カテゴリー別アーカイブ: 電気物理

素流姿

(2023/05/29).

  素流姿
 
 素粒子の意味が分からず 
 渾沌の深みに嵌り空を見る
 映るは白い流れ雲   
 計れもできず素流姿と
 紙に落とせば     
 顰蹙を
 欲しくもないのに
 買う覚悟

『電子』が自然界に存在しない事実を確信した。科学的基礎理論の根幹概念を否定すれば、素粒子と言う物理学理論の分野の意味が消えてしまった。空間エネルギーの構成要素の素粒子が存在すれば、素流姿は消え去るが。

専門家からの罵倒が聞こえるようだ。消え入るように草叢にでも隠れて居よう。

理科教育過去からの思い

一度公開して、下書きにしたままに成って居たので戻す。

/二年ほど前の記事を見て思う。

https://hokakebune.blog/2021/02/10/電荷と科学リテラシー 

https://hokakebune.blog/2021/02/24/『エネルギー』一筋の道/

https://hokakebune.blog/2021/02/27/科学教育の未来を問う

https://hokakebune.blog/2021/03/03/エネルギー流と定在波

https://hokakebune.blog/2021/03/11/摩擦とエネルギーギャップ

https://hokakebune.blog/2021/03/14/心 鬼灯に遊ぶ

https://hokakebune.blog/2021/03/16/科学と哲学

<a href="https://hokakebune.blog/2021/03/19/科学理論に危機感を❕

https://hokakebune.blog/2021/03/23/自然と言う世界

過去の記事ながら、この頃にほぼ纏まった内容と成っている。

光をはじめ空間のエネルギーを自然界の物理的実在量と捉えずに、未来の物理学理論の基になる自然観とは成り得ない。それが学術理論を学ぶ以前の、市民の科学リテラシーとしての自然観であるべきと。

如何に教育、教科書に反映するか喫緊の課題と思う。『電荷』では理学理論の基礎概念とはなり難いから。/

https://hokakebune.blog/2021/04/09/物理学理論は役立つのか

電気回路空間とエネルギー伝送特性

(2022/02/14)。今日のダッシュボードに記事、特性インピーダンスから見る空間の電気特性 (2013/11/29) が一つだけ挙がっていた。丁度述べようとする内容に関係するものだ。

電気回路が、漸くどの様に『エネルギー』を伝送するかの物理的特性が掴めてきた。もう曖昧で不明確な科学技術概念に因る電気回路現象を無理して、自然界に実在しない『電荷』などで取り繕った解釈法を採らなくて良いところに到達した。ただ、『電子』によって電気回路の『エネルギー』の伝送現象が論理的に解説できれば、『電子』の価値もあるのだが決してそれは不可能の筈だから。運動エネルギーや位置エネルギーあるいは熱エネルギーを『電子』に背負わせての伝送などお伽噺にも成らないし。物理学理論で『エネルギー』を忘れてはそれは自然世界から目を離した科学技術理論だ。

前の記事、エネルギーと電流(2022/02/13)で述べた内容をもう一度まとめる。

前の記事より、回路のスイッチSでの短絡位置を変えた。意識的に、回路空間が『エネルギー』伝送特性を決めるという意味を強調したかった。電線路抵抗でそこを流れる『電流』によって決まると言う『オームの法則』では、電気現象の物理的特性を本当の意味で理解できないのだ。その違いを示したかったから再び取り上げた。電線導体内など『電流』は流れていない。勿論『電子』などこの自然世界に存在しない。電気回路現象はその電線で囲まれた空間を流れ、伝送される『エネルギー』によると言う眞實が理解されなければならない。電線路空間の特性は、その線路定数C[F/m] L[H/m]によって決まってしまう。特性インピーダンスZo がその伝送特性の基本を決める。それに対して負荷が幾らかで伝送電力が決まる。負荷抵抗Rを

