サヨウナラ『電荷』

(2019/11/27)追記。実験的検証法の電圧測定について。電圧の測定に普通の電圧計では巧くゆかない。一般に測定は必ず測定対象からエネルギーを取り込む。どのようにエネルギー量を失わずに測定するかの技術的工夫が必要だ。静電容量の小さいコンデンサで、電圧値が低ければ、実験の精度は得難いかも知れない。測定器の入力インピーダンスの大きなものが欲しい。あるいは減衰特性の写真判定など。電圧測定について一言ご注意申し上げたい。

電気理論の根幹をなす概念は『電荷』である。また電力技術・工学では『エネルギー』が根幹をなす概念でもある。『電荷保存則』と『エネルギー保存則』がともに重要な基礎をなしている。電池電圧や分布定数回路現象を最近考えた。急に気付いたことがある。やはり『電荷保存則』は論理的に矛盾している。コンデンサとエネルギーと電荷 (2017/08/31) で満足に答えられなかった問題があった。高校生からの質問のようだった。電池と電圧(エネルギーの基礎研究) (2019/11/13) に答えが出ていた。

実験的検証法

回路はいたって簡単である。コンデンサが電圧V0に充電されている。同じコンデンサをスイッチでつなぐ。電圧は幾らになるか?結果は図のように、『エネルギー保存則』に従った電圧になる。だだ、スイッチオンでの追加コンデンサの充電時に突入電流(電流ではなくエネルギーの突入ではあるが)で、エネルギー消散が起きる分の誤差はあろう。小さなコイルでの突入制限を抑える方法はあろう。兎に角、『電荷保存則』は否定され、『エネルギー保存則』に軍配が上がる筈だ。実験確認が可能と考える。以上急な思い付きの報告。

 

電池と電圧(エネルギーの実験)

大人のおもちゃのような実験をしてみた(2019/11/13)。専門家の決して考えない実験かも知れない。乾電池の乾電池による充電実験。変圧器の奇想天外診断 (2015/06/03) に似た思い付きの実験だ。

実験の目的と結果

乾電池のエネルギーの意味を電流や電荷概念に依らずに、空間伝送の意味でランプへのエネルギー供給を確認したかったのが本当の目的であった。乾電池はエネルギーの充電ができないだろうという思惑があった。残念ながら思惑外れで乾電池も充電されることが分かって、一寸がっかり。

実験の概要

先ず、電池と電圧(エネルギーの基礎研究) (2019/11/14)で電気回路エネルギーと電圧との関係を具体例で解説しようと考えた。その過程で不図乾電池は充電できるのかと心配になった。早速実験で確かめることにした。初めに書いた通り充電可能であった結果で、思惑外れの失敗である。電荷概念否定あるいは電流否定の実験的検証にはならなかった。

実験回路と思惑

図1.に示した回路は電気回路の実験としては全く意味の分からないものであろう。同じ乾電池4個を3個と1個に分けて、差の電圧を豆電球にかける回路である。この回路を取り上げた訳は乾電池に充電作用が有るかどうかに疑問を抱いたからである。この回路構成で、一つの電池V1が充電せずにランプが点灯することを期待したのである。エネルギーが直接空間を伝送して、電池充電なしにランプだけ点灯となれば回路電流の解釈を否定できるかと思った。

 

図2.実験装置

図1.の回路構成を単3乾電池4個入りの電池ホルダーで作った。アルカリ乾電池4個と3V用豆電球(購入経費の費用891円也)で実験装置とした。

 

実験結果と考察

アルカリ乾電池はみんな同じかと思うが、どうも特性が同じくないように思った。V1用として使う電池で充電特性が異なるようだ。比較的早く電圧が高くなるものと、遅いものがある。充電の特性が異なる。

最初の実験。装置組み立て後すぐに回路でランプを点灯した。V1の電圧を計ったら、2.2[V]まで上がっていた。真逆(マサカ)とは思うが、破裂するかもしれないと少し危険を感じて中止した。数日後にまた同じ実験で電圧を計り、確認した。もうV1 の電圧が2.2[V]になるようなことはなかった。せいぜい1.7[V] 程度にしか充電しなかった。少しずつV1電池が充電され、電圧が上がっている様子は見られる。

スイッチSのon off による回路状態の違いの解釈。

スイッチoff

乾電池の負極側はエネルギーレベルが高い。スイッチと電池にそれぞれエネルギーギャップがある。負荷ランプにはそれが無く、電圧ゼロである。

スイッチ on

スイッチオンでランプにもエネルギーギャップが生じる。それが負荷端子電圧である。ここで、乾電池に充電はないかと予想したが、間違いであった。乾電池から乾電池にも充電でエネルギーが入射することが分かった。電池電圧V2のある割合でランプと電池V1 にエネルギーギャップが印加され、消費と充電が進行する。

考察

各電圧値はテスターで測定した。測定中にゆっくりと電圧値が変って行く。エネルギーの消費と同時に電池 V1 への充電が進む。総体的にはエネルギーが減少する。アルカリ乾電池の充電機能は電池の放電機能と同じく負電極亜鉛と電解質の間のエネルギーギャップの化学物質的エネルギーレベルの解釈に掛かっている。

構造と電池の原理

アルカリ乾電池

アルカリ乾電池の内部構造はマンガン乾電池とは相当違うようだ。しかし基本的には陰極の亜鉛Zn粉末が水酸化カリウムKOH電解質の中でエネルギーギャップを構成していると解釈できる。陽極は二酸化マンガンで構成されている。両極間は一応セパレータ(耐アルカリ性ビニロン)で分けられている。電解質は透過するとある。

