるのかその訳が理解できない。何故「+」と「-」を必要としたかはクーロンの法則で代表されるような、物の結合力を託す理論構築のための概念が必要だったからであろう。それならそのような『電荷』が空間で引合う結合力を発揮するには、単に「+」と「-」と言うだけで、その空間像がどのように違うから引合う力が生じる現象かを、その空間的理由を論理的に示さなければならない筈だ。日本の「この紋所が見えないか!」と同じ科学的暗黙の威圧だけで納得させているようだ。「+」と「-」に空間的にどのような構造的違いがあるというのか。その違いが無ければ互いに作用し合うという理屈は成り立たない。論理性が理論の根本からないまま、科学常識として暗黙の科学論となってしまった。なぜ電池が「+」と「-」の『電荷』を貯蔵することでその役割を果たせるとなるのか。あくまでも欲しいのは『エネルギー』の筈だ。『電子』と『+イオン』で『エネルギー』がどの空間に、どの様に貯蔵されると考えるのか。『エネルギー』は空間に実在する物理量なのである。『電子』や『電荷』ではコンデンサやコイルの空間に或る『エネルギー』の代わりには成り得ないことを認識すべきではないかと思う。『電荷』を否定した立ち位置で想定できることは、化学材料物質の構造形態の変化として、空間に『エネルギー』が貯蔵されるものなのであろう。

 

まとめ

『空間エネルギー』と『電荷』の間の関りをどう解きほぐすかの社会哲学的課題であるかもしれない。自然世界の『神髄』と自然科学理論の論旨との関係を自覚したうえで、教育に誤った権威的態度を取らないことを目指すべきと思う。この記事を考えながら、『Electrons』の紋所と科学理論 (2020/4/7) と電気回路要素の『エネルギー』処理機能 の関連記事となった。

特性インピーダンスとエネルギー伝送特性

はじめに(すでに公開した心算でいた。8月末の書き出し記事)
直流回路ではインピーダンスという捉え方をしないのが一般的だ。ほとんどオームの法則で、抵抗回路として取り扱う。しかし考えてみれば、電気回路は直流用と交流用と違う回路を使う訳ではない。電気回路はすべて、分布定数回路なのである。一般に、直流回路解析でインピーダンスは使わない。しかし乍ら電線路の構造は全く同じである。二本の電線を張ればそれは必ずコンデンサとコイルの機能を持った電線路である。電気工学としての直流回路の取り扱いでは、インピーダンスなど必要ないだろう。だが、電磁気現象として考えるとき、電気工学ではなく物理学としての回路現象が大切なはずである。負荷が変化したときのエネルギー伝送特性はどのような意味で理解すべきか。それは必ずエネルギーが分布定数回路の中を伝播する現象となる。何がその伝送特性を決めるかが物理学の問題になる。今、「電気回路のエネルギー問答」の記事を書いている。その中で電力の意味で壁に突き当たっている。時間軸上に描く電力波形p[W] のエネルギー時間微分値という瞬時値とはどの様な物理的意味を持つものかと考えれば、理解に窮してしまう。エネルギーの電線路伝送問題の筈であるからと、電力の意味の思案の途中に居る。その中での一つの問題として、直流も基本的にはエネルギーの伝送問題の筈と思い、直流回路の電線路の分布定数回路としての特性インピーダンス問題を取り上げようと思った。(2019/09/19)この記事は8月末に「直流回路のエネルギー伝送特性」として書き始めた。しかし書き進む内に特性インピーダンスの算定の話に変わってしまった。その特性インピーダンスは空間の電波や光の伝送特性初め、電力送電線路や超高周波伝送路に共通した物理的意味を持っていると考えれば、そのすべてに統一した特性としてとらえるべきと考えるに至った。そこで表題を改めて、特性インピーダンスに絞ろうと考えた。この特性インピーダンスに関する記事に、既に特性インピーダンスから見る空間の電気特性という記事があった。その時点より、統一的に電気現象を捉えた筈である。

