タグ別アーカイブ: エネルギーの縦波

日本学術会議の提言「理科基礎(仮称)」を読むーエネルギーと波ー

平成28年(2016年)2月8日日本学術会議から、提言 これからの高校理科教育のあり方 が報告された。物理、化学、生物および地学の4教科をまとめた「理科基礎(仮称)」の必要性を提言している。総論はその通りだと思う。具体論が全く無いのが残念だ。何年後に実現するかの筋書きが消えた提言だ。教科書を執筆する専門家が4分野に分かれているから、全てにわたった基礎をまとめるのが困難だからであろう。それは初めから気付いていただろう。だから子供たちに広く自然現象・科学技術を理解して、科学リテラシーの問題を解決しなければと言うのであろう。日常生活における科学的認識力と大学の専門への橋渡し知識と二つが別物の理科の内容だと言うような認識があるようで残念だ。「基礎」ほど深くて、理解困難でしかも有用である事を勘違いしているように思う。基礎は表面的で、深みが無いと?

一つ例題を考えて見ました。

水とエネルギー水とエネルギー 理科の問題としては日常的に経験する極めて平易なものと思う。最近はロケットが打ち上げられ海に残骸物が落ちるなどはよくある問題だ。崖から物体を海に向かって打ち出した。物理の運動の理解に取り上げられる問題と余り変わりがない。ただ海に物体が落下した以後、どのような自然現象が起こるかを考える理科の問題になろう。海面に落ちた瞬間の物体Mのエネルギーは幾らか。次に海底に沈んでゆく訳だが、その間どのような海中の現象が起きるだろうか。こんな問題は誰でも頭で思い描くことが出来る日常的な自然現象であろう。『教える事は考える事』である。教える先生はこんな問題は良く分かると思うが、少し気掛かりがある。「波」の物理的解釈の問題である。基本的に「波」とは何か(?)である。何が伝播するのか?先ず、「波」の波形、波長および波高値は何が原因で決まるか?「水の波」は縦波か横波か。物理教育では「横波」と指導しているようだが、何が原因で、何が伝播しているかの解釈の問題が、物理教育、理科教育の教育側の問題と考える。水中の現象を理解しない限りは間違った教育である。衝撃波の文字を記した。それは、隕石突入の衝撃波と同じ水中現象が起こる筈です。

波のエネルギー 余り教育現場ではエネルギーの意味を考えていないように思われる。図の『波』の一波長分を取上げて、そのエネルギー分布を考えているでしょうか。波動現象解釈では、周波数や振動数がエネルギーの解釈の基礎条件と考えるような場合が殆どでしょう。一波長では、余りエネルギー評価はしないように思います。しかし水の波は一波長で十分なエネルギーの分布を持って伝播しているのです。水面が高い部分は海底までその水圧の影響が及んでいるでしょう。水圧のエネルギーが教育で取り上げられなければ、片手落ちの間違った理科教育です。

衛星放送の電磁波方程式を解剖する

1864年マックスウエル電磁場方程式が世に現れた。ファラディの電磁誘導の発見から30年程経った。1887年、ヘルツの実験(感応コイル間での火花放電信号の空間伝播)で証明されたのが、ヘルツは無線通信の可能性を否定していたという#文献#。イタリアのマルコーニが1896年3kmのモールス信号による無線送受信に成功。無線通信は海軍の軍事利用や、1912年タイタニック号沈没事件で、無線通信の義務化などの話が#参考文献に面白い#。

1930年半ば過ぎには、アメリカ全土にラジオ商業放送が行き渡ったと。テレビ放送から、衛星放送更には携帯通信器、IT通信と現代生活に電波通信は必須の科学技術となっている。その通信技術の理論的原理はマックスウエル電磁場方程式をその根拠にしている。学校教育ではその方程式が電波信号伝播の欠かせない知識として教えられている。結構難しい偏微分の数学的素養を要求されることになる。本当にその方程式しか電磁波の伝播現象を理解する方法が無いのだろうか。

