タグ別アーカイブ: インダクタンス

電気物理(電圧時間積分とエネルギー)

はじめに
物理学の中で電気現象を取り扱う科目は電気磁気学になろう。その電気磁気学の中味を確認すると、電気工学の内容と殆ど変りはない。電圧と電流がその電気回路現象の解釈の基本概念となっている。微視的な現象を論じる量子力学などは原子・分子構造やバンド理論の抽象的な理論が主体となって、少し電気磁気学と言う分野からはかけ離れてもいる。しかし、電界・磁界と言う電磁場とその中の電子の振る舞いと言う意味で見れば、電気科学技術の基本理論がそのまま基礎概念として電気物理の基本になっているように思える。専門用語には、簡単に理解できないものが多くある。π電子等と言われると、電子の『電荷』の実像さえ理解できない処に、πとは何じゃ?と狐に抓まれた気分になる。磁界と言えば『磁束』で解釈される。磁場空間に磁束が通っていると言う科学の常識概念も、教育の場ではアンペアの法則に因る電流概念との関係で理論構築されている。電流原器の定義からもアンペアの法則が電気現象の物理的真理であるかの如く威厳をもって説かれる。一方ファラディーの法則も電磁誘導現象の解釈の基本を成している。電圧と磁束と時間の関係で電気現象の理解に欠かせない法則となっている。一般に電線路周辺空間にも磁場があり、その空間にも磁束が関係していると看做すであろう。磁束はアンペアの法則の電流によって発生すると解釈すべきか、あるいはファラディーの法則に因る『電圧時間積分』で発生すると解釈するべきなのか悩ましい意味を含んでいる。『磁束』と言う空間に実在するとは理解仕兼ねる概念が、科学技術の解釈に有用なものとして長く理科教育によって基礎共通科学常識となっている。『電荷』と同じく『磁束』と言う物理概念が如何なる空間的実在性を持っているかを明確に示す事が電気物理の命題であると考える。具体像として認識できない抽象性ではこれからの科学の社会的理解が得られないと危惧せざるを得ない。電気物理はそれらの基礎概念を明確にする事から取り組まなければならない筈だ。今回は拙い電気回路現象の知り得る範囲から、電圧時間積分と言う電気工学の考え方で、『磁束』と言う意味を取上げて電気コイル周りのエネルギーを考えてみたい。電気技術ではリアクトルと言い、理論ではコイルと言う電気エネルギーの空間貯蔵回路要素の話になる。電圧時間積分と言う技術用語を初めて知ったのが、ロイヤーインバーターの不思議な電気回路現象であった。それ以降磁束はアンペアと言う電流では捉えるべきでないと確信してしまった。もう50年も前のことである。現在はその延長として『電流は流れず』と言うところに居る。とても金属導体中を流れる『負の電荷』の逆流等と言う物理概念が電流だなどと言ってすまし込んでいる訳にはいかないのだ。この記事を書く意味は、理学と言う理論に偏り過ぎた意味を科学技術と言う現実的な応用の中に隠れた真実を見直す事によって理解して欲しいとの願いからであった。教育の中に間違った真理らしき内容が多く含まれている現実を修正しなければならないと思った。ロイヤーインバーターで洗濯機用の単相誘導電動機を運転した頃の『電圧時間積分』の意味を磁束との関係で取上げようと準備しながら、その前にコイルの基本的意味を別に解説したいと考えてのことである。理学と技術の意味を考える例題として有用と思ったから。

