カテゴリー別アーカイブ: 電気物理

「高電圧」のエネルギ-像

電気技術概念「電圧」の物理的描像をどのように認識するか。それは電気工学でも理論物理学でも、普通に脳裏に浮かぶ像は多分「電荷」との関係であろう。超高圧送電系統によってエネルギー供給網が張り巡らされている。大電力送電には高電圧は欠かせない。それらの送電線路の高電圧は変圧器によって構成される。変圧器の電圧発生原理を「電荷」で解釈する意味で関連付けることには無理があろう。変圧器の巻き線で電荷を分離するなど考えないだろう。それではその伝線路の高電圧は何によってその電圧値が決まるのか。変圧器の電圧はファラディーの法則で理論づけられる。変圧器から離れた遠い線路の電線間に生じる電圧は『電荷』が原因でないとしたら何が造るものか。もう電子の流れなどでは電圧の物理的意味を説明できないと思う。電線導体の間の空間に何かが存在するからと解釈しなければならない筈だ。その何かがエネルギーだ。

高電圧工学とエネルギー

高電圧工学の研究対象は電力送電系統の保守管理がその大きな主題になっていたと思う。その一つは雷からの保護対策であった。送電線路の鉄塔の天頂には雷撃から守るため、アース線が張られている。高電圧試験は衝撃電圧発生装置によって絶縁碍子の絶縁性能の向上などが図られる。その雷の原因はやはり『電荷』によって発生するとの理論的解釈が専門的科学常識となっている。高電圧による火花放電は雷の稲妻のように激しい閃光を伴う。その火花は『電荷』のプラスとマイナスの間の現象で発生すると解釈される。しかしプラスとマイナスの電荷が衝突すると、何が光に変換するのかの物理的明快な認識はない筈だ。電荷は消え去るのか、何処かに隠れるのかも分からないはずだ。『電荷』の物理的像が誰も示せないのではないか。物理的実在性が示せないで、なぜその現象に論理性があるといえるのだろうか。高電圧工学では、平板電極と針電極がその試験に使われる。火花放電やコロナ特性が調べられる。その電極間の電界が『電荷』によって決まると認識されているが、それは空間のエネルギー流によるのだと解釈するべき現象なのだ。その様子を図で示したい。

電極間とエネルギー流 この様子はすでに前に図に示してあった。極性とエネルギ―流。ハミルトンの風車からエネルギーを観る (2017/11/09) の記事での図である。負極性のハミルトンの風車は正極性のものより力強く回転する。先端から強いエネルギ―が放射されるからである。その意味を高電圧工学では、『電荷』による高電界での空気絶縁破壊現象として、それをコロナという。コロナは余り流れるという感覚では捉えないだろう。しかしエネルギーの流れとなれば、見方を変えなければならない。高電圧工学の実験で、針電極対平板電極あるいは平板電極対平板電極などの空間構造でその場の電界と放電の関係などを試験する。その空間に磁界が存在するとは全く考えていなかった。『静電界は磁界を伴う』という実験報告で示したように、電磁場はエネルギーの流れであったのだ。上の図に示したように、負極性の針電極や平板電極近傍空間はエネルギーの流れがあり、その流れにコンパスを近づけると、そのエネルギー流に対してコンパス自身も空間エネルギー流に包まれているから、その間のエネルギー流同士の近接作用力でコンパスの指示方向に影響を受ける。決して『電荷』概念では理解できない現象を呈する。また『エネルギー』の物理学的定義に、仕事をする能力という意味がある。その意味のエネルギーとは質量が持つ運動エネルギーか位置エネルギーかを想定している定義であろう。光のように空間に占めるエネルギーに対しては無意味な定義に思える。光や電気エネルギーのエネルギーという概念が十分認識されていないように思う。質量に無関係の、空間に実在する『エネルギー』の認識が欠けている。

高圧送電線路の空間エネルギー

電線路導体近傍空間にエネルギ-が分布している。決して電子や電荷が電線導体の中に存在する訳ではない。そのエネルギーがどのように分布しているかを測定することは不可能であろう。空間に流れるエネルギーを計測する計測器はなかろうから。しかし、その存在を確認できるかもしれない。2本の平行に張った導線に直流の高電圧をかける。その時導線間の空間にはエネルギーが分布している。一つの推定で、そのエネルギー模様を表現したのが右の図である。このエネルギー分布の存在を確かめることができるかも知れない。コンパスによる磁気の検出法である。コンパスは裸のものでなければならない。もともとコンパスは地磁気の方向を向く。平行導線を北と南の方向に揃える。その時マイナス側の導線近傍に図のようなエネルギー流が存在すると考えた。プラス側の導線近傍にはほとんどエネルギー分布は無かろう。マイナス側のエネルギー流には軸性エネルギー流の磁気性がある。東側は地磁気と逆で、西側が地磁気を強める方向にあろう。東と西でコンパスの指示方向に差が出るかどうか。『電荷』否定の結論が導く意味がここに在ろう。線間距離10㎝程度に3万ボルトの印加電圧でどのようになるか。こっそり実験をしてみたい。送電線路は交流電圧で交互にエネルギー分布が光速度で変化する。そのエネルギー分布流は無負荷であっても電線路間で複雑な流れとなろう。このような物理的電気現象を科学技術として確立した電圧、電流の計測法がいかに優れているかに驚嘆せざるを得ない。