エネルギーの電線路空間伝送

電気エネルギーは決して『電荷』によって運ばれる物理量ではない。『電荷』を具備するという電子や陽子が電線路導体内を流れ伝わると言われても、そこには『エネルギー』を運ぶ論理は観えない。『電荷』は回路を往復周回する論理で理解されるから、行きと帰りで『エネルギー』の運び手としての役割を果しえない。『エネルギー』は電線路内の空間を伝送される、即ちそれ自身が実在する物理量として空間を伝送すると解釈しなければ、物理学理論としての論理性は観えない筈だ。『エネルギー』は他の代替物理概念量によって伝送され得るものではない。『エネルギー』自身が空間を光と同じく伝播するものである。そこには光が空間エネルギーの分布波であるという基本認識がなければ理解できない壁となろう。直流電気現象も、電線路の分布定数回路の空間を伝送するエネルギー伝送現象と理解しなければならない。電子などが流れる現象ではない。超高周波のマイクロ波通信だけが分布定数回路の伝送現象ではなく、直流も全く同じく、その伝送は分布定数回路伝送現象なのである。

先に記事光エネルギーと速度と時空で取り上げた右のエネルギー伝播の図がまさしく直流回路のエネルギー伝送の話になっていた。この分布定数回路で、負荷抵抗が特性インピーダンスと同じ値の場合が負荷端でのエネルギー反射現象が起こらない伝送現象になる。ある払い下げの通信装置の発振回路部を利用して、筆者が作成して生徒実験として取り入れた分布定数回路の報告記事があった(何故かこの部分が印刷から除かれるので書き換えた)。それが 分布定数回路と実験 である。そこに超高周波であるが、分布定数回路のエネルギー伝送の意味を理解するに参考となる実験データが載っていた。その負荷抵抗が特性インピーダンスの場合(第8図の特性インピーダンスに等しい負荷抵抗が500Ωの場合がそれである。)の定在波測定結果で、ほぼ一定値になっていることにその意味が示されている。それは負荷端でのエネルギーの反射がない伝送形態である。このエネルギーの反射現象で、驚くべき実測結果が有るといわれている。それは送電線路の開閉サージの電圧が定格電圧の7倍まで上昇した異常現象が起きたと。それは線路絶縁対策としては大問題である。送電端と無負荷受電端間のエネルギー往復反射の結果による現象である。電線路とはそのように、如何にも分布定数回路としてのエネルギー伝送に伴う複雑な特性を示す回路だ。単純な電線路ではない筈だ。少し脇道にそれたが、電線路は物理的なエネルギー伝送現象の空間であることを先ず認識して置かなければならない。

電線路と特性インピーダンス 分布定数回路と実験 の記事の線路定数を例に、特性インピーダンス500Ωの場合の分布静電容量C[F/m]と分布インダクタンスL[H/m]の定数値を算定してみよう。上の分布定数回路と実験のページ -123-に

Zo=(276/√εs)log(2D/d)=500[Ω] (2)

なる式がある。この式は、参考書の 新版 無線工学 Ⅰ 伝送編 宇田新太郎著 (丸善)p.95 に(4.6)式として載っている。この式の算出法が理解できないでいる。

そこで、平行往復導線の特性インピーダンスZoの算定法はどうするかを考えてみる。筆者は、電力工学での送配電線路の定数算定法を昔学習した。その教科書を紐解いてみれば、インダクタンスは線路電流による磁束鎖交数からの解釈であり、静電容量は電線路分布電荷がその理論の基をなしている。その理論的解釈で、実際の送電線路の回路定数・分布定数[mH/km,μF/km]が的確に算定されている現実の不思議をどう理解すべきか。