R= αZo    α=R/Zo

と捉える。αは単なる係数である。

要するに、二本の電気配線で構成される空間がどの様なものかで、伝送特性が決まるのだ。電源電圧と言う技術概念量はとても優れた特性解釈概念量である。それが何を表現したかが分からなければならない。検索情報などには、丁度水の水圧のような意味だ等と出ている。そんな頓珍漢な意味を述べる程厳密に納得しようとすれば曖昧模糊とした解釈論が飛び出す事に成った。『電流』は回路を回り流れて、閉じた還流概念であるから、水圧で元に戻る意味など表現しようが無いにも拘らず、そんな解説まで飛び出す。恐ろしい、全く論理性等微塵もない珍科学論だ。バンド理論の『正孔』も同じようなものかも知れない。新たな目新しい構築概念で、人の意識に混乱を積み重ね、結局総合的に矛盾の重層構造を創り上げてしまった。そんな科学理論全体を統合して論理性を論考するなど、全く経済的利益にも成らない事は誰もしない。専門業界に嫌われるだけだ。だから科学理論は矛盾の病に侵されてしまった。1987年4月(今から35年前)に『静電界は磁界を伴う』と言う電気磁気学理論の根本的矛盾を問う実験結果を発表した。誰もが実験してみれば現在の物理学理論で理解できない事実に気付く筈だ。しかし矛盾が理論の社会的仕組みを破壊するようなことは許したくない意識が科学者の最優先事項となる。アンペアの法則の矛盾など気付きもしない。

それらの意味を考えて、上の図は電線路空間がスイッチの位置で変わり、回路特性も変わるという意味を単純な電気回路を通して、理論の具体的思考問題例として示したものだ。

伝送特性を一応式にまとめた。

 

コイルの貯蔵エネルギーE[J]は『電流』によって発生するものでなく、電線路空間を通してコイル導体間の隙間から『エネルギー』が流れ込むのだ。その『エネルギー』はコイルに印加される電圧Vl「V]の時間積分に関係したものとして流れ込む。

E=(∫Vl dt)²/L [J]

電圧の時間積分の2乗が漸く『エネルギー』の次元[JH]に繋がる。次元で、『エネルギー』の単位[J]が現れなければ、それは自然現象を利用した技術用の解釈概念だと見做して間違いない。自然空間に実在し、展開する現象は必ず『エネルギー』をその本質として保持して現れる。どの様に科学技術が進展しても、その『エネルギー』の空間像を捉えることは不可能であろう。光の空間像(『エネルギー』の分布空間像)を見る事は出来ないから。コイルの内部空間に貯蔵された『エネルギー』を科学技術計測法で測定する事は不可能である。その技術的に計測する手法として技術概念、『電圧』や『電流』を創り出した事に人の優れた智慧が生かされたのである。

この回路でのコイルに印加される電圧は抵抗との関係で、指数関数での表式となる。その時間積分で算定される。計算をお願いしたい。

電気回路現象で、観測不可能な自然の実在物理量『エネルギー』は電線で構成された空間の形状によってその伝播状況は変化する。その自然現象を数学的に厳密に捉えて、理解しようとしてもそれは無理であろう。指数関数式(ε^-αt^)でも、過渡現象は無限時間でも収束(零にならない)しない矛盾が残る。

コイルの電圧とエネルギー

電気回路現象はそのエネルギー伝送空間のインダクタンスL[H/m]とキャパシタンスC[F/m]の機能が司る。

その特異な回路に共振回路がある。その回路現象を解釈するにコイルの端子電圧の意味が中々分かり難い。

今までの解釈で、変圧器のエネルギー伝送現象 (2020/11/14)。および電磁誘導現象の真相 (2020/10/25)等の認識に辿り着いた。『電流』や『電圧』による解釈はあくまでも電気技術的な解釈手法である。自然現象の本質は『エネルギー』が握っている。『電圧』と『電流』の意味も『エネルギー』の空間現象として理解しなければならないことが分かった。そこで回路共振現象を理解しようとすると、どうしてもコイルの端子電圧の意味を捉えなければ困難との認識に至った。それが『エネルギー』による解釈になる。コイルとコンデンサ間の『エネルギー』の遣り取りになる。

上の記事で、『エネルギー』による解釈の基本はある程度示した。それでも共振現象でのコイルとコンデンサ間の『エネルギー』の遣り取りやその周期 Tと(LC)^1/2^[s] 間の関係式の問題は解決に至っていない。

それは『エネルギー』がコイル内でどのような空間分布状態かに関わる解釈の問題でもある。そこにコイルからコンデンサへの『エネルギー』転送とコイル端子電圧の関係が明らかにならなければならない筈だ。コイルは電圧に対して他力本願的機能に思える。自己で端子電圧を決める機能を持っていないようだ。コイル電圧は端子に掛かる外部のエネルギー供給源によって決まる量である。コイル端子への線路静電容量と分布エネルギー量から決まる。