結び 『電荷』と光の間の論理性を問う。光が雷によって発生する。もし雷がプラスとマイナスの『電荷』の間の引力によって引き起こされる現象だと言うなら、その結果の光エネルギーは『エネルギー保存則』から考えて、何が変換されてエネルギーになったのかを明確に説明しなければならない筈だ。その時電荷はどこに行くのか。電荷が光に変換されるのか。そこが物理学の要であろう。光の振動数とは何がどのように振動しているのか。光も電気もその根底には『エネルギー』でつながっている筈だ。

電子とエネルギーと質量

『エネルギー』を窮めよう。エネルギーと繋がりのない世界は無いから。全宇宙、この世界で『エネルギー』の構成要素となる素粒子は決して存在しないから。

mc^2^から物理学を問う (2019/04/25) で述べたかった質量の意味。独楽の心 (2019/01/05) や熱の物理 (2019/02/07) にも繋がる。

時代はエレクトロニクス全盛期。
電子(Electron)と光子(Photon)が科学理論の根幹を担っている。物質の元素は原子である。原子理論は電子あっての基に成り立つ。そんな時代のど真ん中で、独り妄想にふける。端無くも電流は流れず (2010/12/25) にはじまる多くの顰蹙の種なるお騒がせを招き申し訳なく思いつつも已む無き事情に流されながらここまで遣って参りました。古くを辿って、再び電池の回路(電池のエネルギー)に戻る。電池は何を貯めているのかと不図の病が頭を支配する。己の愚かさを嘆きつつ『この電話は今は使われて居りません』と拒否されながらも、心の吐露をせずには進めぬ道に在るかと。電池の重さの意味に耐えきれず、その質量を計らんと無理を承知で心の感性に乗せて観んと思い付く。不図の病、それは電池からエネルギーが負荷ランプに供給され、エネルギーが光と熱に変換されて消費される。電池は少しも熱くはないが、電池の何が負荷で熱に変わるのか。ここの『エネルギー』と言う意味・物理量が現代物理学理論で捉えられ、説明されているのか。それは決して高等数学の式では説明できない自然の易しさの中に隠されている真理と言うもので御座います。電池の中味がどのような化学物質ででき、構成されているかは分からなくても、自然の心を捉えるには特別難しいものではない筈なんだ。『エネルギー』が何たるものであるかを感じ取れれば宜しいのだ。それは電池の中に確実に溜って実在しているものなんだ。重量が計れなくても、化学物質の質量増加分として蓄えられているものなんだ。『質量』とは何かとまた顰蹙(ヒンシュク)の《問答》にもなる話だから、誠に御迷惑かも知れない。化学物質を顕微鏡で覗いても見えるものでも、質量増分を計れるものでもないから科学論証も出来ない話であるので、ご迷惑か混乱の基となるかも知れないが。筆者は原子質量が『エネルギー』の局所集合体としての、電子も陽子も無視した「Axial energy flow」結合構造と看做す物としての科学常識離れの認識に在る。マグネット近傍空間のEnergy flow は全く熱に関わりのない『エネルギー』であることも心に乗せて。それが電池の『エネルギー』と『質量』の等価性の原理の基である。E=mc^2^[J] の物理的意味である。ここから電池が電子を導線の中に流し出して、回路を還流したら、どのように電池に蓄えた『エネルギー』を負荷ランプに供給することになるかの《問答》が始るのだ。特別数式など無くても日常用語で説明できる筈だ。それが『電子』の意味を問うことになろう。

