タグ別アーカイブ: アボガドロ定数

ボイル・シャルルの法則と水蒸気

気体の体積膨張と収縮はボイル・シャルルの法則として纏められている。温度と圧力と体積の関係が分かり易い数式で表現されている。筆者にも感覚的に理解し易く、受け入れやすい式である。しかし少し詳しい説明になると、気体定数やアボガドロ定数との関係で解説されるが、その高等理論(特に気体分子運動論)を理解するには能力的に困難が伴う。地球気温の異常さを感じ、豪雨水害の悲惨な生活破壊の多さを見るにつけ、空気と言う気体の中味をどう解釈すれば市民的科学テラシーの常識を持つと言えるのだろうか。酸素O2と水素H2と窒素N2と水H2O(水蒸気)の温度特性に違いが有るからじゃないかと考えるが、それらの個別の気体分析は検索に出て来ない。みんなアボガドロ定数の御蔭で教育されているからか、何処にも違いは見えない。空気中の水蒸気含有率(質量)の温度依存特性でも調べられて居れば分かるのだが、こんな時代だからデーターが有ればと思う。空気中の水蒸気含有率は素人解釈ながら、地球表面に於ける太陽光線の『レンズ収束効果』による気温上昇への拍車をかけないかと気掛かりなことでもある。地球上が水蒸気でその温度特性に翻弄されているような気分だ。産業革命の元になった蒸気機関は水分子の特性を際立てた主役である。現代の原子力発電等の汽力発電所は水分子H2Oの独壇場だ。その力強さは湯灌で水を沸かすと、底から沸騰と言う自然現象で水分子が膨張する様子に見られるが、それも他の気体分子と同じ現象で理解すべき事だろうか?酸素と水素原子が結合した分子H2Oと言うが、とても不思議なことと感じる。ペットボトルの空気(水蒸気)収縮 お茶の飲み残しのボトルを冷蔵庫に入れた置いたら冷やされて細くくびれていた。改めて30数度のお湯をボトルに入れ、冷凍庫に入れて見た。冷やされて氷が出来て、写真のように体積収縮で括(クビ)れてしまった。上空に寒気が張りだし、空気の水蒸気が体積収縮を起こし、上空の低気圧に因る地上の水蒸気を含む空気が急上昇し、竜巻になったり、冷やされた水蒸気が雹になる現象の意味が良く理解できると思った。酸素分子も同じような現象を起こすのだろうかとアボガドロ定数に関する気体論とボイル・シャルルの法則を考えた。気体分子運動論が現代物理学の標準理論になっているようだ。その理論には質量がエネルギー解釈の基本条件になっているから、その理論による水分子H2Oの質量の運動エネルギーで解釈すると成ると、ボイル・シャルルの法則以上に理解不能の筆者だ。以前『温度とは何か』が問うもの でも考えた。

キログラムの定義改定とアボガドロ定数

科学理論の信憑性を問う。お願いしたい事がある。筆者がこれ程までに、自然科学の基礎理論に疑念を抱く様な世界標準の話にしないで欲しい。どうか筆者が抱く疑念を的確に誤りと論断して欲しい。誰もが知らない事として無視しているとしか思えない。只通り過ぎるを待つ世界のように思える。
日本物理学会誌 解説 キログラムの定義改定に向けた質量標準の開発動向 (Vol.69, No.9, 2014 p.604-p.612) を興味深く読み進んだ。数式が少なく、何とか読めるので期待した。専門的用語も始めてみて勉強になった。-Keyword-ワットバランス法やX線結晶密度法の意味する内容が何かも分かった。納得できた訳ではないが。読みながら、最初に壁に突き当たった事は、図3として説明されている意味である。その図の描き写しが下図である。シリコン結晶の単位胞

何しろ、干渉計にも触れた事が無く、X線回折法の原理も中々理解できない。そんな素人が上の図3を見て、シリコン結晶の単位胞を一辺aの立方体と読み取る。図の中のシリコン原子の数はとても8個には見えない。ワザワザこの図で説明するのに、どういう意味を込めたのかが分からない。全てのシリコンの結合手は4価とすれば、2価しか描かれていないものもあり、その辺も分かりにくい。何故8個のシリコンと成るのか。アボガドロ定数算定の基準数である8個の意味で壁に当たってしまった。(アボガドロ定数N=8M/(ρa^3^) の8である。)X線結晶密度法を検索した。産総研で測定したアボガドロ定数、物理定数を決定する国際機関で採用 にその意義が示されてある。この産総研の記事で質量標準の改定の意味も示されていよう。