マックスウエル電磁場方程式の意義 今まで、長い科学技術の理論的根幹として、歴史の中で学校教育を通して世界の模範であった。しかし、もうそんな難しい微分式を使わなくても、光の縦波の伝播現象と同じ見方で理解できる筈である。星の姿を捉えるのに、電界や磁界など全く関係ないのである。星の光は、何も星が放射信号を制御して放射している訳ではない。ただ光の量を歪みなく反射望遠鏡(パラボラ球面鏡か放物面鏡かは知らない)で多く取り入れるだけで鮮明な星の姿が見えるのだ。それは光がただエネルギーの縦波でしかないからである。光と電磁波は同じエネルギーの縦波でしかないのだ。

衛星放送電磁波衛星放送電波 衛星放送を例に、その電波送受信機能を電磁場伝播方程式の電気的概念でどのように理解できるかを考えて見よう。衛星放送の特徴はその電波送受信方式の基本にパラボラアンテナを使う事である。パラボラアンテナは反射望遠鏡の反射面と同じ放物線の曲線から成り立つ球面に成っている。その様子を図で上に描いてみた。衛星も電磁波の送受信にはパラボラアンテナが使われる。勿論衛星放送の受信にはみんなパラボラアンテナが必要である。

放射電磁波 衛星からの放射電磁波はパラボラアンテナの中心軸に対称な球面波として放出される。その電磁波の有る立体角の波面を受信パラボラアンテナで捉える。その僅かな球面波の部分で、もしマックスウエル電磁場方程式を考察対象として取り上げるとすれば、その面で変位電流、電界および磁界の空間ベクトルを決めなければならない。元々衛星からの電磁波の電界、磁界のベクトルを決めなければ、受信面の電磁波の電磁界ベクトルを決める訳にはいかない。衛星からの放射電磁波は先に言ったように、軸対称の球面波である。放射源からの立体角内ならどこからも同じ電磁波を受信できる。従って、電界、磁界および変位電流のベクトルが軸対称に描けなければならない筈だ。衛星のパラボラアンテナから放射された電磁波の球面に、その電磁波の変位電流、電界および磁界を描けるだろうか。中心軸上の電磁波が一番強い筈だ。中心は軸に対称に電磁界は分布している。その最も強い中心軸の変位電流が描ければ、マックスウエルの方程式の有用性も理解できる。電界、磁界の模様が空間に描けないと私は理解できないのである。難しい数式よりも、目の前に空間を仮想して、そこに電磁界などの様子を描く事から始めて、それを数式に表現する手順を踏むのが日頃の思考方法である。だから抽象的な数式表現は能力不足で、不可能なのである。

電磁波の形 放射された電磁波は要するに縦波のエネルギー密度波でしかないのだ。そのエネルギー密度は軸対称の電球の配光曲線の球面の分布面と同じでしかない。ただデジタル信号波によるエネルギー波の縦波である。だからどこで受信しようとそのエネルギーを捉えれば同じ放送が見られる。何も電界,磁界など理論は要らないのだ。エネルギーの強さだけである。放送技術はその中に想像もできない技術革新の積み重ねによって可能になっている事は忘れてはいけない。その恩恵を受ける事に依って、現在の生活が成り立っているのだ。技術への感謝と、マックスウエル電磁場方程式の意義は全く違うのである。光のエネルギーの縦波伝播を理解すればそれで十分である。空間エネルギー波は数式に表現できないから、理論式化としては難しいかも知れない。空間分布波形は厳密には、正弦波形とは異なるだろうから。

#文献#電気の技術史 オーム社(山崎俊雄、木本忠昭共著)。

専門用語『振動数』の解剖

物理学の基本概念『電荷』を否定すれば、現代物理学理論の根本から問い直さなければならない。『電荷』否定への道。物理現象の記述概念に「波動」が有る。波動には『振動数』あるいは「周波数」と言う専門用語が必ず含まれている。特に光の周波数あるいは『振動数』が物理学理論の専門的常識用語と成っている。その『振動数』を物理学的観点から、問い直してその曖昧な論理を曝け出そうと思う。身近な所に確かに振動する現象を見る事が出来る。イヨマンテの夜