電子の実相を尋ねて。
最近の電子論、エネルギーから電子殻を問う (2018/05/21) や電池における電子の役割を問う (2018/05/24) で論じてきた。電気回路の問題では、必ず電流が含まれる。その電流概念で、正の電荷が流れるとは言えない為、電子が電流の流れと逆向きに流れていると解説される。この解説が検索情報の標準的なものとなっている。誰もその解説に疑念を表明することも無い。だからそれは世間の科学常識として子供達に教えられることになる。多分学習塾でも同じ説明がなされているのだろう。ここで再び、電流は電子の逆流か?と言う事を考えて置きたい。考えるにはその電子の逆流と言う回路状況を具体的に図に表現して見るのが良い。まず電子が電線路にどのように分布している状況かを示さなければならない。大事なことは、解説する人が先ず自分がどのように考えているかを空間的に図に表現することが必要だ。筆者もその意味で、皆さんが電子の逆流だと解釈する意味を、電気回路の電線に書き表してみた。電子が電流の方向と逆向きと言うことは、電線路全体に均一に分布していることと考えてよかろう。その分布電子が同一の速度で均等分布の流れとなっていると考える。それが図のようになる。この図の表現内容が間違っていると言うなら、それの間違いを指摘して欲しい。どのような電子の密度で分布するか。それは電子の速度が何によって決まるかにも因る訳で、その訳が明確に示されなければ分布も決まらないと思う。 『電子電荷』の速度を決める力学原理は何だっけ?電気回路の現象も特別難しい訳ではない筈なのである。解説する原理や論理性が明確であれば、それは日常用語で十分説明できる筈なのである。クーロンの法則に従うのか従わないのかを解説者自身が立ち位置を明確にして述べれば分かる筈である。上の図を見て、教科書を執筆されている専門の方々が、怪しいと思うか思わないか。そこに抱く意識に問題の解決の糸口が有る筈だ。ネット上の解説が正しいか間違っているかを。まず電子が電線路導体を流れると言うことは、図のように『負』の電荷だけの分布で良いのか?『正』の電荷の分布は無いのか?電池とは電子の回路循環機能だけなのか。電池の『エネルギー』はどのように負荷に供給されるのか?解説の中には、電子が移動すると、逆に電子の抜けた殻の穴が『正』の電荷の意味を担って、電流の方向に流れると考えれば良い。等の解説をする方も居られる。その方も自分の思う電気回路図を描いて、その全体の図で御説明されればよいと思う。兎に角、上の図では電気回路は『負』の電子だけで『正』の電荷の出る幕がないことになる。今までの説明には数式は使わないできた。どこか数式がないと説明にならない処が有っただろうか。科学の心を伝えるには数式など無くても良いのだ。政府の津波対策の防災情報で、海岸線の津波波形の図が余りにも滑稽過ぎて、誰があんな波を津波と考えるかも水の心が理解できていない科学論が招く怪しさなんだ。科学とは自然の心を心で受け止めて、心で伝えることだろう。解説者が自分の心に偽りのない意味を伝えてこそ科学論になる筈だ。偽善科学はやめましょう。

 

リサジュー図形と技術

リサジュー図形は技術評価の観測手段として有用である。オッシロスコープで3次元(時間と平面)図形として観測できる技術手法である。先日、記事整流回路とリサジュー図形が見られていた。そこに図5.スイッチングとリサジュー図形(e.i)がある。電流ベクトルiの描くリサジュー図形は6角形の頂点の6点を示す断続のリサジュー波形となる。その直流側の負荷は平滑リアクトルLが在るため、直流電流は一定値となる。三相交流電流波形は方形波である。その為電流のリサジュー図形が6点のみになり、6角形の辺は見えない筈だ。瞬時に6点にジャンプ移動する筈だから。今回リサジュー図形の意味を理解するのに参考になるかと少し追加して置きたい。この三相全波整流回路で、負荷がリアクトルL=0で、抵抗のみの場合は電源側の電流も波を打つ

変動波形となる。この場合の瞬時空間ベクトルのリサジュー図形で、電流ベクトルi に変化が現れる。その時のリサジュー図形を示す。a、bおよびc相の電流瞬時値ia、ibおよびicの値から図のように6角形の頂点に臍のような軌跡が現れる。

 

 

 

 

 

 

この電流ベクトルリサジュー図形に似た波形が在る。pq理論のリサジュー波形を見つけて (2014/11/21)の写真②に似た波形が在る。この写真波形は、後に空間瞬時ベクトル解析法と交直変換器への適用 (2011/10/30)と言う研究会資料になった基である。この研究会資料のp.77~p.79 の3次元軌跡図はリサジュー図形である。電力系統監視システムとして有効な手法と考えた。電力系統の状態を瞬時監視手法として生かされる筈だ。系統の瞬時アドミッタンス値と言う捉え方は余りなかった手法と思う。しかし、諸般の事情によりもっと大事な『静電界は磁界を伴う』の物理学基礎概念への方向転換になり、大学の講座性も工業高校と同じような気分で意識なく、研究能力の欠落かと、人権侵害の中に居るとは知らず、非常識の立ち位置から居場所も無く頓挫した。昭和62年、63年に電磁界理論研究会で、 電磁エネルギーの発生・伝播・反射および吸収に関する考察(EMT-87-106) と 瞬時電磁界理論の実験的検証とその意義 (EMT-88-145) を発表した。それはパワーエレクトロニクスの電力部門の講座に所属する内容ではなかった事を後で理解したが、無我夢中の夢の中のこと。 考えてみれば、昭和39年から、新潟県教育委員会はじめ、採用説明会と事務の取り扱いを一度も受けた経験が無かった。共済組合の加入手続きも書類に記載し印鑑の捺印など、一切した事も無かった。しかしそんな中で30年、50年以上の思考で、不可解な電荷の物理学の本質に辿りついた。研究者の端くれとしての責任と社会への貢献の一部は果たせたかと。