コイルと電圧時間積分

 電気回路にコイルが含まれると、そのコイルはエネルギーを貯蔵する働きでその機能を特徴付けて解釈される。このような電気現象のエネルギーに因る捉え方が電気物理として特に考慮して欲しい点だ。コイルの中の空間にエネルギーが実在すると言う感覚的認識が必要なのだ。二分の一にインダクタンスと電流の2乗の積の式で覚える数学的な電気知識でなく、コイルの電気導体で囲まれた空間内にある『エネルギー』の空間物理量を認識して欲しい。コイルに掛る電圧とは何か?その電圧がエネルギーとどのような関係にあるかをこの記事を書きながら、考えてみたい。ただ電圧と電流で回路を解析するだけでは、それは電気技術論でしかなく、電気物理と言う自然現象の奥深さを知る自然観には程遠いと言う意味を理解して欲しい。電圧も電流も電気技術解釈用の技術概念でしかないと言うことを。然し、その電圧、電流と言う科学技術概念が如何に実用性で優れたものであるかを知る為にも、電気回路現象の真の姿を理解して初めて可能になることを知らなければならない。電線路で囲まれた空間に磁界とか、電界とか理論付をする意味を考えれば、その空間に何かがあるからそのように捉えるのだと言う意味位は察知出来よう。電線路導体で囲まれた空間に『エネルギー』が存在し、また流れているからなのである。その『エネルギー』は光速度と言う途轍もない速度で空間のエネルギー分布の欠損が生じれば補う。実験的にそのエネルギーの流れを計測など出来る筈もない。その『エネルギー』を科学技術概念の電圧と電流と言う計測量で捉えて、実用的理論に構築した意味が如何に偉大であるかを知らなければならない。しかし電線の金属導体内を電子や電荷が流れている訳ではない事は自然現象の真理として理解することと科学技術概念の意味とは異なることも知らなければならない。電圧時間積分についてコイルの端子電圧vとした時、積分 ∫vdt [Wb] は磁束の意味になる。ファラディーの法則の積分形である。このコイルに印加される電圧の時間の長さが何故磁束になるのか。コイルに掛る電圧とはどんな物理的意味を持っているのか。それらの疑問を解くには、すべてエネルギーとの関係で明らかにしなければならない問題だ。しかし、磁束もその次元は[(HJ)^1/2^](単位換算表を下に示す。)、電圧の次元も[(J/F)^1/2^]とエネルギーの単位ジュール[J]とは異なる。電気技術単位もエネルギーのある観方の解釈概念で有れば、最終的にはエネルギーとの関係を明らかにして、理解する必要があろう。その事をコイルのエネルギー貯蔵機能と言う点に的を絞って考えたい。ここで、別に電気物理(コイルの電圧)として先に纏めて置くことにした。追記。前に記した記事:LとCと空間エネルギー (2017/08/02) も参考になろう。

考察回路2例 電源は直流電圧とする。抵抗とインダクタンスの並列回路、回路(1)と直列回路、回路(2)の二つの回路例を取上げて、そのコイルLの動作機能を考えてみよう。電源電圧を直流としたのは交流電圧よりも電圧値が一定であることから、電気現象の意味を理解し易いだろうとの事で選んだ。コイルに直流電圧を掛けることは一般的には考えられない事例であろう。回路例(1)ではもろにコイルに直流電圧を掛けることになるから結果的には危険な電源短絡事故となる。一応保護ヒューズを電源に入れて配慮した。

空間の電気量 物理学では時空論と言う言葉が使われる。物理現象は空間の中に展開される電磁現象とも言えよう。光は空間世界の王者でもある。それは空間に描く時間とエネルギーの営みでもある。そんな意味で、光が描く空間長と時間の関係は『エネルギー』と言う実在物理量に因って理解できる筈だ。1990年(平成2年)の秋頃に、完成した自然単位系がある。措置と言う強制牢獄への穴に落ちる少し前のこと。自然現象を理解するに科学技術概念だけではなかなか複雑過ぎて難しい。空間とエネルギーだけで電気用語の意味をまとめた表を載せる。すべての電気量がエネルギーのジュール[J]との関係で算定できる。電気量の次元を換算するに使うに便利である。余り物理学では、空間の意味にファラッド[F]やヘンリー[H]を意識していないようであるが、時間の次元も[s=(HF)^1/2^]で関係付られる。光の速度を決めるのもこの空間の物理的関係に因る。この空間の誘電率、透磁率の物理的意味合いを明確にする課題がまだ残されている。それはどうしても哲学の領域にもなるかと思う。科学と哲学の課題でもある。空間で『エネルギー』がどのように共振現象で伝播するかの解答が。何方かの挑戦を期待したい。