アルカリ乾電池の原理

Wikipediaに示されている化学反応式

(負極) Zn(s)   +  2OH⁻(aq) → ZnO(s) + H2O(s) + H2O(l) + 2e⁻

(正極) 2ZnO2(s) + H2O(l) + 2e⁻ → Mn2O3(s) + 2OH⁻ (aq)

この化学式が示す原理は『電子』が負極から外部回路を通って正極に戻り、電荷の収支が整って電池の役割が成り立つという意味である。電子が『エネルギー』を負荷に供給する論理的な解説が全く示されていない。だから化学方程式は電池の『エネルギー』供給の説明には成っていない。物理学にも、化学にも『エネルギー』の概念が定義されていないところに大きな科学論の矛盾がある。『電荷』や『電子』の『エネルギー』との関係性が示されなければ科学理論の矛盾は解消しない。

エネルギーギャップによる原理解釈。

亜鉛Znと水酸化カリウムKOH の化学物質の間における接触エネルギーギャップEg[V]が電池エネルギー供給原理をなしているはずだ。上の化学方程式には水酸化カリウムの役割が示されていない。アルカリ電池であるから、カリウムK がエネルギー源としての主役をなしているはずだ。亜鉛 Zn とカリウム K の間のイオン化傾向の特性差が基本的意味を持っていると解釈する。

まとめ

電池がアルカリ電池であった。アルカリ電池は充電機能も少しは持っているようだ。まだ、マンガン乾電池での確認をしていない。マンガン乾電池も充電するか?

(2020/01/03)追記。元旦に単一乾電池で、マンガン乾電池2本とアルカリ乾電池2本が有ったので、マンガン乾電池1本を3Vランプと直列にして、アルカリ乾電池2本とマンガン乾電池1本の直列電圧4.5Vほどの電圧を掛けた。マンガン乾電池の電圧は徐々に充電され 1.7V以上に高くなった。破裂しないかと気味が悪くてそれ以上続けなかった。マンガン乾電池もアルカリ乾電池と同じく『エネルギー』の充電ができることだけは確認できた。その充電がどの様な化学的反応で成されるのか理由を知らない。

電池と電圧(エネルギーの基礎研究)

自然の本質(2019/11/13)。科学の世界はとても大きい。しかし、その本質は極めて単純にして純粋である。『エネルギー』一つの世界が自然の本質である。水素原子もその根源はただ一つの『エネルギー』の集合体でしかない。それなら『エネルギー』とは何かと問答になる。今日はハヤブサ2がリュウグウの岩石を採取して地球への帰還の途に就いたと報じられた。目出度い事です。地球の岩石の分析と合わせて研究が進むことお祈りします。

電池はエネルギーの供給源

電池のエネルギーとはどんなものか?その『エネルギー』をどのように認識するか。そんな意味を考えて、明確な解釈ができるような考究も科学基礎研究になる筈だ。決して経済競争に資する話ではない。科研費を要求するような研究でもないが。その訳は、次のような意味でも大切であろう。科学的手法でその『エネルギー』を測定する方法がない。『エネルギー』は秤にかからない。ジュール量を測定できない。『エネルギー』の極限は一粒の光の空間分布エネルギーだ。決してそれを見たり感じたりはできない。しかしその『エネルギー』は目の前に無限に存在している。木も草も花も石も光の賜物である。光が無ければ地球も存在しない。そんな不思議な『エネルギー』を電池の中に関連付けて思い描いてみたい。

図1.電圧実験回路 電圧vsの電池がある。容量 C[F] のコンデンサがダイオードを通して図のように電池に繋がった回路を想定する。我々は『エネルギー量』を測定できないから、その量を電圧値によって解釈するしかない。電気回路の解釈において、電気技術では電圧値が重要な量となる。電線路には必ず静電容量がある。その容量C[F]が電線路の空間に在る『エネルギー量』を認識する大切な回路要素である。電圧値ではエネルギー量は分からない。静電容量の値で、同じ電圧値でもそのエネルギー量は変わる。図1.のような回路で電池の電圧という意味をコンデンサの静電容量を変化させて、考えてみたい。

可変コンデンサ。ラジオ放送電波の受信には周波数検波用にバリコンが使われる。

図2.可変コンデンサC(ωt)  たとえば図のような二組の円盤で、1つが周期ω[rad/s]で回転するとする。コンデンサ容量は周期関数で変化する筈である。

図3.容量 C=εkA[F] 回転電極がO-Poの軸からの角度θの位置で重なり面積Aが決まり、コンデンサ静電容量もほぼその位置の関数と考える。なお回転速度は一定でなく、任意でよい。ε[F/m] は極版間の誘電率で、kはギャップなどの構造による定数である。

電圧値v[V]は?電圧はどのように変化するか。コンデンサ電圧は電池電圧より下がらない筈。回路のスイッチがオフの場合を先ず考えよう。回転盤の重なり面積がAoの最大の時に、コンデンサには最大のエネルギーが貯蔵される。面積がそこから減少すると、コンデンサ端子電圧vは上昇する。貯蔵エネルギーの最大値をEm[J]とする。電圧はコンデンサ容量C[F]によって、

v=(Em/C)^1/2^ [V]        (1)

と変化する。重なり面積がゼロとなれば、相当高い電圧値になろう。電極版の回転によって、周期電圧波形となろう。この意味が電線路電圧の意味を理解するに基本となる。この『エネルギー』による解釈に対して、『電荷』論を主張するでしょう。もし『電荷』Qm[C]で解釈するなら、電圧は

v=Qm/C [V]                          (2)

と静電容量に反比例する筈だ。平方根で変化するか、反比例で変化するかで、答えは得られるはずだ。『電荷』概念矛盾の結果になる筈だ。

図1.でスイッチがオンの場合。今度はコンデンサの電圧vと電池電圧vsとの関係で電池にエネルギーが回収される。電池の種類により、電池充電の特性が異なるから、様々な結果になろう。