電気工学とリサジュー図形としてはピタゴラスの定理とオイラーの公式そして電気ベクトル (2017/01/15) 、ソーヤータワー回路の謎 (2016/07/19) さらに励磁電流とは? (2019/04/14) および変圧器-物理学解剖論- (2011/09/13)などを過去の記事から拾っておく。

pq理論と瞬時空間ベクトル。そのリサジュー図形を理解するには少し専門的な意味を理解する必要があろう。三相交流瞬時空間ベクトル (2017/04/07)  および単相瞬時空間ベクトルと瞬時値 (2017/03/04) が参考になるか。三相交流に瞬時虚電力qのベクトルを導入したことで、電気ベクトル空間座標が時間と合わせて4次元座標となった。

不可解な電荷

電気理論は易しいようで難しい。その訳の一つは数式で解釈する処に在るのだろう。数式で表現されると、数学的な内容を理解しようとして、電気的な現象の中味を理解する事に注ぐ余裕が無くなることも原因に成っていよう。後で不図不思議だとか、何故かと疑問が浮かんでも、考え直す時間的余裕がない為、後々までももやもやが残るのかと。ITなどに、質問で『電荷』とは何かと疑問が多いようだ。数学・数式は『電荷』が実在するかしないかを論証はできない。人が設定した条件・仮定の上での解釈しか論証できない。科学理論の根源的概念に、『電荷』、『質量』更に『光』あるいは『エネルギー』などを挙げて良かろう。それらの中で際立って不可解な物理量・概念が『電荷』である。多くの皆さんが自然界に実在すると考えているかと思うその『電荷』を否定する為に長い30年以上の道程を辿って来た。学術論の「雷」などもその『電荷』概念に基づいて論じられている。その『電荷』を考えることは、自然科学理論の何たるかを考えることにも通じることである。
《電荷問答》
初学者が後々疑問に思うだろうことを問答形式で取り上げたい。この辺の内容を授業をなさる先生方に良く汲み取って解説をして頂きたいと思ってもいる。授業の展開方法に、論理的矛盾は無いか?本質的に見過ごしている視点は無いか?本当に深く突き詰めて納得して教えているか?失礼を顧みず少し気掛かりな視点を取上げて論じてみたい。『電荷』とは実に不可解な概念であり、とても自然界に実在するとは信じられないから。

①クーロン力。クーロン力はこの世界には『正電荷』と『負電荷』の2種類の『電荷』が実在することを絶対的な科学理論の条件に据えて、その電荷間に働く力を数学的な式で表現した自然世界の法則である。と言うことが現在の電気理論の世界の科学常識となっている。その法則が論理的に矛盾だらけで、これが科学理論と言うものの実体を示しているのだ。ここでは高校生があるいは大学生が教室で学習する教科書の内容の意味を自分で解釈する手掛かりに成ればとの意味を込めた解説の心算でもある。本当のところは、電気工学や物理学を学んだ、その後の大学院生あるいは現役の先生方に考えて欲しい内容でもある。

《問答第1》 そこで、最初の『問答』となるのはその電荷の『正』と『負』の違いはどのようなことなのか?形が違うのか?大きさが違うのか?色が違うと言うことは無いだろう。何が『正』と『負』の違いを生む原因となっているのか?

《問答第2》 同じ電荷同士、『正』と『正』などは反発し合う。異種電荷同士、『正』と『負』の間では引き合う。それがクーロンの法則の基本的内容である。そのような力の掛り方が違う訳は、原因はどのような意味から起きる事か?科学論は理屈が大切であるから、因果律を大切にしたい。何か『電荷』の間で異なる現象を生む理由が有って言えることであろう。

《問答第3》 図のように、+Q[C] や-q[C]で同じ『電荷』同士が集合する状態を説明に使うが、その集合する訳は何ですか。クーロンの法則に逆らって同符号の『電荷』が集合する理由は何ですか?それは雷の発生原因として学術論で論じられている手法の訳にもなることであろう。摩擦電気で『電荷』が『正』と『負』に分離し、同符号同士の『電荷』が集合すると言う論理にも関わることである。その原因となる力は何ですか?

②コンデンサの充電・放電現象。コンデンサはエネルギーを貯蔵する回路機能素子である。しかし余り『エネルギー』を貯蔵すると言う解釈が示されていないようである。『エネルギー』より『電荷』の貯蔵機能素子と見られているようだ。『電荷』で解釈することが本当に『エネルギー』貯蔵機能として捉えられると言うのか?それは電気技術感覚から考えても無理に思える。本当に理解してもらいたい事は、感覚的にコンデンサの貯蔵という意味を、『エネルギー』の空間像として捉えて欲しいのである。『電荷』には『エネルギー』が見えないから。