太鼓と撥捌き 夏祭りになれば、太鼓が響き、その音に心が鼓舞される。太鼓は人の腹にその空気圧の振動を伝える。腹に響いて、身体を夏祭りに誘い出す。太鼓と言うと、敗戦の苦しみの中でみんなが一生懸命に生きていた中で、その切なさを癒してくれたものにその歌があった。筆者が中学生のころか、歌手伊藤久男が唄う『イヨマンテの夜』があった。太鼓に結びついて思い出されたので、絵に描いてみた。太鼓はその振動が生命である。膜の振動を物理的に解剖したらどのように解釈できるかである。筆者は、その様な自然現象を解釈するとき、勝手に自分の感覚的共感によって認識するのが普通である。具体的な力学的解析も教科書には無かろう。だから勝手に現象の解釈を展開する。太鼓の膜がどのように振動するかは誰でも見れば大体分ろう。如何にも膜に垂直に波打ち振動している様子が捉えられる。しかしそれだけでは、膜の振動する力学的意味を捉えているとは言えなかろう。だからと言って、太鼓の膜の振動現象を数式で厳密に表現しようとすると中々難しそうだ。しかしその基本的な力学現象を言葉で説明する事は何とか出来よう。太鼓の振動現象は膜が垂直に振動する事に本質的な物理現象が有る訳ではない。その奥に大事な力学が有る。枠が何故あるか。太鼓の振動と音

太鼓の皮の面が振動するが、その意味を図にしてみた。①太鼓の音色と響きはその撥捌きにある。膜は反対面との間の空気圧の振動も影響を受けて、その太鼓の音を決める一因にもなって居よう。撥の捌き方と膜の張り具合が音色・迫力を決めるだろう。膜の振動は膜に掛る張力の円周への縦波によると考える。②その張力波の往復振動が膜の垂直振動を作り、外表面の空気の圧縮と伸長を引き起こす。結局空気の膜面に垂直な粗密波を創り出し、その粗密波が縦波と成って、太鼓の響きになる。③音の波の中を解剖すれば、それは空気媒体を伸縮させるエネルギーの密度波となっている。空気密度が高いのがエネルギー密度が高密度の部分で、空気密度が低いのはエネルギー密度も低いのである。

音のエネルギー 太鼓の膜によって叩き出される空気の波はやはり正弦波と言うより、衝撃波に近かろう。その空気の粗密波が、音のエネルギーとして音速で進行する縦波なのである。空気は太鼓が叩き出す膜の振動エネルギーを空気の圧縮高密度として、そのエネルギーを乗せる伝播媒体でしかない。空気は進行しない。進行するのはエネルギーであり、音圧として進行する音になる。丁度、空気の圧力p[N/㎡]と単位質量あたりの空気体積(空気密度の逆数)v[㎥/kg]の積が空気のボイルの法則になると考えて良かろう。即ち、E=pv[J/kg]となる。少し詳しく表現すれば、音圧も体積も微分表現でなければならないのだが、おおよその解釈の考え方として示した。

かがり火と光 イヨマンテの夜の歌詞にかがり火がある。かがり火の光を光エネルギーの伝播と言う意味で絵に書き加えた。発光ダイオードの光であろうとかがり火の光であろうと光に違いは無い。光の発光源の熱源であろうと電気発光源であろうと、そのエネルギー放射の原因に違いがあるが放射された光には周期性が揃うか揃わないかの違いは有っても光に違いは無い。

振動の有る無し 物理学的には、自然現象を波として捉える場合が多く、そこでは『振動数』と言う単位時間当たりの繰返し数で捉えるものがほとんどである。特に目で確認できない現象の代表として、光が挙げられよう。光は振動などしていない。しかし物理学理論では光の『振動数』あるいは「周波数」をその光の保有する基本特性と見做して論じる。物理学理論で光の『振動数』と言っているのに、筆者が光は振動などしていないと強情に主張するには、そこにそれ相当の重要な意味が隠されていることを理解しているからなのである。『振動数』と言う専門用語の意味を少し分析しておきたい。太鼓の膜のように明らかに『振動数』の意味を持つ自然現象が有る。だから、『振動数』が有る場合と無い場合とを区別する定義は何かと考えた。それは振動する現象が、振動を支える固定体を持つか持たないかで解釈の区別をしたい。太鼓は膜が張られた固定した枠が有る。光は光速度で進行するから、振動する固定端が無い。太鼓の音はどうかと言えば、音は科学的常識からいえば、『振動数』を持っていると考えられようが、振動などしていないのだ。音の中味をどのように解釈するかに掛っているので、ただ何となく波と言う捉え方で、深く波の中味を理解していない処に大きな問題が隠されているのだ。波の本質は『エネルギー』の縦波である。日常生活で認識できる物に関わる現象で、空気に関わる音を例に挙げてみれば、そこに『エネルギー』を認識できるかの問題である。津波現象に『エネルギー』を認識できないと同じような事が有れば、そこには物理的解釈が生きていないとしか言えない。教科書が問題の核心を捉えていないのである。