端子電圧とエネルギー。

コイルに図のような電圧を掛けた。コイル端子電圧は外部回路との電気エネルギーのコイルへの入射あるいは放出を伴う。『電圧』とは回路端子の電線間の『エネルギー』分布量と静電容量によって決まる概念量だ。コイルに正の電圧が印加されれば、それは負側電線空間を通して、コイルに『エネルギー』が流入する現象である。その端子電圧に対抗する現象がコイル内に起こらなければならない。電圧に対してコイルは受け身である。印加電圧が零の区間で、コイル端子電圧はどの様な現象になるか。電気物理(コイルの電圧) (2019/03/17) はコイルの『エネルギー』による解釈を始めた頃のものだ。しかし、誘導エネルギーに観る技術と物理 (2019/04/03)はやはり技術論であり、空間に実在する『エネルギー』の認識より技術概念での誘導エネルギー論である。コイル内空間に実在する『エネルギー』は、技術的な『電流』によるコイル内の『エネルギー』(1/2)Li² のような、コイル空間のどこに在るかが理解できないものとは、その意味が異なる。質量に付帯する運動エネルギーとは全く次元が異なり、光と同じ空間の光速度流の『エネルギー』なのだ。

コイルの芯に磁性体があるとする。コイル端子に電圧が印加されている限りは、コイル周辺空間に『エネルギー』が流れ続けなければならない。『エネルギー』の入射が受け付けられなく、内部空間が『エネルギー』の飽和状態になれば、コイル端子の電圧は零の短絡状態となる。その基本的意味を理解した上で、端子電圧とコイル周辺の『エネルギー』分布の関係の解釈を示そう。

電源電圧一定値の①の区間では、コイル間の分布静電容量に対する『エネルギーギャップ』の分布量が一定に保たれている。1ターン当たりの電圧がvuで、その巻数倍が端子電圧となる。その間は電源側から『エネルギー』が流入し続ける。その貯蔵容量が中心空間に要求される条件となる。

②の区間。突然電圧値がゼロとなる。その時コイル巻き線周辺の『エネルギー』の分布は①と異なり、エネルギーギャップも零となる。しかし既に貯蔵した『エネルギー』はコイル内部に蓄えられている訳だ。その『エネルギー』の分布様態はコイル巻線部の内側の空間内を還流する図のようなものとなる。この状態は、鉄心部に記したように、その磁極 S と Nが決まった向きの軸性のエネルギー流となる。

以上によって、観えないコイル内の『エネルギー』の分布とコイル端子電圧の関係を解釈する。

あくまでもコイル端子電圧は、『エネルギー』貯蔵機能要素を発揮しながら、その外部への現れ方は他力本願である。外部回路の『エネルギー』分布によってそれに対応する不思議な機能を備えていると解釈した。

この結論をもって、漸くL C の共振現象の解釈に進める。

エネルギーと素粒子

現代物理学理論の研究内容はとても高度な学問で、筆者のような、その分野の素人にはとても理解の出来るものではない。だから素人がそんな特別の研究に異論を唱える事は、社会的常識からは許されない。しかし同じ自然科学の分野に属する学問であり乍ら、素粒子論の目指すものが一体この自然世界の中の何を探ろうとしているのか位は、誰もが理解できるものでなければならないと思う。『電荷』の存在理由さえ無いと分かった現在、改めて学問の意味を問いたい。何処でどのように関わる道があるのか?スポーツじゃないが、科学論を戦わす土俵は何処にあるのか。

ここでどのように解釈を論じても、専門家は見向きもせず、無視されるだろう。専門家が唱える内容は、量子色力学(QCD)、コペンハーゲン解釈、反水素原子あるいは電子気体モデル等の概念用語の高度専門的学術理論の世界である。しかしここで取り上げる内容は、中学生の学習内容程度の易しい範囲の電気回路論でしかない。しかしその内容は、初歩的でありながら、教科書にも解説されていない、新しい電気回路論である。『電子』の存在理由も無い事を唱える電気論である。

しかし、敢えてその素粒子研究が未来の社会への希望となるかを専門家にお聞きしたい。基礎研究は役に立つかどうかは分からない事でも、研究が大切な事は分かる。それでも科学への理解を深めたい思いを、共通の市民科学意識の深まりの為にやさしい電気回路現象との関係で確認したい。