《問答第4》 コンデンサの充電はどのようになされるか?直流電源のバッテリーB.にコンデンサ(容量C[F])を繋ぐ。たちどころに電極板の正と負側に『電荷』が『正』と『負』に分かれて集合すると解釈される。《問答第1》での『電荷』の2種類の話であるが、『正電荷』は基本的には陽子の電荷で、『負電荷』は電子の電荷となっている。しかし、陽子が自由に電子のようには移動するとは考えていないようだから、原子の電子が抜けた『ホール』と言う原子イオンを『正電荷』と看做して論理を組み立てているようだ。電極板の原子は移動できないから、その正電極板の金属原子の中の電子が負側の電極板まで速やかに移動しなければならないことになる。と言うことは直流電源のエネルギー供給の役割は正側電極板から電子を引き出し、負側の電極板まで運ぶことに費やされると考えるのだろうか?さて、コンデンサはエネルギーの貯蔵がその機能である。確かに電子を引き剥がして負側まで運ぶとなれば、仕事をすることになるとは言える。それでは何処でエネルギーが費やされるか?となる。コンデンサは電源のエネルギーのある分を受け持って貯蔵する役目であり、『エネルギー』は消費しない筈だ。エネルギーが費やされてしまうのはコンデンサの機能としては意味が違う。正電極板の原子から電子を引き剥がすにはエネルギーが要る。それはコンデンサの面目を潰すことに成り、許されない。原子から電子を剥ぎ取る力を電源がどのように働くのか?原子に対して電源の電圧は働きようがない筈だ。例えクーロン力(電荷間の)を仮定したとしても、直流電源の一方の端子だけでは何の電源電圧の役目も果たし得ない訳だから。勿論電源とコンデンサを繋ぐ導線内には電界は生じ得ない。この事は物理学会の専門家・学会発表の座長さえ電界が在るとの認識で有ったのは今でも驚きの一語に尽きるが。どのような意味で電界が有ると成るのかその辺から討論をしなければ話が噛み合わないのも確かなことである。導体内に、現在の物理学理論で解釈すれば、電界が在って初めて、電子が移動する可能性は生まれると解釈されている。電界で電荷に力が働くと言う理論そのものが自然の真理ではないのだが。しかしそれでもその科学常識の理論に従うとしても、そんな電界が電源電圧に因って、どのように導線内に生じると考えるのだろうか。結局、直流電圧で電極板に正と負の『電荷』を分離する理屈は成り立たない。当然直流電源が正と負の『電荷』を電源内部から供給する機能も同様に成り立たない。そこで初めて、電源の供給する『エネルギー』のコンデンサへの貯蔵がどのようになされるかの問題意識が生まれる筈だ。『電荷』でなく『エネルギー』の実在性を意識することが物理学の極める視点でなければならない。直流電源の負側の導線の近傍空間を通してコンデンサ内の空間に『エネルギー』が貯蔵されるのがこの場合の電磁現象の真相である。 

《問答第5》 電源が電池でなくて変圧器の場合も取上げた。はじめに、電池の場合は電池の『電荷』がコンデンサに供給されると解釈されるかと考えたが、上の《問答第4》でそれは無いことが分かったと思うから、変圧器を取上げる意味も無かったかもしれない。しかし、この変圧器電源ではコンデンサの『電荷』貯蔵機能は直流の場合よりさらに交流の為、極性まで交互に代わるだけ複雑になろう。『電子』は両極板の原子から剥ぎ取る機能の論理性を問うことになる。『電子』はそんなに光速度の速度対応は出来ない筈だ。それ程の論理的な困難が在っても、『電荷』『電子』で理論を構築するのかが問われる筈だ。それに対して『エネルギー』は光エネルギーのように、電線路空間を通してコンデンサ貯蔵機能に光速度の素早さで対応可能である。

むすび

『電子』論の矛盾を力学論から拾い上げて、アンペアの法則の論理的矛盾を解説する前にもう一度、『電荷』の持つ科学概念をサイエンスコミュニケーションの題材として取り上げた。ここでも数式に頼らないで、前の記事力の概念と電気物理に関係した意味で取上げた。

力の概念と電気物理

視点一つが世界を変える。

不図疑問が湧く。今までの認識に疑問が種となって、新たな世界が驚きの中に膨らむ。今回は『力』である。電気と言う目に見えない現象故に、その世界描写は数学的な表記によってとても抽象的に描かれる。多くの法則によって体系化された学術理論の世界である。科学理論の世界は長い歴史の重みを背負って、何百年の時に亘って専門家の追究の試練に曝されて生き残って来た学術理論である。その根幹を成している概念は『電荷』である。それはクーロンの法則と言う偉大な科学技術論を論ずる基幹法則として誰もが一度は聞いたことのある法則であろう。『電荷』間に働く『力』の意味を解釈する法則である。科学理論は社会的に認知された、学術機関の専門家が推奨する権威ある理論で、広く学校教育での標準教科書として取り上げられたものである。そんな理論の根幹の「電荷」を否定することは、社会的大きな混乱を引き起こすかもしれない畏れ多さを抱える事でもある。自分一人の科学技術感覚からの『電荷』否定の挑戦であった。クーロンの法則を斬る (2013/01/06) の記事から6年が過ぎた。今回その法則に関して、力学理論の『力』の概念から改めて『電荷』否定の論証視点が浮かび上がった。気付けば当たり前のことと思う様な『電荷』に潜む矛盾点である。