Fケーブル(屋内配線用)の特性インピーダンスの試算

上の算定式(2)式が高周波での特性値として極めて正確に思える。ちょっと寄り道をして、方向違いの商用周波数用屋内配線用として多用されるFケーブルの特性インピーダンスを算定してみよう。1.6mm銅線2本の平行ケーブル。絶縁厚0.8mmでD=3.2mm 、d=1.6mm とする。さらに、ビニル絶縁材の比誘電率εs=4.5とデータから選ぶ。そこで得られた特性インピーダンスはZo=78.3[Ω]程度と算定される。以上は一つの比較算定例とする。

特性インピーダンス算定式の係数、[276]がどのような根拠で得られたか?その訳が一つ解決した。送配電線路の教科書の中から糸口を探せた。そこで、まず特性インピーダンスの算出根拠を論じる前に、その手法の論理の妥当性を考えたい。それは最初にインダクタンスの算定手法について、電流 1[A] の物理的空間として、別に取り上げる必要があろうと考えた。インダクタンス算定式にまとめた。

同じく静電容量算定式についても纏めたい。静電容量算定式と理論にまとめた。

 

 

電力用ケーブル

自然現象の奥深くに隠されている本源は見え難い。科学技術にその自然現象が応用され、今日の地球上に人間の生活圏を拡大して来た。科学技術は応用の科学である。本源から見れば、電力系統のエネルギー供給機能で未だ多くの無駄がある。導線導体内を電子と言う『電荷』流の概念には、矛盾があるようだ。先に太陽発電設備から大量の導線が盗難に遭ったと言う話を聞いた。金属銅が資源として狙われた。電流など流れていないのだから、導線材料等中空導体で良いのだ。そこで提案の電力用ケーブル。

中空導体の電力用ケーブル 中心部は冷却材でも流しておけば良いのだ。空中配電線でも低圧絶縁ケーブルでも、電気エネルギーは導体間の空間を伝送されるのであって、その導体表面のエネルギー密度が一番高い。その絶縁材料の誘電特性等でエネルギー伝送量は考慮されるべきである。コンデンサの強誘電体特性も電力ケーブルもその原理は皆繋がった自然現象の本源に因るのだ。太陽光発電のケーブル盗難を監視する必要もない大電流用電力ケーブルが実用化されれば良いのだが。本来なら特許になる筈だろうが?

電気工学から物理学を問う

単純な問題を取り上げさせて頂きます。大学生が参照基準に基づいた教育を受けたら、どのように解答されるかと考えて。

『問題』

単相交流回路のエネルギー伝送問題

単相交流回路のエネルギー伝送問題 参照基準に照らして、もし『電荷』が電気現象解釈に必要だと考えられるなら、特にその『電荷』のエネルギー伝送上に果たす役割を詳細に論じてください。伝送線路途上に於いて『エネルギー保存則』と『電荷』との関連についても論じてください。

参照基準 現代物理学の学術的高等教育を受けた経験がない者が失礼とは思いますが、科学理論はその内容が複雑すぎて理解できない人も多いのではないかと思う。その原因は具体性が無いからではなかろうか。物理学は理論に偏り過ぎているから、もっと具体的な科学技術を物理学の参照基準とするべきと思う。具体的とは日常的な易しい問題に誰もが分かり易く答えることではなかろうか。電気磁気学の単純な単相回路は誰でも考えられる具体的問題でもあろう。物理学の素粒子の根本概念『電荷』はあらゆる自然科学の理論的論拠概念となっている。その『電荷』は電気現象での解釈に大昔に共通理解の一つの物理量として定着して来た長い伝統的な概念である。しかしその実体をどのように分かり易く説明すべきかと考えると、余りにも曖昧で捉えどころが無いために、誰も具体的には避けて論じないのだと思う。摩擦すれば物を惹きつける実験で、その原因が『電荷』であると決めつけている。本当に『電荷』が電気現象に欠かせない物理的実在量なら、上に挙げた単純な電気回路の電気現象で、電源から負荷に送られる『エネルギー』の伝送過程を『電荷』あるいは『電子』で電線路途中の伝送理由を説明できる筈であろう。私には『電荷』では説明できない。『電荷』とは何か?を説明する参照基準を何に求めるのか。参照基準は最も分かり易い基準概念でなければならないだろう。