学会誌の解説記事を読んで思う事 キログラムの再定義方法とワットバランス法およびX線結晶密度法のそれぞれの意味が解説されている。具体的な質量原器に代わる標準原子質量の改定の手法の比較で示されている。しかし、その中で、基準とする定数がとても多いと感じた。最初の疑問は、質量とエネルギーの関係で、E=mc^2=hνの周波数νで光子のエネルギーを認識する解釈が、エネルギーを光子の数量(無限数でもエネルギーは同じとの解釈?)に無関係で論じる論理について行けない。質量mが幾らでも良いと同じ意味になろう。1万個の光子も1個の光子も同じエネルギー量という量子論は技術感覚からは納得できない。次の疑問。質量定義には、アボガドロ定数とプランク定数のどちらかを不確かさの無い定数として定義してしまえば、・・という解説。プランク定数の空間的概念を捉える解釈を、光とは何か?-光量子像ーに示した。元もと、プランクが測定した実験の測定値の物理的意味が曖昧である。エネルギーの何を測定したかが不明である。計測法の基礎概念を明確に示さなければ、質量原器の算定も定義に危うさを残す。光そのものの振動数の意味をどのように解釈するかも問われる筈だ。光は振動等していない。エネルギーの縦波である。質量算定基準に、電子のモル質量、微細構造定数、リュードベリ定数などが必要という。更にアンペア、ケルビン及びモルの定義にも、電荷素量e、ボルツマン定数k、アボガドロ定数Nから算定されるように読めるが、そんな存在もしない電荷などで定義するとは信じ難い。現在も、アンペアの定義を平行導線間に働く力の計測で解釈している。導線内に電流等流れていない、電流は流れず

キログラムの新しい定義がもたらすものという解説 キログラム、アンペア、ケルビン、モルの基準がそれぞれプランク定数h、電荷素量e、ボルツマン定数k、アボガドロ定数N_Aに移行するとの事。ここで、電荷素量やアンペアの定義が平行導線間の力測定によると言う点で、全く未来性がない。物理定数でなく、専門業界定数としか見えない。アボガドロ定数とは何か にも疑問を呈したが、今回国際機関で採用された定数値は気体の高分子にも適用できるアボガドロ定数なのだろうか。電流の測定値の桁数との誤差論はどう修正するのだろうか?厳密性という意味が理解できない。

統一原子質量単位の意義を問う

原子ー原子量ー原子質量単位ー統一原子質量単位と様々な用語が有る。2006年に統一原子質量単位と言うものに国際的な公式単位系に決められたようだ。その単位は、[u]と言う。何かとても仰々しく思えて、その意義が理解できない。原子質量単位[a.m.u.]が非公式で、今度は統一原子質量単位[u]が公式単位に決まったと言う。そもそも、原子量とは何かである。炭素12Cを基準にした比較量らしいが、何ケタもの数値で、正確であるが如くの表示自体が信じられない数である。原子量をどのように判定するのかさえ信じられない。実際に計測した値とは思えない。仮想的評価に基づいた数値ではなかろうか。大体の値で、もしアボガドロ数との関係で捉えるならば、大よその原子量単位[g(グラム)]で十分と考える。金属原子にアボガドロ数と言っても、1mol の意味との関係も不確かであると思うから、もっと市民が理解できるような解釈に統一する事を優先すべきであろう。専門家独自の厳密性など、余り当てにならないと考える。アボガドロ定数とは何か

金属原子の寸法を問う 原子量(統一原子質量単位と同じ)とアボガドロ定数  の関係について。初めは、1 mol (22.4 リットル)の空間体積中の気体ガスの数量(気体ガス分子の分子の個数)がアボガドロ定数と言う数量的解釈になっていたと思う。しかし、金属の場合は、余り 1 mol の体積と言う意味は無いと思うが、アボガドロ定数だけはどんな原子量に対しても気体と同じように成り立つ。即ち原子量をアボガドロ定数で割れば、どんな金属原子の 1個の原子の質量も(gグラム値で)得られる。ウラン235も、銀も原子一粒の質量が算定できる事になっている。そこで、市民的科学認識で考える疑問がある。専門家には単純過ぎて失礼かもしれないが、例えば銀やウランのアボガドロ定数に相当する原子の占める空間体積を明確に示して欲しい。原子の空間的寸法が分からなければ、プルトニュウムも水素もその原子構造の大きさの概略が分からないでは話にならない事であろう。話にならない科学論は排除しなければならない。原子の存在する空間的認識が不明確のままでは、原子論などの科学論への市民的合意・参加が出来ない。具体性の欠けた抽象論を噛み砕いた具体論で解説する義務が専門家に課されている筈だ。
もう一つ疑問がある。ヘリュウム原子は不活性ガス状態と言う。分子結合でないと思う。ヘリュウム原子と水素分子は原子量とアボガドロ定数の関係をどう解釈すれば良いのだろうか。ヘリュウム原子の場合は1mol でアボガドロ定数で算定する数量と解釈するのだろうか。