回路(1)の電気現象 スイッチによって二つの場合を考える。

(a) S1:on 、S2:off の抵抗負荷。電源スイッチ S をオンする。回路解釈は直ちに一定電流i=E/R[A]になると理解する。技術論としてはそれで十分である。然し物理現象としては、負荷抵抗に供給されるエネルギーは電線内を通って供給される訳ではなく、電線路で囲まれた空間を通して供給されることを知らなければならない。厳密には突然スイッチの周りのエネルギーギャップの空間が閉じられるのだから、複雑な空間の動揺を伴った後オームの法則通りの平常状態に落ち着くのだ。電気技術で負荷電力P=E^2^/R [W]と計算される。ワット[W]=[J/s]である。電圧の単位は[V]で抵抗の単位は[Ω]である。[V]と[Ω]で、どのように単位換算されて電力が[J/s=W]となるのか。その物理的意味をどのように解釈するのか。このことに関連して、やはり別に電気抵抗体の物理として考えをまとめた。

(b)S1:off 、S2:onでSオンする。実際はスイッチSオンすると同時に、電源短絡事故となろう。コイルのインダクタンスがL[H]であれば、電流はi= E/L∫dt [A]で直線的に増加する筈だが、そこには空間的な別の意味が関わっている筈だ。コイル空間が真空であったとすれば、エネルギーの空間貯蔵に空気中と異なる意味が含まれるかも知れないと言う疑問はある。コイル内の空間にエネルギーが貯蔵されると言う意味は、その空間のエネルギー貯蔵限界があると言う点を知らなければならない。ただ空気中の磁束量の限界と言う空間破壊の解釈は聞かない。電界の空間破壊は高電界30kV/cmと良く聞くが。それも磁場と電場と言う違いはあるが、空間のエネルギー貯蔵限界に因る物理現象の意味である。コイル電流i[A]に因って、コイル内に磁束[Wb]が生じると言うのがアンペアの法則に基づく解釈である。次元を考えれば、電流[A=C/s]からどのような物理現象として、磁束[Wb]が発生すると言うのだろうか。電荷には磁束を発生する物理量的な次元の意味が在るのかを問わなければならない。電気技術論として1800年頃に発見された知見が現在の物理学概念として本当に有用なのか。電荷と磁束の間の空間に起きる次元変換の物理的見解が必要と思う。そこには『電荷』の物理的空間像が示されなければ、答は得られないと思う。なお、電圧時間積分は電流i=(∫Edt)/L の中に含まれている。磁束φ=Li と同じ式ではある。

回路(2)の電気現象 R-Lの直列回路で、やはりLの機能を考えてみよう。既に、電気物理(コイルの電圧)としてまとめたので大よその意味は分かろう。コイルのスイッチS’:off で電圧を掛ければ、指数関数的に電流i がE/Rの値まで増加し、コイル電圧はエネルギー貯蔵した状態で零となる。

『問』 その状態でスイッチ S’ をオンとしてコイル端子を閉じるとする。その後の電流はオンしたスイッチ部を通るか、コイルL内を通るか。

『答』 尋ねたいのは、コイル端子を閉じたときコイルの貯蔵エネルギーは電流 i に因るのか、それとは別にコイル内の空間に貯蔵されたものと考えるのか、どちらで理解するかを答えて欲しいのだ。電流 i が電源に繋がった導線部 S’ を流れずに、わざわざコイル内を流れるとは考え難かろう。然しコイル内にはエネルギーが貯蔵されていると解釈しなければならない。そのコイルのエネルギーは電流に因るのか、コイル内の空間に貯蔵されたものと考えるのかを問うのである。ただ時間と共にそのコイルエネルギーも空間に放射あるいは抵抗で熱化されて無くなる。