力学論の力の概念

運動力学の『力』とはどのようなものか。そんな疑問を抱くことに意味があるのかと思うかも知れない。力が働くという意味で感覚的に感じるのは力を掛ける対象に、力に逆らう反作用のような抵抗がそこにはある。それが慣性体としての質量の意味だと思う。運動力学で力が掛ると、その対象は力によって加速度運動に成る。もし力の対象が質量体で無かったなら、その対象はどのような運動に成るのだろうか。図の力の概念に示したように、質量M[kg]が力に逆らって速度の変化を受けないような作用があるから力を掛ける側に、対象に作用するという意味が生じるのだ。もし対象に質量がなかったら、加速度と言う概念は存在しない。加速度の存在しない『力』の概念は力にはなり得ない。

電荷と力

図1.電荷と電界と力

さて、電気物理学では『電荷』がすべての電気現象の理論的論拠となっている。電場に『電荷』が有れば、その『電荷』はその点の電界強度によって『力』を受けると成っている。(1)式のように、空間にある電荷集合体+Q[C]が有れば、その周りの空間は立体空間全体に電界強度E[V/m]で定義付けられると成っている。その空間に、他の『電荷』が存在するとその電界Eによって力を受ける。電荷が-q[C]とすれば、(2)、(3)式の力を『電荷』が受けると言う。(3)式が有名なクーロンの法則の式である。なお (r/r)は座標ベクトルrの方向を示す単位ベクトルの意味である。荷電粒子が電磁場で力を受けて運動する現象は実際にあるから、確かに間違いとは言えない。しかし、上に示したように、『力』の概念で述べたことも間違いではない。質量がなければ、『力』は掛からない。『電荷』に慣性は無いから、それは『力』の対象にはならない筈だ。もし力が掛れば慣性のない『電荷』は直ちに無限速度で飛んで消えて、運動論の対象にはならない。前にも、荷電粒子加速と電磁力 (2015/01/31)で問題にした。今回不図した思い付きで、『力』の概念について気付いたことが質量の慣性と言う意味であった。クーロンの法則を斬る (2013/01/06)で『電荷』とその上の(3)式の否定を論じた。今回はっきりと納得できたのが質量の慣性と言うものによって初めて『力』が意味を持つという事であった。それなら実際に電磁場と言う空間での荷電粒子加速現象はどのような意味なのかという自然世界の認識の課題である。実際の電磁場での粒子加速運動論には必ず質量を必要とするから、電子にも陽電子にもすべての粒子には必ず質量が付帯している。そこで一応運動力学論としての辻褄が合わせられている訳である。しかし電気回路の電流論に成ると、電流の単位アンペア[A]=[C/s]には決して質量は必要ないから、『電荷』だけで論じられることになる。この『電荷』と『力』の問題は、世界で実施されている荷電粒子加速実験の理論的根拠の問題でもあろうかと考える。

電荷と電磁場

もう一度電荷とその電界の意味を取上げて考えて置きたい。『電荷』の意味を考える時、とても不思議に思うことがある。或るプラスの正電荷の集合体が空間にあると設定されて解説される。クーロンの法則に直接関係する電磁場の論考に於いて、どのような原理で同一の符号の『電荷』が集合し得ると考えるのか。同一符号の『電荷』は離隔距離の2乗に反比例して強力に接近は拒否される筈である。子供達に教える教育の場で、クーロンの法則が取上げられて、説明される時には同一『電荷』の集合は排除されると教える筈である。しかし、図2.のようにいとも簡単に『電荷』の集合体で理論の解説が成される。これも科学論の不思議と言わなければならない。その時の集合電荷の離隔距離はおそらくゼロの意識で論理展開しているのだろう。ゼロの2乗分の1は無限大の排斥力となる。この事は教育者側の科学論の論理性の問題としても無視できない矛盾論の筈であろう。それはさて置き、問題は電荷周りの電磁場の意味である。図2.電荷とエネルギー のように空間の誘電率がεo[F/m]とすると、その空間のエネルギーをどのように理論的に解釈しているかという問題である。係数が(1/2)の問題はさて置くとして、一応wr=(1/2)εE^2^ [J/㎥]のような電界のエネルギーが空間にあると解釈する筈である。『電荷』からの空間距離rの関数として、『電荷』周りにはエネルギーが分布していると解釈してよかろう。しかし、物理学理論で空間の解釈をする時はこのようにエネルギーを認識している筈であるが、荷電粒子加速などの場合には、この空間エネルギーをどのように解釈しているのかはハッキリしていないようだ。このエネルギーの問題は理論物理学における『電荷』の概念の捉え方に関わる問題であるから。と言うのは、このエネルギーが空間に存在していると解釈するかどうかが最初に問わなければならない問題なのである。そのエネルギーは電界がある限り、空間の無限遠までも希薄になっても存在することになるからである。空間に存在すると解釈するなら、そのエネルギーを理論物理学ではどんな物理量と考えるのか。即ち『電荷』の一部なのか、『電荷』と無関係のエネルギーなのかと言うことを問う問答なのである。この解釈・考え方は至極幼稚な素人的素朴な疑問なのである。しかしこのような考え方が、理科教育・自然科学論に求められて居る易しさの科学論の姿勢であると考える。高度な数学的理論展開では、市民が理解し、納得する自然科学論にはならないから。本当の自然科学論は日常用語で解説できなければそれは正しいとは言えないのだ。何故このように『電荷』とその周辺空間のエネルギーの問題を論じるかは、高度な理論を展開されている専門の方々こそお分かりの筈であるから。ついでにもう一つ図2-1.電荷と力とエネルギーとして、単位電荷が空間に分布していたとする。この場合は、『電荷』間には複雑な力が掛ることに成り、その空間のエネルギー分布も正と負の電荷によって、種類の違うエネルギーが存在すると解釈するべきなのかなど理論的に決まりの付け難い問題が残るようだ。本来エネルギーには『正』と『負』は無く、ただ『エネルギー』が存在するかどうかの問題であるから。そういう意味で、物理学理論の易しい解釈を求めての論考である。易しい理論的解説は難しい数学や数式は必要がない筈だ。『電荷』が『エネルギー』を持っているか、いないかを答える事ぐらい難しい事ではなかろう。結局『電荷』とは何かを問うことである。電気磁気学、電気回路論あるいは電気工学のそれぞれの解釈の場で、『電荷』が如何なる実在量かの描像を示す事が求められていることと思う。それは次の謎解きの話になろう。