『温度とは何か』が問うもの

温度とは何か この標題で今年(平成23年春)の物理学会で発表する予定であった。温度は物理学のあらゆる研究の条件となる重要な環境指標である。しかし『温度』と言う物理学的概念は中々捉えようのない不確かな概念でもあると思う。そこで私なりの解釈を学会の場で問題提起をしようと投稿した(日本物理学会講演概要集第66巻第1号第2分冊、p.443)。ところが今年は、日本物理学会第66年次大会(新潟大学キャンパス)が東日本大震災の影響下で中止となった。一応発表に使う資料を準備した。そこでその内容の一部をここに報告する事にする。『温度とは何か』は熱現象に関わり、その本質は的確に捉えられていないと思う。物理学理論、教科書的理論はとても納得できるものでないと言わなければならない。熱に関わる事に踏み込むと、収拾が付かなくなる程、言はば魔の領域でもあると聞いていた。温度は熱エネルギーと密接にかかわり、古くは産業革命の原動力となった蒸気機関の発明からの『熱理論』の研究対象となってきた。工業製品の自動車エンジン、クーラーの熱交換機、原子力発電所の原子炉と蒸気タービン等あらゆる現代科学技術の隅々に主動力源として応用されている。ならばその理論は完ぺきであると解釈するのが当たり前と思われよう。例えば水の蒸気機関では『蒸気線図と熱サイクル』として完璧な技術理論が完成されている。蒸気の圧力p[kg/㎠]と比体積v[㎥/kg]および温度T[℃]並びにエンタルピーi[kcal/kg]やエントロピーs[kcal/kg K]の関係で、その水蒸気の詳細な状態量を評価している(しかし、これらの概念量の単位はMKSに統一されていない上に、温度も摂氏温度[℃]と絶対温度[K]が混合している点は注意)。理論は兎も角として、この熱力学応用技術は完全に確立されていると見て良かろう。それでも『温度とは何か』と問わなければならない事がある。私が指摘したい事は『物理学理論』として大学などの教育現場で行われている『熱理論』の授業内容が無用に思える。今回の学会講演概要集にも計らずも(?)私と同じ標題の論文が載っているが、その内容は解釈・理屈が私のものと正反対である。