波の伝播依存空間媒体 音は空気(音速毎秒340m)、水(音水速?毎秒200m?ITで検索すると、驚く事に毎秒1500mとあるが確認できない)によってその伝播速度が決まっていると観る。津波は伝播媒体が水であるから、そのエネルギー伝播速度(圧力波)はほぼ毎秒200m(太平洋対岸のチリ津波の伝播到達速度からの推定であり、深さには関係しないと観る―気象庁の解釈と異なるー)と解釈する。光は伝播媒体を必要としないと観て良かろう。ただ厳密に考えれば、空気が有るか無いかで、光の速度は当然変化すると考えなければならない。アインシュタインが問題にした、水星の近日性の光の伝播現象も重力で変化する訳などでは決してなく、光も空間伝播時にはエネルギーの回折現象でエネルギー分布が変化する、その結果でしかない。光と音の伝播速度が違う。光は何もない空間でその速度の本領を発揮する。音は空気の存在が無ければ伝播できない。真空中では音は伝わらない。昔は光もエーテルを伝播するとの解釈があった。伝わるものはすべて『物』が必要と考えていた頃の話である。一つだけ、認識しておいて欲しい原則が有る。伝播するものの本質はすべて、『エネルギー』である。光もエネルギーの一つの形態であり、音波も銃弾の飛ぶ現象も、全てエネルギーである。運動エネルギーと言うが、質量にエネルギーが乗って質量のエネルギーに加算された運動エネルギーとして見るべきである。その様に、『エネルギー』と言う本質的な物理量が認識されていない処に現代物理学理論の重大な欠陥があり、そこに矛盾が内在しているのである。光が振動などしていないにも拘らず、光を『振動数』や「周波数」でその本質を捉えると考えている。運動エネルギーは質量と一緒に飛んでゆく。しかし光と音はエネルギーだけが飛んでゆく。音も質量は運ばない。丁度、水を伝わるエネルギーと音のエネルギーは同じようなエネルギー伝播現象と見做せよう。海を伝播する津波は海底の地形でエネルギー伝播面積が変わり、伝播媒体である海水の深さによる水圧が変化する訳だから、そこでの津波エネルギー伝播がどのように分布を変化させるかまでは分からない。空気も上空と地表ではその空気密度が変化しているから、気圧が異なり、音の伝播にもその影響が有るだろう。光だけは伝播空間媒体を必要としない。真空がその本領を発揮する。しかし、空気、水あるいは透明なガラスなどではその伝播速度に影響を受ける。光伝播速度・光速度に対して不思議にも真空空間の空間定数が物理・技術定数として定義されていて、その数値から光速度が決まると言う意味にも何か深い意味が隠されていると観るべきかもしれない。真空透磁率と真空誘電率である。しかしこの定数については宇宙論でも、素粒子論でもほとんど無関心であるところに理解できない不可解さを技術的観点から強く感じる。そこには宇宙・素粒子の論理では、光を『振動数』で基本的特性を捉えているから、空間定数が速度と結びつきにくい論理性なのかとも思う。太鼓の表面を伝播する張力波を数式で表現しようとすれば、何よりもまず膜に掛る張力のエネルギー密度を仮定しなければならない。張力波の伝播速度も太鼓の皮の特質とその張り具合が決め手となる係数を仮定しなければ数式には表現できない。伝播するエネルギー量はエネルギー保存則の上で広がると考えるべきだ。それは正弦波では捉えようがない物理量である。太鼓の撥で打つ撥捌きの時間微分に関わる衝撃波となろう。こんな日常の現象も正確に理解しようとすると、とても難しいと思う。なお波が太鼓の枠に達した後は反射波として膜の中心部に向かって来ることになる。その反射現象も、送電系統で問題になる雷撃波の反射現象が同じ自然界の姿として繋がって見えるのである。物理現象を解釈するにはどうしても技術的感覚から捉えようとする習慣が身体的感性になっている。技術を理解しない理論は甚だ危険な結論に行くような畏れがする。科学技術の巨大化が、人間の技術的感覚を磨いておかないと『想定外』と言う逃げ道になる、当然起こると予想できる事件さえ、予測が出来ない社会状況を生みだすようで恐ろしくもある。その代表例が『原子力発電所』の巨大科学技術の混合機構の複雑化であり、思いもよらない落とし穴が待ち受けているという現実が見落とされる危険だある。『振動数』一つから見る物理学理論の虚構が見える筈だ。この『想定外』と言う意味を柳田邦男氏が 「想定外」の罠 大震災と原発 (文芸春秋)に良く表わされている。