何を確認したいか?それは空間に在る『エネルギー』はどのような素粒子から成り立っていると現代物理学理論の高度な自然世界の認識から見て解釈されておられるかを理解したい。それほど難しい事ではないと思うが、とても不思議に思うのは、物理学理論では空間に在る『エネルギー』をどの様に理解されているかが分からないのだ。

電気回路のエネルギー。

右図は豆電球の点灯回路だ。懐中電灯と同じだ。ただ、電線路の途中にコイル、電線を巻き付けた部分がある。回路要素としてはインダクタンスと言う。その値を Laa[H] とする。先ず、物理学理論ではこの電気回路現象をどの様に捉えているか。『電子』が回路動作の主役として取り上げられているように思う。しかし、そんな解釈はもう止めなければならない筈だ。その点に関して既に、中学生への応援電気回路論 (2021/05/09) でも解説した。自然現象はとても易しく、素直に接すれば分かり易いのだ。難しい概念で解釈すべきでなく、深い純粋な自然の心に触れて欲しい。それが空間に在る『エネルギー』なのだ。そこで述べた事はランプから放射される光は『エネルギー』であり、電池から供給されるのも『エネルギー』であり、電気回路全体の動作の主役は『エネルギー』であるという事だ。決して『電子』などの出る幕は、電気回路には無いという事である。ー今し方、8月16日10時半頃、上空をヘリコプターがうるさい轟音を挙げて行きすぎた?ー

コイル内の『エネルギー』の存在確認。

今までの論考で、電気回路は電線で囲まれた空間を『エネルギー』が光速度で伝送される現象の機能回路だと分かった。マイナス側の電線の近傍空間を伝送する現象だと。しかしプラス側にコイルがある。一体そのコイルにはどの様な意味が有るのだろうか。この回路の電流 I は電圧を V とすれば、

I= V ÷ R

と計算される。コイルの意味は式には何も現れない。ではコイルは電気現象に何も関りが無いかと言えば、そうでは無い。確実にコイルの中には『エネルギー』が貯蔵されている。しかもプラス側の電線路のコイル内である。その『エネルギー』を物理学理論ではどのような概念で理解しているかが分からないのだ。物理学理論では『エネルギー』が空間に在ると認識しているのだろうか?その『エネルギー』は『電子』など全く関りが無いのだ。もし、電気回路に『電子』が欠かせない論理的基礎概念だと言うなら、その訳を解説して頂かなければならない。『電子』がどの様に『エネルギー』の発生原因であるかを。

コイルの中の『エネルギー』は電気理論では一応、

E=(1/2)Laa×I² [J]

と解釈している。その式を理解するに、電流が『電子』の逆流と解釈するから、その式の『エネルギー』の意味を捉えるのは甚だ難しいだろう。

だからコイル内の空間に『エネルギー』が実在するとの解釈は教科書には無いのだ。何故か空間の『エネルギー』は物理学理論では認識していないようだ。

コイル内の『エネルギー』の実在性の証明。これがまた難しいのだ。コイルに電流が流れると、コイル内には「アンペア―の法則」によって『磁束』が発生するとの解釈を迫られる。自然世界に磁束など全く無くても、物理学理論によって、解釈の手法が決められてしまう。そこでコイル内に『エネルギー』が実在することをどう科学的論理で証明するかとなる。それが磁気コンパスに頼る事になる。有り難きコンパス様、様である。確かにコンパスをそのコイルの傍に近付けると、決まった向きにコンパスが向く。それは実験で確認できる。しかしだ、コンパスがコイル内で力を受けて、向きを変えたとしても、それがコイル内に『エネルギー』が実在する証明になるとは物理学の専門家が認めるかどうかは分からない。元々磁界と磁気コンパスの間の力の原因を物理学理論で、その訳を説明できるかどうかが怪しいのだ。磁気の「クーロンの法則」で、n極とs極の関係で解釈しているだけであるから、磁束があると言っても何故コンパスの向きが決まるかの訳は説明できていないのだ。その訳は空間の『エネルギー』の認識が無いから、磁束と言う物理概念の自然現象の本質を捉えていないからだ。磁束も『エネルギー』のある空間の現象でしかないのだ。それを、Axial energy flow の空間状態と解釈した。参考資料(*)。

コイル内空間に、『エネルギー』の軸性回転流がある。コンパスにもその磁極近傍空間には軸性エネルギー流がある。その空間の『エネルギー』同士の近接作用力が磁気コンパスの向きを決める現象の原理なのだ。すべて空間の『エネルギー』の関係で決まるのだ。『エネルギー』はどの様な素粒子で成り立つのかをお尋ねした。

(*): 25pWD 磁力密度 f = rot(S/v)  日本物理学会講演概要集 63-1-2. p.310. (2008).