温度は何が決めるか 特に気体の温度は何が決めるかと言う『問答』である。それを右の図面で考えてみようと思う。先ず温度とは物理量かの問いである。教科書的熱力学は温度が基にあって、その時の気体分子をどのように解釈すれば良いかの論議に成っている。その逆で、『温度を決めるのは何か?』が重要な視点であろう。図には3つの温度が示されている。室温と言う気体の温度T[K]、温度計の指示値T_th_[K]および白熱電球のフィラメント温度T_f_[K]の3つである。温度計を電球の放射光から遮蔽すれば、室内の気体の定常温度Tを指示する筈である。室温は電球の放射光と気象条件などの外部条件の基に平衡温度に落ち着く。しかし電球の光が温度計に照射されれば、その温度計の指示値は室温より上昇する。その時の温度計の指示値は決して気体分子の運動エネルギーにより決まるものではない筈だ。直接電灯からの放射光のエネルギーが温度計の液体に入射してそのエネルギーに基づく膨張が指示値となった筈である。逆に、温度計の指示値から気体分子運動エネルギーを計算することは出来ない筈である。気体(空気)の温度は温度計の指示値から読み取る訳であるが、その指示値は何が決めるのか。まさか、空気分子が振動して温度計のガラスに衝突し、その運動エネルギーの一部をガラスの振動エネルギーに変換し、更にガラスの振動がアルコールの液体の運動エネルギーに伝達し、アルコールの液体の運動エネルギーの増加で、アルコールが膨張すると説明する訳ではないと思う。分子の運動エネルギーが増加すると、分子の衝突の影響が強くなり、互いの分子間の反発力の増加で、分子間の離隔距離が広くなり、膨張したような広がりを生むと看做す解釈になっている。「分子運動論」の基本的認識はそのような解釈に基づいているのだろう。しかしその解釈は本末転倒した論理である。温度が与えられると、その温度によって、分子運動が決まると言う解釈が間違いである。即ち温度が気体の運動を決めるのではなく、気体分子に与えられるエネルギーの量により分子の状態が決まるのである。どのような状態を呈するかと言えば、気体、液体あるいは固体の運動では無く、ただ体積の膨張・収縮と言う状態の変化で現れるだけである。図で示した意味は、電灯からのエネルギーが直接温度計のアルコールに入射し、アルコールの体積膨張を来たす現象として説明したかったのである。ボルツマン定数k と絶対温度T から、気体のエネルギーを kT [J] とするがT は必ずしも気体の温度を示している訳で無いと解釈する。結局『温度とは何か』である。それは、気体であれば、気体分子が保有するエネルギー量が周辺の近接する気体分子、媒体の保有エネルギー量との関係に基づき、近接する物同士の間で、互いにエネルギー放射と吸収の平衡状態に落ち着くようにエネルギーが流れる自然現象である。『エネルギー』そのものが実在している事の認識ができるかどうかの問題でもある。光が訳の分からない何かが振動しているような曖昧な解釈が罷り通っている状態では理解が出来ないと思う。光も振動する物など何も無く、ただエネルギーが縦に、縦波として伝播しているのである。物理学熱理論では、気体の温度を「気体分子の運動エネルギー、振動エネルギーあるいは並進運動エネルギー」等の『運動の衝突・反発力』による膨張との解釈と観る。それは気体分子などの質量に付帯したエネルギーと言う意味では、『質量』が物理的拠り所となっている点が私の解釈と異なる。それなら、その運動エネルギーが如何程であれば、逆に気体の温度を幾らと規定するのかと、温度と気体分子運動との相互依存関係の有無について、回答を要求せざるを得ない。『温度とは何か』が問うものは「何が温度を決めるのか?」であり、『温度』その物の意味を問う事でもある。温度の値を決める原因は何かを明らかにすることが物理学理論の進むべき本筋である。蛇足かも知れないが、もう一度言う。決して、気体分子の運動エネルギー論が気体の温度を説き明かす解釈にはつながらない。温度の基は『エネルギー』そのものである。光、光量子等と言はれるもの、太陽光線はその代表的なもので、エネルギーそのものである。そのエネルギーが気体分子、温度計のアルコール液体、部屋の壁面、床面に吸収されて、それぞれに貯蔵されたその吸収エネルギーが平衡を保つように逆にエネルギー放射されるのである。気体分子や『モノ』に入射した『エネルギー』そのものにより、『モノ』が膨張するのであり、運動などしていない。近接体同士の間でのエネルギー量の平衡が保たれるようにエネルギーの流れが起きる。気体分子や『モノ』のエネルギー吸収・放射特性が同じ訳ではないから、エネルギー量とその膨張量は違う。それぞれの物質間で、エネルギーの吸収・放射を繰り返しながら、膨張が決まり、結果的にその平衡バランスで温度計の指示値が決まるのである。その指示値を室温と解釈しているのである。さて上の図には電球のフィラメント温度T_f_[K]が基に成って、光エネルギーが放射されるが、その放射量を決める法則が『ステファン(・ボルツマン)則』で、絶対温度の4乗に比例すると言う。この法則が正しいかどうかと言う疑問がある。ここで光・熱の放射法則に触れておこう。熱放射則としては先ずプランクの式を挙げなければならない。プランク則は特殊な黒体の放射則であるが、温度と放射光の基本関係を解釈する基に成っている。この二つの式だ、その単位をご覧いただきたい。式も複雑であるが、その単位が問題である。そんな空間を伝播する光のエネルギーを測定できる訳が無いのである。エネルギーの単位ジュール[J]のメートルmの4乗当たり等の空間概念が測定できる訳が無い。じゃステファン則の単位秒当たり、単位面積当たりの空間エネルギー流(電気ではポインティングベクトルと言う)を測定できるかと言う疑念である。この点については、『プランク定数』を疑うと言う標題で別に論じたい(まだ未投稿のままである)のでここでは踏み込まない。(2013/02/12)以下#までを 追記。熱輻射理論に関する考察および花が光か 光が花か で熱輻射理論への疑問を記した#。ステファン則等あらゆる熱力学理論の基本定数として欠かせないボルツマン定数k[J/K]が有る。それは1分子当たりの保有エネルギーと絶対温度の関係が物質に関わりなく一定であると言う意味を表したものである。その古い意味を含んだ法則に『ボイル・シャルルの法則』が有る。ボイル・シャルルの法則そのものの法則としての意味は重要と思う。しかしボルツマン定数との関係付が怪しいと見る。こんな定数が正しいと言えるのかと言う疑問である。気体定数R、アボガドロ定数Nと言うとても古くて偉大な定数が物理学・化学の科学論の大原則として、頑迷に蔓延っている。例えば、アボガドロ定数は1811年に提唱された仮説である。どんなガス分子も同一の体積には同一の分子数であると言う解釈である。ならば、ベンゼン核を含む芳香分子ガスも水素ガス分子も本当にそんな法則が成り立つと言えるだろうか。教科書的原理の殆どは誤った古典的解釈論の伝達法に成っていると思う。科学技術社会を構築して来たのは科学理論ではなく、経済成長と言う人の欲望が進めてきたと思う。結論として、「気体分子運動論」は不要で無意味な論である。最後に、発表一枚目の準備シート。