理論と電磁現象の間の謎解き

波形観測に欠かせない電気製品にオッシロスコープがある。電子銃からの電子ビームを平板電極間に通すと、その電極の電圧信号に従って、電子ビームの方向を制御できる。蛍光面にその制御されたビームの軌跡が波形を描く。その原理が電子電荷の空間電界による制御と解釈される。これが科学技術の電磁現象解釈原理となる。技術としてはその原理を理解することが必要であり、それだけで十分立派な電気技術者の仲間に入れる。教育もその意味で技術理論の習得への期待が国家の教育方針とされてきた。それはそれで良かった。『電荷』と言う概念を考え出して作り上げた意味はその為に有効であった。ところが、その科学技術用の理論を深く突き詰めると、とても曖昧で、論理性に絶えない矛盾が潜んでいることに気付く筈だ。科学技術教育ならそれでも良かった。しかし、自然現象を説き明かす物理学理論となれば、その矛盾を抱えて頬被(ホウカブリ)したままやり過ごす事はできない筈だ。ではそれはどんな矛盾で、何故理論が論理的で無いと言うかを説明しなければならないかも知れない。聡明な皆さんは既にお分かりの筈であろうが。その曖昧さを取り除くには、『電荷』が理論に絶えない概念であることを理解しなければならない。 f=q[v×B]+qE [N] の式で解釈するローレンツ力の力が掛る対象は電荷q[C]である。その式は質量が無い式だ。荷電粒子にこっそり質量が有ると条件付けられてはいるが、それは運動論を展開するには質量がなければ無理だからである。しかしあくまでも力の掛る対象は原理の式には『電荷』しかない。『電荷』には慣性がないから力が掛る対象にはなり得ないのである。しかし現実は、この式で解釈する通りの荷電粒子と認識する『電荷』のビームが制御される。この論理的不都合を解決する解釈法が一つあるのだ。それが『軸性エネルギー流』だ。電磁場空間内の空間電磁エネルギーの分布を理解する道である。『静電界は磁界を伴う』と言う奇妙な表現内容に鍵がある。電界と言う電場空間は、むしろ磁場空間なのである。磁場空間は磁束がある訳ではなく、軸性エネルギー流の場である。言ってみれば、『電子』も軸性エネルギー流子なのである。エネルギー流空間に電子と言う軸性エネルギー流子が通過すれば、エネルギー流同士の間の近接作用力が働くことになる。過去に載せた関連記事の図を挙げて置く。電子スピンとは?-その空間像-(2011/02/09)

 

 

 

 

 

 

 

素粒子-その実相-(2012/07/31)

 

 

 

 

 

エネルギー流と結合(2018/10/10)

 

 

むすび

問題の解決は『電荷』とは何かに答えることである。それはまた『電子』とは何かに答える事でもある。そこに未来の道が観えて来る筈だ。空間に実在するということは、その空間像を描くことでしか解決できない。抽象的な数式には姿が観えない。軸性エネルギー流は磁場と言う空間の物理的姿を示した空間像である。身近にあるマグネットのNSの磁極近傍の空間に在るエネルギーの流れの様子を示したものが軸性エネルギー流であり、それは磁極の表面空間を流れている回転エネルギー流である。その空間に実在するエネルギーを見ることはできない。それを計測することも、観測することも出来ない。その観えないものを『電子』などと捉えて、科学理論を構築して来たのである。『電荷』概念の矛盾に気づくなら、空間のエネルギーが(心にあるいは感覚的に)観えて来る筈だ。そのエネルギーに関する空間論は観測できないから科学論に成り得ないかもしれないが、そこに至らない限りは自然に心を添えないと言うことであろう。『エネルギー』を認識すれば、自然世界の本質が観えて来る筈だ。以上でクーロン力の矛盾についての論説は終わる。次の記事で、アンペアーの法則の回路電流における電子流の矛盾について述べたい。