回路の電流 回路(1)と回路(2)の電流値の様子を考えてみよう。

電流値 電圧が 100V 、抵抗値10Ω、 インダクタンス10[mH]として図に示した。回路(1)の(b)の場合で、コイルに電圧を印加した時、電源投入後何[ms]で電源短絡となるかは分からない。? 記号で示した。その状態をコイル内の磁束が飽和した為と技術的には考える。物理的には、コイル内の貯蔵エネルギーの受け入れが出来ない限度を超えたからである。また、回路(2)では、スイッチS’ を投入した瞬時にコイル端子は回路から切り離された状態になり、抵抗のみの回路となる。その時コイルのエネルギーはそのまま分離されてコイル内に留まり、時間と共に消えることになる。

むすび 記事の内容を見ると、電気物理と言いながら数式が全く無いことに気付いた。電気現象はその技術概念電圧と電流が解析の要となっている。然し、その電圧とは?電流とは?と殆ど疑問に思われてはいないようであった。30年前に『電荷』概念の空間像を描けないと疑問に思って、何か世間の囃したての中に揉まれながら、人生意気に感じて頑張っている内に、とうとう浦島退屈論の仕儀となってしまった。やっと御蔭さまで、電圧と電流の物理的空間像が描ける境地に辿り着いたようだ。電圧の2乗が次元[J/F]、 電流の2乗が次元[J/H]でその空間の空間エネルギーを捉えたものであると。電気回路の空間構造のコンデンサ機能の[F] とコイル機能の[H]とでその空間のエネルギー貯蔵量を捉えることが出来ると安堵の境地。やっと技術概念の物理的意味が理解できた。電圧-その意味と正体ー (2016/05/15)ではまだ疑問との格闘にあったようだ。然しその記事の文末に導体近傍のエネルギー分布を確信した記事が記してある。その実験的検証が在ったことで、ここまで来れたと感謝する。

LとCと空間エネルギー

電気回路には回路要素のLとCがある。インダクタンスLもコンデンサCもエネルギー貯蔵要素だ。インダクタンスLの値はその形状と寸法で決まり、「長岡係数」と言う係数もある。コンデンサCもその形状と寸法で値が決まる。勿論それらの空間環境を占める磁性材料や誘電体材料によって大きく影響されることは当然である。

形状と寸法で決まる訳は何か 時定数から観る電気現象で『問答』にしたL,Cとの関係についての参考記事でもある。電気現象の本質がすべて導体や誘電体、磁性体とその近傍における『エネルギー』の振る舞いによって様々な特性を表すことに在る。すべては空間のエネルギーの存在形態として見ることも出来よう。だから『エネルギー』の貯蔵空間の意味によってインダクタンスとかコンデンサとかの電気要素で捉える分け方になると言えよう。ただ『エネルギー』の量がその要素の空間の大きさで決まるのか、その形状を構成する空間の何が大きく影響を与えるかなど不明な事も多い。そこで、回路要素の形状と機能を『エネルギー』から考えてみよう。