図4.コンデンサ容量とエネルギー(係数1/2はその意味が確認できないので省く) コンデンサ容量Cは図のように変化する。図の打点部分が静電容量ゼロに向かって変化するときの、コンデンサエネルギー放電(電池エネルギー回収)特性による電圧変化の様子を想像で記した。もしスイッチオフの場合なら、ωt=2πで静電容量ゼロ近くで電圧は最大値に跳ね上がる筈だ。

インダクタンスの場合の例。

ついでにインダクタンスのエネルギー量と電圧の関係を考えてみた。

図1-2.電圧実験(2)

L-r 負荷のスイッチSオフによってLのエネルギー処理の問題が起きる。Lの貯蔵エネルギーは必ず放出しなければ済まない。この場合も余分エネルギーの放出による電池充電動作に入る。Lの電圧とエネルギー量El[J]との関係は図のようになる。

(2019/12/27)追記。上の図1-2 電圧実験(2)に示した回路には不備がありました。修正して電池充電現象の回路を示す。

訂正回路

右のように負荷ランプとスイッチS’の回路とした。スイッチS とS’同時にオフとする回路に変更。コイルのエネルギーはコンデンサCの放電と同時に電源の電池へのエネルギー充電とランプ負荷消費の回路動作となる。なおコイルエネルギーの次元は[J]=[FV^2^]とも解釈できる。L/r^2^[F]だから。以上追記。

電池がマンガン電池の場合、どの様な現象になるか不明だ。アルカリ乾電池では電池でエネルギー回収が起きるようだ。それは 電池と電圧(エネルギーの実験)  で確認した。

まとめ

(エネルギーの基礎研究)というには内容が乏しい結果だ。しかし、電池についてその電気現象を理解するにはとても多くの基礎概念の関係を解きほぐさなければ成らない。次々と理解困難な問答に突き当たり、際限のなさに戸惑う。やはり、『エネルギー』という物理的実在量の意識化が是まで為されてこなかったところに大きな欠陥があるからと思える。電圧とはこの『エネルギー』の技術的評価量であることを認識してほしくて、静電容量との関係でこの記事にした。

電気抵抗の物理特性

オームの法則は電圧と電流の関係を関連付ける役割が抵抗と言う係数の数値だ。電池(エネルギー)の不思議 (2019/11/13) でLampのエネルギー変換機能について取り上げたので、その意味に以下で挑戦してみた。しかし解答には至らなかった。

電圧=R×電流

R = 電圧÷電流

抵抗の物理特性を電圧と電流で解釈しようとしても、何も納得できることにはならない。

抵抗の特性

抵抗は電気回路からエネルギーを吸収して、そのエネルギーを熱・光に変換し空間に放射する。何故抵抗はそのようなエネルギー変換作用ができるのだろうか。その物理的原理は如何なる事か。電気抵抗とエネルギーの間に繰り広げられる現象を論ぜよ。等と自分に問答を投げ掛ける。

抵抗の内部構造とエネルギー変換機能

到来エネルギーに対する3つの仕分け。①受け入れずに反射する。②一旦受け入れて後一部を反射して戻す。残りは貯蔵して熱化する。③受け入れて吸収し、熱化貯蔵すると共に、貯蔵密度が限界を超えれば光放射する。一応この3つに分けて考えよう。

①の受け入れずに反射する場合があるだろうか?これは抵抗と言う機能から無いとしてよかろう。高周波伝送の分布定数回路で、負荷終端短絡や無負荷開放ではすべて到来エネルギーは反射される。それは抵抗零と無限大に相当する。エネルギー波長に対して比較できる数千キロメートルの電線路なら、商用周波でも負荷短絡が意味を持つ現象を呈するかもしれない。この①の場合は考慮から外す。

次の②が悩ましい場合である。抵抗内部に入射するには受け入れに内部静電容量の機能が必要と考える。その受け入れたエネルギー量を貯蔵するにはインダクタンス機能が必要と解釈する。そこに抵抗内部構造のエネルギー貯蔵・熱化機能が無ければならない筈だ。一部を反射するには、静電容量で受け入れたエネルギーをインダクタンスが受け入れなければ当然元に反射することになる。

ここに③の抵抗体の基本機能だけで捉えてよいかの疑問が残る。即ち受け入れたエネルギーすべてが貯蔵・熱化変換されて線路に戻されない。その時に、基本的なエネルギー反射現象が起きる。線路特性インピーダンスとの関係で定格系統電圧保持への電源制御がなされる筈だ。抵抗体に到来した線路伝播エネルギーの内、抵抗体入射エネルギー分は線路特性インピーダンスとの関係で抵抗体の静電容量構造値に依って決まり、残りが線路側への反射エネルギーとなると考えたい。抵抗体への入射エネルギーはすべて電線路へは反射されず、熱化と光放射へのエネルギー変換機能としての抵抗体の物理現象を呈する。

まとめ

抵抗体のエネルギー変換機能としての物理現象を考察したが、未だ明確な論理的解釈には辿り着けなかった。抵抗体の種類、構造などの特性に対する実験による考察が必要となる。少し高周波での定在波などの特性観察が必要だろう。エネルギーの動静を感覚的に捉えるにはやはり実験的取り組みが必要のようだ。何方かの挑戦に期待する。あくまでも「電荷」や「電子」での概念に縛られていては無理であることだけ注意しておく。

過去にも同じような事を述べていた。重複しますが。https://hokakebune.blog/2019/03/21/電気抵抗の物理/ やhttps://hokakebune.blog/2016/06/15/電気抵抗のエネルギー論/

 

秋の色

秋の残り香を拾う。

白花頂上華

灌木の細長い枝の先端に1cmほどの小さな花一輪が咲く。正式の名を知らない。

 

 

ピラカンサス

鮮やかないろの実。小鳥への捧げものだが、人の生活の中に多く居た小鳥も極端に減少してしまった。いつまでも食べられずに残る。自然の営みが変貌してしまった。

 

 

 

ハイビスカス 

今年は遅くまで咲き続ける。

 

 

 

吉祥草

何年か前に教えて頂いた名前。

 

 

 

 

 

野紺菊

秋に似合う紫の色。

電池(エネルギー)の不思議

乾電池 1.5V の謎。電池の『エネルギー』とは何か?