コンデンサ型配線のエネルギー伝送

(2023/03/16).
この記事がITネットで検索できなくなった。
 『 地産 第 302 号
    令和 4年 8月 3日 』
の『特許』に関わるからか? コンデンサ型配電線路は これからの電力配電線路の基本設計になるからだ。

『電子』否定による、電線導体内の電流は物理的に流れないのだ。電気『エネルギー』はすべて電線導体間の空間を流れるから。

不思議に、検索:コンデンサ型配線路 の https://wp.me/p19wiU-1fo をスマホで検索すると何故か    健康保険証は身分証明書か に繋がり、この記事に繋がらない❓

また技術的価値の無い事を考える。科学技術はその利用価値によって評価され、新しい生活の豊かさを獲得して来た。何故か考える事がその思考方向と逆の事にばかり向くようで、実に不甲斐ない。これが梲(ウダツ)が上がらないという事なのかも知れない。その点エジソンは偉かったと。
時代が進み、経済競争の激化の中で、研究も短期的な効率が求められる傾向が強まっている。何十年の先行きの見えない、失敗も許される余裕の有る研究は時代の中に消えてしまった。

コンデンサ型配電線路 電気エネルギーが電線路近傍空間を通して伝送されるという意味を理解するのに抵抗を感じるかも知れない。電気理論は電圧と電流で解釈される訳であったから、導線内を電子が通ると解釈する論理が常識となっているから。電線路間の空間をエネルギーが伝送されるとなれば、物理的な論理に電流は不要となる筈だ。その意味を電線でなく平行板のコンデンサでエネルギー伝送路を構成したら、理解の助けに成るかと考えた。

コンデンサ型配線コンデンサ型配線

電気回路で、コンデンサの機能は2枚の金属板間の空間にエネルギーを貯蔵する働きであろう。空間を誘電率の高い絶縁材料で満たすことで、その機能を高める。そのコンデンサを電源から負荷端まで、引き延ばして配電線を構成したら、その電線路はどんな機能の電線路と解釈すれば良いだろうか。それが思い付いた電気回路の問答である。

❓この記述は何故こうなったかはか分からない❓ [上の図の回路は全く科学技術としては役立たない事この上ないものであろう。自然現象解析論の為の思考回路である。経済的利益を求める現代科学研究の社会的意識とは、真逆の思考実験回路である。]取り消しだ。

目的は人間の思考の意味を問う問答と言えるかもしれない。上の図の回路を見て、電気エネルギー伝送の意味をどのように考えますか?これが電気の眞相(3)-電圧と負荷ーの追加説明でもある。

 