お粗末な年賀状。

その年のマグネットへの恋模様。

電線路の回路特性

電気理論と回路空間 (2021/07/29) で電気回路現象が電線路の空間に因る事を述べた。

決して、電気配線の導体内を電流や『電子』が流れることはない。しかし、現実の教育で子供たちに誤った科学論を押し付けているのだ。残念ながら、科学者が真剣に自然と向き合わないで来た結果であり、教育者が教える事に疑問を抱かないで過ごしてきた結果である。

もう少し、具体的に電気伝送技術からの『線路定数』の意味を掘り下げて、数式の解釈法を利用して解説しよう。

この解説は、基本的に電気現象の解釈で、物理学理論は全く役に立たないものである事を前提にしている。科学技術理論として、電圧や電流の概念を使い、学習することはとても大事な事である。それはあくまでも自然現象を人の生活に利用するための、簡便な解釈法としての技術理論である。日常生活での生活の術としての知識として重要である。しかし、物理学理論としては、それはあくまでも自然現象の真理を解明することを目的とした学問である筈だ。意味も分からない『電圧』や『電流』などの電気技術用語を利用して、如何にも自然の真理であるかの如くの教育は完全に間違っている。何時までも訳の分からない『電子』の空間像の実相を認識できずに、消化不良の気持ちを持ち続けなければならない不快な気分で居なければならない。そんな気持ちを子供たちに味わわせて過ごす教育の現状は許せない思いだ。

物理学理論の罪。『電圧』、『電流』で解説すること自体が、全く電気現象での物理的機能を知らない専門家という不思議な伝統組織群の話となっている。典型的な事が『電荷』や『電子』の空間像を真摯に描こうとして来なかった事にその原因があると思う。

空間に在る『エネルギー』を認識していない。

光がどの様な『エネルギー』であるかを、その自然に向き合って来なかった事、その事に対しては科学者に、特に物理学者にその責任がある。

その電気回路での空間特性と電線路空間構造の関係を示して、電気現象が『電子』などで解釈できるものでない事を示す。何時までも『電子』の在りもしない仮想概念に頼っていては益々、物理学の存在理由が問われることになる。考える科学論でなければならない。

電線路空間特性。分布定数回路空間の世界 (2019/10/14) による。

電線の太さdとその間隔Dが電気回路の特性のすべてを決定するのである。ただし、電線路空間の空間媒体の影響が大きく関わる。裸電線での回路空間としての解釈を上の図では示してある。実際の電線はビニル絶縁電線などである。金属導体の近傍空間がエネルギー分布に大きな意味を持っている。そこは普通はビニル絶縁体で被われている。だからその媒体の影響を強く受けることは認識する必要がある。また、エネルギーの分布は電圧の負側に偏ることも認識しなければならない。それが『エネルギーギャップ』と言うものだ。電気回路から物理学理論と教育 (2021/07/22)にその参考記事がある。

ここ迄の認識に至るには長い道のりがあった。筆者の過ち。それは、日本物理学会での2001年の発表での失態である。

28aYW9  プランク定数の次元と実在概念  日本物理学会、第58回年次大会。p.338.(2001).

実は、その内容を発表せずに、とんでもない御迷惑をお掛けしたことである。実は、電気学会での『静電界は磁界を伴う』の資料を会場に置き、その内容を話した。誠にお恥かしき限りだ。この発表に至る経過がある。2000年に新潟大学で、物理学会の大会が行われた。その大会がプランクの記念大会となっていた。その事を知って、翌年の2001年に発表するために用意した。考えてみれば、如何にその当時の、『電荷』概念への疑念を明らかにするべき研究の場を失う事への、自己に対する科学研究の責任と社会的不可解への怒りが心の奥にあったからとは思う。