乾電池なしには生活できない程使っている。電圧―物理学解剖論― (2011/12/14) が電池について疑問を呈した最初の記事だ。その後、電圧とは何か?電流とは何か?などと、電気の基礎概念に疑問を呈し、電気回路現象の物理的原理は何かと自己問答を繰り返してきた。現在の電池の基本的認識は従来の教科書での解釈理論(電子論)は筆者にとっては全く本源的には無意味な論理となってしまった。どんな電気回路も、その本質的動作原理はすべて、電線路導体で囲まれた線路空間を光速度で伝送する空間エネルギーの現象であると分かった。電流や電圧は優れた科学技術概念で、長い伝統を通して培われた技術文明の賜物である。その優れた英知にはどれほど感謝しても、感謝し足りない思いだ。しかし、自然現象の本質をその技術の中に求めると、それは不可能なことを知ることに辿り着く。自然の本源は極めて単純、純粋であるが故に、人が理解しえない程千変万化の多様性の姿を現すものと知る。結局最初の疑問、乾電池の電圧は何故1.5Vか?に説明が付かないまま、今だにその不思議が解けない。人が創り上げた科学技術の持つ謎(電池)がその心を読み解く為の自然の宝物のよう思える。

電池の原理(専門家の電子解釈論について)。

電池の原理を検索すれば、多くの解説がされている。すべて電池の専門的知識や経験を持った技術者か教育者の解説と思う。しかし、筆者は電池について特別の技術も経験もないが、その解説の内容が理解できない。納得できない。電池の専門家ではないが、電気回路現象に関しては深く思索を積んできた経験を基に、その理解できない訳を解説しようと思う。このまま意味不明の解説が社会に通用している現状を放置して良い訳がない。

電池の種類は多い。マンガン乾電池(1.5Vの単1~単4)、アルカリ電池(1.5V、9V)、ボタン電池、リチュウム電池(二次電池)、燃料電池、太陽電池あるいは鉛蓄電池など。それ等のすべての動作原理の解説は、電子をマイナス電極から外部の負荷を通してプラス電極に流す仕組みで解説されている。こんな解説がまかり通る科学論の社会でよいのか。電子が通ると何故エネルギーが使われる事になるかの一番大切な意味が示されていない。電子は電池のエネルギーをどのように負荷に供給すると考えるのか。どこにも科学論が見えない。『電子』がどのようなものかを誰も考えていないとしか思えない。電池における電子の役割を問う (2018/05/24)

電池の原理(電子否定とエネルギー貯蔵源)。

決して電子が電池のマイナス極側から負荷を通ってプラス極電極に戻る電気現象は存在しない。電線導体の中を電子が流れる物理現象はない。いくら解説に便利な伝統理論だからと言っても、質量と電荷の構成粒子であるという電子を理論に乗せようとしてもそこには矛盾に堪えない欠陥がある。自然界には『電荷』など実在しないから。『電荷』の実在を唱えるなら、そのプラスとマイナスの電荷の空間像の違いを説明できなければならない。電池に求められる解釈理論は『エネルギー』と言う物理的実在量の認識に掛かっている。その『エネルギー』が電池内部のどこにどのような形で貯えられているかを解き明かすことである。電池内部に電子(イオン)などのプラスとマイナスの『電荷』が貯えられている訳では決してない。電池内部にプラスとマイナスの電荷が貯えられているなら、わざわざ逆2乗則に反して、負荷抵抗の離れた外部を通って電子がプラス極に戻る理屈が成り立たない。電池内部で『電荷』を分離した化学物質を組み合わせても、クーロン力と言う理論力で、即ち逆2乗則の距離により中和して電池の役目が果たせない筈だ。しかしそのクーロン力自体が論理的に矛盾論である。 クーロンの法則を斬る (2013/01/06)で電荷に基づく力学の矛盾を論じた。結局現代物理学理論で、『エネルギー』の認識が曖昧であるところにその根本的原因がある。もし『電子』を空間に仮想したとき、その周りの空間の『エネルギー』をどのように考えるのか?どこまでその電界エネルギー分布、空間エネルギーのジュール量[J]を想定するのか?その答えを述べてほしい。空間に対する『電荷』とは何か?その易しい物理的理屈の通る科学論でなければならない。

『エネルギー』による電池の描像。

 