エネルギーの伝播速度

 

参考資料 三味線と縦波 中々数式で太鼓の膜の振動を表現するのは簡単でないが、円周波の往復伝播として表現は出来よう。三味線の場合を以前式に表現して見た。光速度は空間定数(H/m,F/m)で決まる に光の速度と空間定数の関係を記した。

隕石突入の衝撃波

隕石の衝撃波

2月15日ロシアに隕石が落ちた。自然現象としての驚きの衝撃を受けた。どこに落ちるか分からない、予測不能の宇宙の事件だ。なかでもその衝撃波のすごさに驚いた。自分なりに解釈しておきたくなった。強烈な摩擦熱の発光現象だ。熱の高温度発光・爆発現象だ。閃光を伴い、後に物凄い空気圧の衝撃波に襲われたようだ。建物が破壊される程の爆発力だ。

衝撃波 その本質をどう解釈するかだ。図にまとめてみた。空気が熱膨張して、その圧力波が衝撃波の基である。その強さは波頭のエネルギー密度の大きさ H[J m^-3^]で決まろう。しかも空気伝播のエネルギーの縦波の単一衝撃波である。空気を媒質とした熱膨張エネルギーの伝播であるから、音速の伝播速度なのであろう。熱による空気膨張だから、「ボイル・シャルルの法則」に従う現象である。ただ、圧力膨張エネルギーは空気を移動させる訳ではない。水の津波エネルギーと同じく、空気にそのエネルギーを乗せて、伝播放射させるのである。衝撃の強さは空気に乗ったエネルギーの波頭が障壁に衝突した時その破壊力を現わす。その破壊力を今回の隕石衝突映像で何度も見せて頂いた。建物に到達したとき、ガラスが微塵に砕け散る様子が見えた。その衝撃波に耐える障壁なら、その波は反射して、逆の方向にその障壁が新たな波動源として広がるであろう。硝子のような瞬間の圧力に弱い障壁は硝子の表面積に到来する圧力の積分で衝撃波頭密度が急激に上昇するから、一溜まりもなく粉砕されてしまう。その圧力上昇は空気の圧縮として襲う訳である。この現象を思うと、光が硝子に入射するときの『屈折現象』の事に思いが繋がる。波とは不思議なものである。一度方向が決まると、どこまでもその最初の方向性を保ちつづけて、エネルギー伝播を成し遂げる。ぶつかるまで方向性を変更しない縦波である。光と同じエネルギーの縦波と観る。衝撃波は基本的に単一波である。光で、『光子』あるいは『光量子』と言うが、その本質も単一波と解釈できる。光も横に振動する実体など何もない。光一粒と言う事も横波の振動概念を捨てなければ、その解釈の曖昧さは消えない。光とは何か?-光量子ーで一粒の光の姿を空間像に示した。波動の数式による解釈の科学的常識はシュレーディンガー波動方程式による解法のようである。それは波動が振動すると言う基本認識に立っている。だから、周波数や振動数の変数の導入が欠かせない。衝撃波のような単一波はその解析のルールには当てはまらない。コンピュータ波動分析で、周期性の無い衝撃波はどのように解析するかが興味ある疑問である。空間エネルギー分布像の認識が基本的に重要となる。エネルギーそのものの空間伝播現象の認識である。質量に付帯するエネルギーでない、エネルギーそのものの実在性の認識である。運動エネルギーや位置エネルギーでない概念である。質量に依存するエネルギーは質量と共に移動伝播する現象になってしまい、隕石突入の場合で、衝撃波のような質量(空気)の移動しない波動現象は運動方程式で解けないのではないか。理科教育で、『エネルギー』の実相を認識した改革が必要であろう。