その直接の切っ掛けは、物理学理論で「粒子性と波動性」の解決すべき課題があった。一つの現象を波動性と見るか粒子性と見るかの曖昧な未解決の問題があった。一つの物理現象が二つの見方で解釈しなければならないとは如何にも不可解であった。その解決は光を『エネルギー』の空間流として認識する以外ないと考えていた。その空間像を指数関数の表式で、提示したのである。曖昧な波動ではその空間的実体を理解できない。それでは物理学と言えないと考えた。その意味を示した。しかし、その事を理解するには、空間の電磁エネルギーの実像を認識しなければならないという意味で、『静電界は磁界を伴う』の意味を話した。電界と磁界は空間の『エネルギー』の分布をそれぞれの捉え方で解釈しているだけでしかないのだ。その意味で、発表に行き過ぎであったことをお詫びしなければならない。しかし、そのプランク定数の捉え方は間違いなかった。

プランク定数での疑問。余りにも有名であり乍ら、大きな謎、それはその『次元 [Js]』であった。最初の日本物理学会での発表も、[JHFM]と言う次元を明確に認識する事の大切さであった。

現在の認識は プランク定数の概念 (2018/07/17)に述べた。プランク定数の次元が [Js] である意味を考えれば、空間の伝播『エネルギー』の一つの単位とその通過時間の積だという事位は感覚的に思いつく筈だと思った。それ以外粒子性と波動性の矛盾は解決できないとその当時考えた。その空間に実在する『エネルギー』という認識が、物理学理論に欠かせない基本である筈だ。『電子』ではその『エネルギー』は理解できない筈だから。

関連記事。

27aZA-1  量子論の起源を問う 日本物理学会講演概要集 61-1-2. p.394. (2006).

30aXG-8  量子エネルギー mv² の空間 同上 61-1-2. p.329.  (2006).

23aWA-1  量子エネルギーのベクトル解析 同上 69-2-2.  p.291. (2006).

等で、光の空間エネルギー分布像を論じた。それらは、光とは何か?₋光量子像‐ (2012/01/15) に記した。

前の記事。質量とエネルギーに、光のエネルギーと質量の関係への思いを詩に託した。

質量 それはエネルギーの象形

エネルギー それは質量の解放像

エネルギーは 眠りで世界に現れる

その寝姿が質量である

エネルギーは不均衡を好む

その局限で質量となる

エネルギーは光で その本領を発揮する

光は 自然が託した 未来への伝言である

物理学理論と科学技術理論との関係をきちんと捉え直して、未来の教育をどのようにすべきかは皆が、一般市民が考えるべき問題と思う。それが教育行政に上手く反映することが民主主義の基本であるだろうから。

 

コロナ放電の空間エネルギー

見えるもの 見えないもの (2015/03/12) 。にコロナ放電と電荷の関係が載っていた。今、電気回路の電圧の物理的意味が空間のエネルギーギャップだとの認識に到達した。『電荷』など自然界には存在しないとはっきりと理解できた。

不図上の記事を見ながら、疑問が浮かんだ。何で、コロナ放電はマイナス電極側が大きく成長するのか?と。以前は未だ分からなかったが、『エネルギーギャップ』の電圧概念が認識できていたから、直ぐに気付いた。これが、観照という意味なのかと思う。

電線の先端部には高電圧を掛けると『コロナ放電』が起きる。その放電の様子は、マイナス電極側が大きなコロナの伸びを呈する。プラス側も小さな放電の玉状の放電を示す。電気回路で、プラス側の電線路にはエネルギーは分布していないと解釈する。しかしコロナ放電がプラス側でもわずかに起きる。それはその電極近傍空間にエネルギーが分布するからだ。しかしコロナの発生は、電線などに突起状の極端な状況が無ければ起きない筈だ。

極性による放電現象の差は電極空間に生じる空間のエネルギー分布現象が原因であったと分かった。

これも昭和62年春の電気学会での発表『静電界は磁界を伴う』からの一つの結果でもある。その時拾った火中の栗の意味か?