空間エネルギーとは? あまり馴染みのない用語かもしれない。物理学理論には質量を伴わない『エネルギー』の存在、その概念があるのかが分からない。世界は『エネルギー』から出来あがっていると思えるから、物理学理論が理解できない。筆者の頭脳の能力が劣っていると言われれば止むを得ないが。周りを見渡せば、光が世界の姿を教えてくれる。その光はどんな素粒子から出来ていると物理学では考えているのだろうか。太陽から届く光の『エネルギー』は何からできていると考えているのだろうか。その身の周りに在る全てのエネルギーが『空間エネルギー』の姿であると言うのが筆者の考えである。電線路を伝送される電気の『エネルギー』も星から届く星座の光もすべて空間を通って流れる『エネルギー』の姿である。それら全てが『空間エネルギー』である。電熱器のヒーターが熱い熱源として働くのも、白熱電球のヒラメントが光源として働くのも、いわゆる抵抗体の内部に『エネルギー』が蓄積され、その貯蔵限度を超えた『エネルギー』が空間に放射されるだけの現象でしかない。質量のタングステンヒラメントの内部は空間構造を成していると看做せて、そこに『エネルギー』が貯蔵されているのだ。それも含めて『空間エネルギー』と言える。電気回路要素のコイルやコンデンサも『空間エネルギー』の貯蔵空間を構成している構造体である。ただコイルやコンデンサは抵抗体と違って、貯蔵した空間エネルギーは外部空間に放射はされず、必ず電気回路内の空間を通して、電源に回生される。だから基本的にはエネルギーの消費はしない。『エネルギー』を処理しながら、消費しないから結果的に利用されない無効の『エネルギー』なのである。その電力が無効電力と言われる訳である。放送電波や携帯情報端末で取り入れる電波はその電波の波長に同期する共振回路で、空間エネルギーの縦波を取り込み、コイルやコンデンサ内の『エネルギー』を選別して利用している毎日である。空間を『電荷』が光速度で飛んでくる訳では決してない。光の縦波の『エネルギー』が空間と共鳴状態(誘電率と透磁率)で伝送されているだけである。みんな空間エネルギーである。

回路要素と空間エネルギー 空間を電気技術から観ると真空透磁率μoと真空誘電率εoと言う基本定数によって解釈する。空間に存在する『エネルギー』は電気技術的観点から解釈すれば、必ず透磁率と誘電率と言う定数によって判断するように習慣づけられていた。その空間定数と同じ観方で、LとCを捉える。真空透磁率や誘電率が自然の眞髄から観れば、その深い哲学的な意味までは理解できないでいる。一つの自然解釈法の基準定数として理解しているに過ぎない。その観方からすれば、インダクタンスと静電容量のエネルギー貯蔵機能も統一的に解釈できれば良いと思うが難しい。

LCとエネルギー LとCおよびRの違いは何だろうか。先ず初めにはっきりさせておきたい事がある。導体のエネルギーに対する解釈である。一本の導線を張れば、その空間に今までと異なる影響を生み出す。エネルギーが基本的には導体を反射体として捉えるだろう。導体の中に侵入すればおそらく熱エネルギーとして消費されるだろう。極端な例が『超伝導体』である。エネルギーロスが無いと言うことは超伝導体が完全反射体であるからである。逆に抵抗体は極めて効率良く空間エネルギーを内部構造体の中に取り込み熱エネルギーとして貯蔵する特性を持った要素と看做せる。貯蔵限界まで蓄えた結果温度が上昇し遂には放射源となって発光、発熱作用現象を呈する。抵抗体の単位を[(H/F)^1/2^]と評価したのも、エネルギーに対する空間の意味を統一的に捉える観点からである。科学技術法則の単位のΩの優れた点とは別に、自然の物理的、より深いつながりを重視した一つの解釈法でしかないが。LとCについては個別に考えてみたい

Lと空間エネルギー リアクトルと言う用語は電力技術用語かもしれない。それは電力用誘導性コイルと言う意味で捉える習慣だ。リアクタンスはコイルとコンデンサの両方に使う用語だが、電力技術では主に誘導性のコイルが主要な回路要素であるために、その用語を代用したのかもしれない。インダクタンスよりリアクトルと言う使い方が馴染みやすい。変圧器もモーターも殆ど鉄心がその主要な構成材となっている。銅線以外は鉄で出来ていると言えよう。電気磁気学のインダクタンスと言う概念と感覚的に電力技術での捉え方には違いがあるかもしれない。『空間エネルギー』の解釈には、リアクトルと言う鉄と銅線から構成された電力機器が頭に浮かぶ。そこでリアクトルと言う捉え方で、電力用インダクタンスLの意味を考えてみよう。