電池とは、簡単に表現すればエネルギー貯蔵庫である。電子も電荷も不要だ。ただ『エネルギー』だけで解釈した描像を示す。易しいという事はとても難しい事でもある。禅問答のようで恐縮であるが、単純明快とはそうだと考える。豆電球一つを取り上げて、その物理的現象を解説することが如何に困難であるかを知ってほしい。高が抵抗の電力消費の話でしかない。しかしその中の物理現象が明確に理解できるかと言えばとても複雑である。要するに電池の負極側から導線近傍を伝わってほぼ光速度で伝送される電池の『エネルギー』が豆電球の中のフィラメントと言う真空内の抵抗体に入射し、抵抗体の物理的構造内で冷たい伝送電気エネルギーが高エネルギー密度に貯蔵され、熱化によって光放射現象となる。抵抗体の分子構造がそのエネルギー変換の物理的動作機能を握っているのである。空間的には静電容量とインダクタンスの組み合わせによる現象である。特別難しい原理ではない筈だが、抵抗一つでもその解釈には自然の深い意味が隠されているのだ。揚羽蝶の羽の光変換作用と同じく、その空間構造が成すエネルギー変換作用とみれば基本的には同じ意味を含んでいると考えられる。なお、電圧の正側である導線にはエネルギー流はないことを付け加えておく。当然「電子」が戻るなどと言う現象はない。ただ電池から『エネルギー』が負側電線近傍を伝送されるだけで、正側はその伝送空間を決める基準線の役目しかない。ただプラス側に電流計を挿入すれば、電流が測れる訳は何故かとご質問が出よう。電流計もその内部構造は回路の挿入された一つの抵抗素子と同じ電気機能である。その抵抗体にも電池『エネルギー』が入射するから、その電圧降下と言う量を計るのである。

電池の物理・化学的課題。

『電荷』概念から離れて観て欲しい。化学物質、二酸化マンガンとは何か。負極の亜鉛の役割は何か。それらはすべて『エネルギー』に因って解釈し直さなければならない時にある。物質の接合面に生じる『エネルギーギャップ』の問題として考えるべきである。ダイオードのスイッチングにおける『エネルギーギャップ』の問題と通じないかと考える。

謎(pn接合は何故エネルギーギャップ空間か) (2017/05/18)

電池電圧と『エネルギーギャップ』 (2016/05/08)

軸性光量子像

軸性光量子像(2019/11/04)

 

光とは何か?-光量子像‐ (2012/01/15) で平面波状の光量子像を光の空間エネルギー分布密度波として提唱してきた。ただその波形には一つの光の偏光性に対する解釈上の不備があった。即ち、光は二つの直交成分から成り立つとみられる現象が有る。それが「偏光特性」である。思い付きは、夜の眠気に浮かんだ「クラゲ型描像」である。

光の偏光

光のエネルギー密度分布が光速度方向に対して、軸対象であれば直交した二つの成分の構成波と解釈できる。偏光板の分子構造特性によって、光の軸対称性を考えれば、偏光性の物理現象の説明が容易に付く。

軸性光量子の数式表現は全く未解決である。しかし、光速度で伝播するエネルギー空間分布密度波が光の本質である。どのようなエネルギー波頭密度 H[J/㎥] で、しかも軸性空間分布関数で表現できるかは未知数である。平面分布と違い、相当複雑な3次元分布関数表現になると思われる。筆者の数学的能力では困難のようだ。指数関数形の周期関数も欲しいところだ。しかし、実際の物理的光量子の概念は波長λによって基本エネルギー単位 ε(λ) は

ε(λ)= ch/λ [J]

で表され、それは空間エネルギー分布の体積積分であることには変わりがない。プランク定数が一定の値であることの意味も

h=ε(λ)×(λ/c)= ε(λ)×τ [Js]

である。ただし、τは一つの光量子エネルギー分布波が通過する時間である。プランク定数の概念 (2018/07/17) に意味を示した。

光と空間

晴れた朝は陽が眩しい。太陽が遥か遠くから光を届けてくれるからだ。この世界の元締めとして、すべての命を司っている。

寒い冷気の中でも、お日様の陽を浴びれば心まで温かくなる。

陽を受けると何故暖かくなるのだろうか。8分も前に太陽から旅立って、冷たい真空の空間を旅してきたのに、それでも暖かい。世界・宇宙のすべてを司る根源の光の実体を。光は一種の電磁波だなどと迷解答で逃げないでほしい。それでは電磁波は何故暖かいのですか。光の振動数が温かさの原因になるからですか?何が振動しているのですか。電界と磁界ですか?電界とは何ですか?磁界とは何ですか?例えば植物の光合成に電磁波の意味が必要ですか。光合成には、ただ光のエネルギーだけで何も電磁波などでなくて良いのではないですか。本当に自分の心で納得しているのですか?お日様に当たると暖かい訳を説明してほしい。光が衣服に当たるとその速度はどうなるのですか。その時光は何になるのですか。どのような物理現象を起こすのですか。振動数が熱に変化するのですか。科学理論は広く自然現象をより少ない基本から総合的に解釈できるものでなければならない筈でしょう。細分化された現代科学研究を統一した自然の本源から見る易しい科学論の提示が欠かせないと考える。なんといっても自然は易しく、純粋であるからこそ、多様性に富み不思議と謎の姿を現す。

光の結節点

電気回路現象と光の伝播現象が同じ物理現象に観えてきた。空間定数とエネルギー伝播現象で取り上げた図である。分布定数回路の定在波や伝送線路の負荷端でのエネルギー反射現象など、すべてエネルギーの伝播空間での伝播媒体の境界での現象が重要な基本的意味を持っていると考えるに至った。光の様々な現象もその媒体の空間特性がその物理的本質を担っていると考えざるを得ない。その境界点・面を光の結節点とした。