エネルギー伝送と電気回路技術

物理学の基礎分野である電気磁気学は、現在その教育と言う面でとても大きな壁に突き当たっていると言える。それを克服できるかどうかは、教育関係の行政機関初め現在教壇に立つ教育者の科学的感性とその姿勢に掛かっていよう。私自身が工業高等学校、大学等で生徒に教えている時に現在の電気磁気学の理論を疑いもしないでいた。しかし、その理論の意味を深く考えて見れば、怪しさに惑わされていた事に気付く筈なのである。『電荷』、『電流』と言う物理学的概念の『実在性』をどのように認識するかに取り組む事で、世界の理論的概念がとても怪しいものであり、脆い基盤の上に構築されて来た事に気付かされた。電流は流れず でその意味を論じた。しかしとても大き過ぎる問題であるから、そんな論で納得されるものではない。科学技術と学問分野が細分化され、専門性が極端に狭い視野に限られた現在、基礎理論の教育に注ぐ情熱も、時間も無いままにやり過ごされているである。ただ時間が無駄な教育を学生、生徒に押し付けているように見える。視点を広めて見ると、いろいろ今まで気付かなかった事に遭遇する。電気通信は現代社会の基盤を成している。IT通信始め携帯電話、衛星放送等の科学技術は、その専門技術の中味を知ることなど誰にも不可能な世界に生きざるを得ない事になった。科学技術が進展する程、我々はその技術からの疎外感を強めた中で、ただ流されて生きるだけの存在に成っている。とても大きな時代を支配した代表格の、技術が見える『ブラウン管式テレビジョン』、またそれ以上前の『真空管式ラジオ』などは蒸気機関車と同じく感覚的に技術の恩恵をその中身と一緒に享受できた。ここに挙げたエネルギー伝送路で、「導波菅」と言う技術も殆ど過去の物に消えてしまったのだろうと思う。その技術は、当時はやはり目で観る事の出来る技術であったから、何となく理解は出来ようと思う。不思議にも、電力配線は電気の送配電系統に19世紀からの電気技術が現在も活躍している。目に見えるから理解しやすく、その面で安心出来る。ところが、その電線路の意味さえ、理論で克服していないという恐るべき科学論とは、一体何者だろうか。電流が電線の中を流れると言う「アンペアーの法則」の意味を疑わない理論の人間の本質とを重ね合わせて不思議なのである。上のエネルギー伝送路は、電気磁気学の理論を、その電流と言う概念の持つ本質を説き明かすに役立つかとの思いで取り上げた。どれも『電磁エネルギーの伝送』の問題である。エネルギーは真空空間を最も容易に伝わるのである。『空即 無限なる有なり』と言う名刺を作った事がある。当時は電磁気学の本質は何かに悩んでいた頃。電線はエネルギーを反射し、受け入れないのがその本質的特性である。その象徴的現象が『超伝導』である。実は、「表面波伝送線路」と言う記事を昨日見た。「新版 無線工学Ⅰ 伝送編 宇田新太郎著 丸善株式会社 昭和39年4月」のp.150. に出ている。Sommerferudo (1899年) の理論を、アメリカのGoubau (1950年) のエナメル線の話等がある。それは超伝導現象との関係でも意味のある話である。空間こそエネルギーの伝送の舞台である。

表面波伝送線路は導波管路に接続した導線に関する接合部の話である。その本、無線工学Ⅰを参考にして、分布定数線路実習を学生実験に取り入れた。双三極真空管 2B29(真空管名) で発振器を作り、実習室に長さ約5mの2本の平行した分布線路を張った。発振周波数は 150 MHz で、線路インピーダンスは 500 [Ω] =276 log (100/1.6) となるように、屋内配線用ビニル軟銅線 1.6 mm の裸線を 5 cm間隔に張った。裸線2本の間に、 150 MHz の高周波信号の定在波分布が得られた。裸線でのみ行ったが、ビニル被覆線のままであったらどうかと、今に成って考えてしまう。その実験結果等は、新潟県工業教育紀要 第3号(昭和43年)分布定数線路実習に関する一考察 に載せてある。驚くほどきれいな分布データが得られた事を覚えている。直菅 40W 蛍光灯をその分布線路に近付けると、高輝度に蛍光灯が部分点灯する事に驚いた。蛍光灯の点灯は水銀蒸気の紫外線 2537 Åが蛍光物質を励起して、可視光線を発光すると言う技術理論の応用である。しかし、 150 MHz は紫外線に比べれば、とても低周波数、長波長(2 m )に該当する。それにも拘らず、蛍光灯が高輝度で点灯するとは誠に不思議な現象である。蛍光灯の点灯原理とは余りにも異なる点灯現象であるから。この不思議な点灯現象の話は、長岡工業高等専門学校での、文部省の助教授(中曽根内閣、松永光文部大臣)審査申請書で、3つの研究成果・教育成果の一つに挙げて、提出した事を覚えている。もう一つは、やはり新潟県の幽霊教員時代の「変圧器教育指導上のー電圧時間積分ー」への教科書指導原理の変更を迫った。