(L-1)ギャップとインダクタンス E I 型鉄心を用いて、コイルNターンを二脚に巻いた。鉄心EとIの間にギャップgがある。そのギャップ寸法が電気要素としてのコイルのインダクタンスにどのような影響を及ぼすか文献(1)が参考になろう。ただgの寸法がインダクタンスLにどんな関数関係で影響するかは、その意味が明確ではないように思う。『空間エネルギー』が鉄心ギャップ部分に集中して存在する事が大きくリアクトルの特性に影響を及ぼしていることは間違いない。ギャップgが小さくなるほどLは大きくなる。しかしg=0ではリアクトルとしての機能は果たせなくなる。インダクタンスL=∞となるから、エネルギー貯蔵機能は無い。それは変圧器となるから。序でに考えておこう。モーターも重い外側の固定子と回転子との間のギャップがエネルギーの存在する大事な空間であり、ギャップ空間エネルギーの振る舞いを動力発生の原理に解釈を広げられれば、物理的『空間エネルギー』の電気現象の役割がはっきりするであろう。若い方に挑戦して欲しい。

(L-2) 変圧器等価回路 鉄心間にギャップがある変圧器は漏れ変圧器と言う。ギャップ空間にエネルギーを貯蔵する機能でリアクトルと漏れ変圧器は同じ意味で捉える事も出来よう。そのギャップg=0ではインダクタンスL=∞で、リアクトル電流は流れ得ない。エネルギー貯蔵機能も無くなる。変圧器等価回路では、相互インダクタンスMとして評価される。1次、2次負荷電流の相互関係を解釈する為にはMが便利であるからであろう。しかし、変圧器の励磁電流と磁束概念の伝統的解釈法では、磁気特性の非線形性をうまく表現し難い点があろう。それは磁束が励磁電流によって発生する訳ではないと考えなければ解決できない現象である。ファラディーの法則の微分形式には電流と磁束の関係は何も表現されていない。微分形式を積分形式で表現すれば、巻線コイル1ターン当たりの電圧の時間積分で磁束φは評価すれば良いだけである。もし励磁電流で磁束を解釈するなら、非線形回路を書き加える便法もあろうが、余り意味は無かろう。しかも磁束さえも技術的解釈概念である訳で、結局は空間エネルギーの一つの観方でしかないと考える。しかし、その磁束概念は磁気現象を解釈するには大変便利で有用な概念であることには間違いないものである。さてリアクトルの『空間エネルギー』であるが、コイル巻線の導体周辺に分布していると考えざるを得ない。電圧概念が元々空間のエネルギー分布の技術的評価概念であると観れば、その解釈法も理解し易かろう。インダクタンス値がコイルの1ターン長さに因るだろうと言う解釈も、鉄心最大磁束密度Bmと鉄心断面積の積φmと言う設計基準の解釈法とも通じていると理解できよう。V=4.44fNφmの意味もコイル1ターン長との関係で理解できよう。

Cと空間エネルギー リアクタンスの一つにコンデンサがある。コイルとはその構造も空間材料(磁性体に対して誘電体)も全く異なる。同じ電気のエネルギーの貯蔵機能要素である。伝統的には実在しない『電荷』概念で評価している。このコンデンサの静電容量と形状の関係が先の記事の『問答』の解答ともなる訳であろう。コンデンサ容量はその電極間の面積に比例し、電極間のギャップdに反比例すると解釈されている。面積一定のままで、ギャップ寸法dを狭くしたら静電容量が大きくなるのだろうか。極限はギャップ零に近付けることになる。ギャップd=0は丁度電気回路のスイッチを投入したような状態となろう。それはもうコンデンサとは無関係の状態である。空間エネルギーを保持する状態ではなくなる。コンデンサ容量Cはd=0で定義式では無限大となるがそれは意味の無い事である。コンデンサのリアクタンスXcで考えれば、d=0でXc=0となって、インピーダンスにおける意味に矛盾は無くなり理解できる。『問答』のKとの関係も理解できよう。以上がコンデンサの寸法についての解釈としよう。さて、リアクトルと同じように少しコンデンサの機能についてその物理的(物理学教科書的ではない、学習指導要領的ではない)意味を考えてみよう。