物理学理論と磁束

はじめに 物理学あるいは物理学理論は、自然の深い仕組みを解き明かす特別の論理的思考能力を持った専門家集団が唱える真理と考えるだろう。それは科学技術の更にその奥に隠れている深遠な自然世界を解き明かし、科学技術の理論的拠り所としての学問分野が物理学と思うだろう。その自然世界の基本の描像は電子の周回する原子構造論と電子の流れる電線路電流、更にその電流によって定義される磁束などが電磁界の論拠としての物理学構成概念である。それが世界の物理学であろう。しかしそんなに多様な基本構成物理量が世界の根源であるとは理解できないし、信じられない。最近、磁気概念や磁束の物理的意味を解剖してみた。それは物理学でなく、電気技術の知見をひも解くことによって様々な科学技術用語の本質が明らかに成って来た。物理学が科学技術の技術概念を深く追究してこそ本当の自然世界が明らかになることを認識すべきという結論になる。電荷や磁束の空間像を示す事が、それらが自然世界に実在するかどうかを判断するに欠かせない筈だ。その空間像が物理学に問われている。世界は抽象ではなく具象世界だ。磁束について、アメリカのNASA宇宙技術開発の成果の一つと聞いているロイヤーインバータ回路の原理から具体的な例で、電圧が一義的なその発生起因であることを示し、アンペアの法則による電子流で磁束が発生するという誤解を解いて欲しい。
磁束の物理概念
マグネットは何処にでもある日常生活に密接な磁気製品でもある。物理学を教える先生方は教科書の中味である物理量などすべて明確に捉え切っている筈だと考えたい。しかし現実は、変圧器の磁束について励磁電流が発生原因であると殆どの方が考えているように思う。それは間違っている。変圧器や電磁コイルの物理現象を解きほぐせば、少なくとも励磁電流がなければ磁束が生じないということは無いのであり、磁束はそのコイル端子に印加する電圧によって一義的に決まってしまうのである。その意味を物理学では馴染みがないであろうが、インバータ回路を使って具体的に示して解説したい。それはファラディーの法則の科学技術論の理解の為でもある。磁束という物理量が、実際に実在するという解説ではないから。自然世界の本質は磁束さえ、エネルギー流に纏まるのであるから。しかし少なくとも、まず一段階としての誤解を解いて欲しいのだ。

磁束と電圧 右の具体的回路例を基に説明したい。AとBの二組のトランジスタスイッチを直流電源と組み合わせて、変圧器に繋ぐ。AのスイッチとBのスイッチを交互に半周期ごとに断続的にオンする。その時磁束は図のように階段状に変化する。その磁束は励磁電流が流れようと流れまいと関係なく、電圧値と時間だけ(即ち電圧時間積分)で決まる。この解釈は変圧器だけでなく、一般のコイルにも当てはまるのである。コイル端子に印加される電圧値と時間で磁束は決まると考えるべきである。理論の統一という事の大切さは、広く基礎概念によって無駄な思考を省き、分かり易くするということにある。図のようなスイッチングモードでは、半サイクル(T/2)の内4/7の間電圧Eが印加されることになる。その間に磁束は最大磁束の2倍 2Φm の増加をすると考えられる。ファラディーの法則は E=n(dφ/dt) および φ=∫(E/n)dt と表される。その法則から、電圧Eが時間T/2(8/14)=2T/7の間印加されて、磁束が 2Φm だけ増加するとなれば、次式が成り立つ。

2Φm=E/n×(2T/7)

従って、  E=7n(1/T)Φm [V=(J/F)^1/2^]

が得られる。このように、印加電圧とその印加時間だけで磁束は決まると考えるべきだ。その磁束発生原因として、励磁電流などの複雑な解釈概念を介入させるべきではない。この磁束は、すべてのコイルや電気回路全般に言えることである。その意味は電線内の電子流という『電流』概念の物理的解釈の論理性が問われているということである。『磁束』という物理量も『電流』と同じく、その物理量の実在性が物理学理論として検証されなければならない筈だ。その具体的な空間像が。

むすび

電流と磁気の概念矛盾について述べなければならない。それは自然世界を理解するに欠かせない思考作務である。電気論では電線内を電子が流れるという。何故電子(電荷と質量)が金属導体内を通ると、金属導体の外に磁束が発生するのか。電子は磁気を持つと定義されているのか。電子のスピンでは磁束の発生の解説にはならない筈だ。その電子と磁束の関係の疑問に答えるのが物理学である。電流という科学技術概念の正体を明らかにしてこそ物理学である。物理学は科学技術現象を詳細に検証すべき学問分野の筈だから。それは子供達に教えるという責任が有ることに通じると思う。数式で説明する事では済まない基本が有る筈だ。身に背負い切れない重力を感じながらも。