特別高価な実験装置もなく、精々レンズ程度で他に観測装置もなく、自分の眼球と周りの景色から感じ取る感覚だけから光の世界を覗いて、そこに描ける姿を表現しよう。

横道にずれるが、実は昨日、眼球の光ファイバーと色覚 (2010/11/28) に追記した。ご専門の皆さんは、人の眼球機能をカメラと同じ原理でご理解なさっておられるようです。網膜に視界を捉える機能の細胞が有ると。眼球構造の網膜は球面をなしています。カメラで球面構造に焦点を結ぶ光学的光路が物理的に可能とは理解できないのです。人は水中に潜ると、ゴーグルなどで目の角膜と空気層の境界を作らないと視界は見えない。光の所謂結節点の問題です。眼球内の水晶体と硝子体液の媒体間の光の屈折現象の光学問題として考えた時、どう考えても凹球面網膜に焦点を結ぶとは考えられない。それと、黄斑の点々が眼底検査で何故観測されるかの説明が無ければならない筈と思う。硝子体管のファイバー断面と考えた最初の理由がそれである。眼球型カメラを取り上げて考えた。

光の結節点の具体例は屈折現象であろう。

光の伝播現象は光エネルギー密度波の縦波が伝播する空間媒体の物理的空間特性に掛かっていると考える。空間をどのような物理特性として解釈するかがまず明確でなければならない。微細の空間構造物質の原子・分子特性を論じる前に、巨視的な捉え方で解釈したい。電気回路に関係付けた空間定数に誘電率εoと透磁率μoがある。真空空間が単位長さ当たり、インダクタンスと静電容量の空間定数を持っていると解釈する手法である。空間にコイルやコンデンサがある訳ではないのに、何故そのように空間特性を解釈すると電気回路現象と光の空間伝播現象が統一的に捉えられるかが不思議であるが、実際の技術的解釈に都合よく合致している。

屈折現象 

屈折はエネルギーの減速 空気中でガラス板を通した光の屈折現象を考えてみる。屈折の解釈にはホイヘンスの原理がある。ガラスの空間定数をμ[H/m]とε[[F/]とする。プリズムでは、光が分光する。その訳は何だろう。虹ができる。その訳は何だろう。光の波長とは何の長さの事か。光の空間像を現代物理学理論ではどのように捉えているのか。振動数や波長を空間的な像で捉えているのだろうか。振動数がエネルギーを表すとはどの様な意味で解釈するのだろうか。物に電界と磁界のバイブレーションで作用するというのだろうか。実際は誰も理解できないと疑問を抱かずに、みんな納得出来ている事がとても不思議だ。振動数で温かくなる訳をどのように理解しているのでしょうか。誰も質問しない訳は何だろうか。現代物理学理論様にお尋ねいたします。プリズムの分光は何が原因か。波長によって速度が違うからである。光の波長とはエネルギー空間密度の縦波の波長である。垂直に入射した場合は、分光が起きているとは見えないだろう。しかし入射が垂直から傾くと、波長の短いエネルギー密度が高い程媒体内での速度が減速する。伝播定数γ= √(με) [s/m] がエネルギーの波頭値密度が大きい程、μがその流れに抵抗する作用が強く効くからと考えたい。なお、誘電率εが高くなるからエネルギー吸収で減速に強く効く(推論)。 

レンズの屈折

レンズと光路 レンズも光エネルギーの伝播空間の空間特性を透磁率と誘電率で評価する。空気との境界での結節点で起きる屈折現象はその空間特性の差による。レンズは誘電率が大きいが透磁率は空気と同じ程度とみられよう。

むすび

電気回路の現象が電気工学の技術理論ではとても便利に分かり易い理論に完成されている。電圧と電流と言う技術概念によって初歩の回路解析理論が習得しやすく完成している。しかし、その理論も厳密に解釈しようとすれば、自然現象の本源からは離れた技術理論になっている。自然には『電荷』や『電子』などと言うものが実在する訳ではない。それらは人が自然現象を理解しやすく簡便に作り上げた解釈概念でしかない。結局電線路もその導線の間の空間を光と同じエネルギーの密度波が光速度で流れているだけなのである。そんな途轍もない光の速度で流れるエネルギーを感覚的には捉え難いであろう。しかし、科学技術理論と自然現象の関係を知ることがこれまた極めて大切なことである。間違った理論に染まらないためにも、より単純な自然の姿の本質を理解した上で、高度な解釈技術論を学習することが大切なのであろう。まだまだ自然の本質など、余りにもその純粋さが故に不思議の世界としか見えない。せめて、光のエネルギーとはどの様な空間像か、振動数とはどの様な意味かを理解してほしい。また、決してそのエネルギーの姿を科学的手法で観測は出来ない科学技術の限界も知ってほしい。光量子空間像(D線) (2019/05/03)。

大学と基礎研究

はじめに

大学の研究は如何にあるべきか。基礎研究とは本来経済的利益を目指すものばかりではない筈だ。経済的競争に有効に働く結果に結びつくこともあろう。失敗の連続で終わり、有効な結果を得られなくても、失敗の訳を明らかにできれば、それも立派な基礎研究だ。新しい視点で研究をするため、常に疑問や不思議を感じ取る感性を磨いていることが研究者には求められよう。忙しさに紛れて、研究ができないこともあろう。しかし研究の芽は、道を歩いていても、ボーと空を眺めて居ても、突然閃くものでもあろう。それは日ごろ考えていることの証でもある結果として生まれるものであろう。今でも不思議に思えることがある。以前「参照基準の何々」という教育の指針の報告があった。本当にそれが教育者が参照にして教育をするというのだろうか。「過去の伝統を守って云々」とはいったい基礎研究をどのように理解しているのだろうかと疑わざるを得ない。『電荷』とはどの様な物理的実在か?と疑問にも思わないのだろうか。電流とは電子の逆流と言って納得しているのだろうか。今年になって、分布定数回路を取り上げ、自分と問答をした結果、疑問への答えの一部を得た。教科書の中身であれば、何も経済競争に役立つものとは言えないであろう。科研の競争に挑むようなテーマでもなかろう。そんな地道な研究こそ、企業では投資の対象としないから、大学で取り組むべき重要な基礎研究であるはずだ。高度な最先端の研究においても、理屈に合わない結果に悩むこともある筈で、その時に電荷に縛られては、折角の研究をも捨ててしまう危険がある。そのような場面で役立つ筈の研究課題ならいくらでもある筈だ。電荷を否定すれば、『イオン』とは何か?も大きな意味を持っているはずだ。今回も一つの電気回路の思考実験として課題を取り上げて提示したい。