電線路とコンデンサ機能 ある配電線路の終端にコンデンサだけを負荷としてつないだ回路を考えてみる。今までも何度か電圧の意味の考え方は述べて来た。その意味をコンデンサ負荷との関係でもう一度整理してみよう。電線路については分布定数回路と言う観方が高周波で採られる。それは何も電圧の周波数に因ることではなく、すべて電線路はエネルギー伝送から観れば、回路としてはコイルとコンデンサの分布回路と観なければならない。電源電圧が正弦波とすれば、瞬時的には電線路全体がその電圧の変動回路となる。何が電線路の電圧の原因を成しているかと言えば、その電線路空間の『エネルギー』分布である。電源から負荷までの電線路空間が電源電圧の瞬時値に対応したエネルギー分布で平衡状態を保持するように、空間を『エネルギー』が自動的に伝送されるから有効な電力伝送設備が可能なのである。それは『エネルギー』の自然界の現象で、光速度伝送する自然現象の御蔭なのである。その自然現象を科学技術概念で便利な捉え方で利用している訳である。上の図で電線路終端のコンデンサ負荷では、電源電圧の変動に対して、光速度での遅れは伴うが、電源電圧に対応するべくコンデンサ内のエネルギー分布を確立するための、エネルギー貯蔵で機能する訳である。コンデンサの電極板導体の面積が広ければ、その面積全体に亘って電圧vcに対応するべくエネルギー分布を行き渡らせなければならない訳だから、多くの『空間エネルギー』を貯蔵する必要がある。そのエネルギー貯蔵に於いては、コイルのようなエネルギー入射を妨げる作用は無いから、極めて瞬時に電圧変動に対応して、素早い応答で機能が発揮される。コンデンサの電気要素としての感覚的認識にはそんな意味で納得できるだろう。誘電体に強誘電体材料が使われるが、その材料のエネルギー貯蔵特性には時間的遅延性などがあるため、特殊な特性を示す面もあろう。最後に付け加えておこう。電源電圧の極性と電線路の『エネルギー』伝送空間について。図に示したような電源電圧の『極性』は(+)、(-)で馴染んでいるから分かり易いと思うが、本当はその『極性』とは何かと問えば分からない筈であるにも拘らず、理解され易いと言う科学技術の恩恵(?)がある。しかし実際に『極性』と言える意味の電気現象に差が存在する事も確かな事であるから、それが『何か?』と疑問に思う。今から丁度7年前に、記事を元のSpaces.live.com/に投稿させて頂いた。その科学論の最初の記事が放電現象と電荷・電流概念である。放電現象は電気現象の意味を解く最初の研究対象でもあったとも見做されよう。そこで『陰極線』と言う得体の知れない流れがあると見做した。(+)側からは流れない事を知った筈だ。その『何か』が流れ出る側が(-)側であると。その応用が三極真空管の熱陰極線の空間電荷制御法になった。乾電池、蓄電池の電源も(-)側が『エネルギー』供給源になっているようだから、交流回路の電線路の『エネルギー』流も(-)側にその流れがあると解釈して良かろうとの判断である。その流れは光の流れと同じだから、科学の論証に従った実験的に検証する方法は考え付かない。

不適格な科学論か? 上に述べた事を含めて、殆ど科学者の検証に耐える根拠が示されていない。それにも拘らず、『電荷』否定から始まった記事は殆ど数学的解析式などもなく、ただ日常用語で『エネルギー』の電気現象における振る舞いを感覚的に納得できる意味を述べさせて頂いた。科学論らしくなくて御免なさい。

文献(1) 大学講義 最新電気機器学 宮入庄太著 (丸善)   p.53~

 

電気回路問答

また世にもつまらぬ電気回路を取上げる。電気技術者なら、決して誰も試さない電気回路である。これほど単純な回路を問答対象に取上げようなどと考えることがまともな感覚ではなかろう。
「エネルギー感覚」を試す問題として提示した。ただし、考えるだけの問題にしてください。

電気回路問答Lの意味?

(厳重注意) こんな回路を組んではいけません。実験等したらとんでもない危険なことになります。危ないから絶対だめです。