電源は何故負荷状態を知りうるか。(まだ確たる結論に到達できていない。問答の「問」だけである。)

決して電流概念では解答を得られない問題である。50Hzの2線式の送電線路があると仮定する。その亘長を1500㎞とする。その亘長は正弦波波長のちょうど4分の1で、位相角90度分に相当する。電源電圧値が立ち上がりの丁度零の時、負荷端の電圧値は幾らでしょうか。その時の電圧値はちょうど負の最大値になっているはずです。電源電圧と負荷端電圧が同じくない訳である。これはオームの法則で解釈できない電気回路状態である。これも電気回路現象である。所謂分布定数回路として考えるべき問題となる。こんな問題も教育としては重要な基礎理論の問題なのである。実際は正弦波交流でなくても、直流送電であっても交流と変わりない同じ原理による基礎理論(それが未だ教科書にはない新しい認識)で解釈しなければならない現象なのである。こんな日常的な思考問題も、経済競争に何の役立つように見えなくても教育上は極めて重要な基礎研究の筈だ。電源と負荷端の電流は同じ値にはならないことがお分かりと思う。電力、電気エネルギーを供給する電源では負荷に応じて制御しなければならない。どのような制御対象の電気量・負荷状態を検知するのだろうか。実際の電力系統制御は問題なく現実に有効に成されている。何も問題は無かろう。しかし、その基礎理論が技術理論で、短距離の問題としては不都合は無かろうが、自然現象の本質を捉えていないと、教育上は誤ったことになる。電子が導線金属内を流れるなどの誤りになる。この教育上の問題は科学技術教育と自然現象の理科教育で、その取り組み方を明確に区別したものとしなければならない課題となる。電気物理現象としては、線路空間を伝送されるエネルギーの光速度伝播現象しかない。電源での制御対象は電圧値と周波数しかない。電流は監視量ではあっても制御対象にはならない。供給エネルギーが負荷の要求するエネルギーに対して不足すれば、発電機の回転数が低下し、周波数や電圧が下がる。電圧、周波数を一定に保つため、供給燃料や供給動力を制御する。制御するものは『エネルギー量』一つである。(2020/01/05)追記。この『エネルギー量』一つであるという意味で、単位のジュール[J]は物理学的定義に基づく量の概念であるが、良く燃料の量キログラム[kg]などと捉えるかも知れない。燃料はエネルギーに非ずで、認識していただきたい。

図1.電圧(エネルギー)の分布と伝播

電線路が長くなると、電圧も時間遅れを伴って、線路に沿って分布する。電源電圧vsに対して、位置 l ではγl[s]だけ遅れた波形となる。この意味は電線路が短いか長いかには関係なく、基本的に起きている現象である。そこに、電流がどのように流れるものかという問答が含まれていることでもある。電線に電流が流れるのか?という物理現象を問うことでもある。すべての電気現象の本質は空間を伝播するエネルギーの流れに基づく現象である。3kmの配電線路で、その送受電端間には裸電線でも、 10[μs] の時間遅れがある。電気物理としての現象は電源と負荷で同じ電流になるという理屈は成り立たないのだ。だから電源では負荷状態を如何なる訳で知りうるかとなる。このような考究は決して経済的競争の利益を伴うものではない。だからこそ大学での基礎研究として取り組まなければならないであろう。

電源と負荷間のエネルギー伝播・反射現象。

電気エネルギーは電線路空間を光速度で伝送される。電源は電圧と周波数を監視制御する。電圧は線路定数の静電容量C[F/m]によって、その伝送エネルギー流の線路長さ当たりの密度[J/m]は決まる。そこに光速度流によるエネルギーの往復・反射現象が隠れているのである。ここに辿り着くまでに電圧―その意味と正体―などで電圧の物理的真相を探った過程がある。電気回路の現象は電線路の特性インピーダンスと言う線路固有の定数が空間伝播エネルギー量を決め、電源は反復反射によるエネルギー分布の電圧を規定値になるべく制御するだけである。

負荷端エネルギー反射現象。

エネルギー反射はどのような仕組みで起こるか。電線路がC[F/m]と L[H/m]の間での繰り返しによってエネルギーが伝送されて負荷端に到達する。負荷が持つ電気的構造による特性値と電線路との特性値との間の伝送エネルギーの挙動が決まった或る関係によって引き起こされる筈だ。そこで例えば負荷抵抗の物理的構造特性をどのように解釈するかに掛かってこよう。抵抗の次元は[(H/F)^1/2^]=[Ω]で、基本的には抵抗内部構造も静電容量[F/m]と誘導容量[H/m]の組み合わせと見做さなければならない。これは予測としてのこれからの考察によって決まる内容ではある。抵抗値が大きいか小さいかはLとCの比率と見做せる可能性がある。それは科学的検証が得られる結果になれば、成功となる。『エネルギーの物理的特性』としての解明の課題と思う。大学の基礎研究として。それほど経費は要しない筈だ。

むすび

しばらく考えてみた。しかし負荷の純抵抗の意味さえまだその物理的特性を捉えきれない。止むなくこのまま未解決の基礎研究課題として筆を置く。抵抗と言う電気材料がエネルギーをどのような機能によって熱化し、さらに光として放射するか。そのエネルギー変換機能の物理的解明が課題である。本当の基礎とは難しいものと認識した。

Find more information here.

私は偽物か (2013/10/14)  に昨日コメントがあった。表題のような言葉が載っていた。それはスパムとボードにあった。意味も理解せず削除した。意味を調べたら、「詳細はこちらをご覧ください。」であった。過去の30数年間の身の周りに起きた様々の事柄を総合的に考えれば、日本政府によって常に「亡き者」とする対象として取り扱われてきたとしか思えない。日本国憲法の基本的人権規定に照らして、あり得ないことが『行政機関の保有する電子計算機に係る個人情報の保護に関する法律』に私 金澤 喜平がその保護対象として存在していない事である。その「詳細はこちらをご覧ください。」の一部を以下に記す。

気付かずに通り過ごした過去の事柄が突然「あれ?」と疑問となって浮かび上がる。知らずに過ごせば、それは何も学習しなかったと同じ事だ。新潟県教育委員会の教育職員として正式に採用されていなかったなど、採用事務を受けた経験がなければ知らないで過ごす。人として当然の権利を行使する機会から排除され、新潟県の教育公務員としての職員登録に無いなど知る由もない。まさか昭和14年(1939年)12月1日、舞鶴鎮守府へ新潟県中魚沼郡貝野村から戸籍が転籍されていたなど知る由もない。平成5年5月末に舞鶴鎮守府および溝尻海軍住宅の嘗て住処を尋ねたころに、転籍の事を知った。父 金澤 好明(田舎相撲をとっていた。四股名を村の箭放神社から“箭津錦”と採った。)は昭和天皇即位の礼に軍艦代表として参列した。昭和14年10月1日徴兵を避けるため、日本発送電株式会社に入社した。しかし、内務省(貝野村)と軍によって軍籍に戸籍転籍の異常手段を採られた。昭和16年9月召集を令せられた。

貝野村立貝野小学校には、正式に登録されていないと思えるため、義務教育終了の個人情報(総務省、下の1.行政機関の保有する個人情報)が無いとい。)さえ無いとの点で、政府機関での筆者の存在が否定されているとしか考えられない。昭和20年8月終戦後に故郷(新潟県中魚沼郡貝野村甲)に舞鶴鎮守府の京都府舞鶴市溝尻海軍住宅から帰ってきた。舞鶴国民学校1年生のまま学籍転籍の手続きもなしに、その年の9月貝野小学校に行ったと思う。しかし、小学校から、貝野村立貝野中学校の卒業まで、名簿は特別に男子の名簿の最後に付け足しであった。だから正式には削れば削除となる可能性の名簿順だ(下記の1.行政機関の保有する・・)に関係して。地区姿の5名のうち自分だけ除け者扱いであった。高等学校、予備校研数学館および新潟大学での授業料を収めた記憶がない。いくら記憶力が無い筆者と雖も授業料納付を忘れるとは考えられない。今その訳はすべて、戦後処理に掛かっているとしか思えない。敗戦時、父も溝尻海軍住宅に一緒に住んでいたが父は戦後のしばらくは用が有る為帰れないからと、母と3人兄妹で帰京した。父は多分年末まで帰らなかったと思う。何用で遅くなったかは知らない。小中学校時代は生まれ故郷であっても、疎開っぺと嘲られて過ごした。

  1. 行政機関の保有する電子計算機に係る個人情報の保護に関する法律(総務省) 平成1年(1989)10月1日施行(昭和63年(1988)12月16日法律第95号)
  2. 法例(管轄機関?) 明治31年制定。改正 昭和39年(1964) 法100号(池田内閣)。改正 昭和61年(1987) 法94号(中曽根内閣)。改正 平成1年(1989)法27号(竹下内閣)。
  3.  上の2.法例 その第3条[行為能力] 人ノ能力ハ其本国法二依リテ之ヲ定ム②外国人カ(「が」という意味であるが濁点をつけない)本国法二依レハ(バ)無能力者タルへ(べ)キトキト雖モ日本ノ法律二依レハ(バ)能力者タルへ(べ)キトキハ前項ノ規定二拘ハラス(ズ)之ヲ能力者ト看做ス と誠に意味深な法律がある。
  4.  特定秘密の保護に関する法律(内閣官房) 平成25年(2013)12月13日 第108号。

私は偽物か の記事のように、水泳の検定合格の書類作成で、登録しようとすると、すべて『不合格』で受け付けられないとなる。上の1.の『行政機関の保有する電子計算機に関わる個人情報・・(総務省)』の個人情報の中に、筆者の情報が無いと考えざるを得ない。特に、学校教育に関する内容は情報公開の対象から予め除かれている規定がある。特定秘密保護法(内閣官房)との関係付けされたら、情報機関も太刀打ちできない国家秘密として葬り去られる。紹介 にあるような不可解がその訳となろう。今でも、登録時の名前の問題で異常と考える思いをすることが多い。

2.の法例の改定時期が昭和39年(1964年)の池田内閣時および昭和61年(1987)の中曽根内閣時、さらに平成1年(1989)の竹下内閣時と何か筆者の人生の節目に関わっているように不可解な改定である。その法例は内容が3.に記したような人の「能力行為」という極めて異様な人格権に関わる評価の問題に関係している。現在の日本国憲法の新しい民主主義の時代に、なぜこのような明治時代の幽霊法令の様なものが憲法と並んで位置付けられているのか不思議の極みなり。当然新憲法のもとで、他の法律に組み込まれるべきものである。飛行機や花火での脅し、さらに自動販売機での電源遮断(100円投入すると装置を電源遮断され、大金100円を3回も強奪された)。官邸系からの不快メールの御送信。