結論。また一つの電気現象の解釈を通して、自然現象には『電荷』など全く無関係である事の証明となったと言える。

電源電圧の物理概念

(2021/06/16)。漸く辿り着いた。『静電界は磁界を伴う』(1987年4月)の発表をしてから辿り着いた。決して『電荷』や『電子』等を必要としない電気回路現象解釈。自然世界に、その空間に『エネルギー』がある事を知って欲しい。物理学理論のどこに、その『エネルギー』の概念が在るだろうか。物理学理論は役立つのか (2021/04/09)。

『電圧』と言う誠に優れた電気技術概念。その意味は長く物理学理論において、『電荷』によって解釈されてきた。しかしその電圧の物理概念は『電荷』などでなく『エネルギー』が示す自然現象の意味であった。

交流電源電圧の電気回路における物理概念を上の図によって考えたい。電圧は電気回路の現象を決定的に決める基本量であると感覚的にも捉えられる。

長い間その電圧の意味を、『電荷』によって解釈してきた。漸くそれは『エネルギー』が示す電気回路現象であったとの結論に至った。回路の負荷に誘導性負荷と容量性負荷を取り上げた。電源電圧は正弦波交流とする。電線路は二本の電線を張ればそれでよい。その電気回路をどの様に解釈するかが一つの要点となる。また、電気現象は全て『エネルギー』の光速度伝播現象である事を認識しなければならない。決して『電子』は電圧の意味に何の役目も持ち得ない。単純な2本の導線で囲まれた電線路の空間を電気のエネルギーが流れるのである。電源電圧 v[V] とすれば、それは下の式、(2)式のように電線近傍の空間に、単位長さ当たりの静電容量 C[F/m]によってエネルギー分布が決まるのだ。

 

その電線路単位長さ当たりのエネルギー分布 δp[J/m]は電線路全体に瞬時に行き渡る。数㎞の電線路に電圧を掛ければ、その電圧は光速度のエネルギー流によって、電線路全体がその電圧値になる。そのエネルギー流の流れは上の(1)式の流れの式で表現できる。速度 co=(LC)^-1/2^ [m/s] で流れる。電気現象の最大の特徴は、光速度伝播現象であるという点だ。電気理論や物理学の教育者は決して、1秒間に『電子』などが地球7回り半の速度で伝送できない事を肝に銘じておくべきだ。子供達に嘘で誤魔化す教育はするべきではない。長く30年以上もかかった結論である。

電圧とは。(2)式より、

v=√(δp/C)  [(J/F)^1/2^]=[V]

で表される、電線路空間のエネルギー分布を解釈した技術概念だという事である。この電圧は直流であろうと交流であろうと特に差は無いのだ。交流電圧は直流の電圧値がただ時間的に変化する違いでしかない。それはエネルギーが光速度伝播である事にその特性があるからだ。

(1)式の電力p₀[W] はその電線路電圧の伝送エネルギー流の最大限界値を表す。光速度 co=1/(LC)^1/2^ [m/s] との積で表される。(注)最近の配電線路もピン碍子は使わず、静電容量が大きな、特性インピーダンスの小さな高エネルギー密度の、容量増の配電線路になっている。

(3) 、(4)式は負荷の特性を表す式だ。

その電力の式は、誘導性負荷の場合は、

誘導性負荷の波形

その貯蔵エネルギー量は印加電圧の時間積分で決まる。また容量性負荷の貯蔵エネルギー量はその電力が電圧時間微分で決まる。誘導性負荷の場合の電気現象波形を示す。wl[J] がLrの貯蔵エネルギーである。

 

 

電気の眞相-電気エネルギーとは何か- (2014/10/13) が電気回路現象への疑問との格闘の一つの問答の始まりかも知れない。

まとめ。

漸く電気技術理論、電気工学理論を、その優れた電気技術文化として理解できる心境になった。『オームの法則』、交流電気回路の『インピーダンス解析理論』、その『電圧と電流』の技術概念を理解できた。決して『電子』など必要としない事を理解できた。残念ながら「クーロンの法則」は教育の場には相応しくないことも確かな事である。『電荷』概念は余りにも自然の真相からかけ離れた解釈を強いる事に成るから。また、『磁気』とは『エネルギー』の軸性回転流の空間場であると理解できた。残念ながら地磁気の逆転現象などはこの地球上に起こり得ないと分かって欲しい。『電界』も『磁界』も全て『エネルギー』の科学理論構築用の解釈概念でしかないと言う意味で、自然世界の「真理」とは異なる事をも知って欲しい。教育の、理科教育の専門家は未来への新たな方針を立てなければならない時に在ると理解してほしい。どうか皆さんからの、『電荷』や『電子』の概念を否定する私への批判を期待します。

マグネットの基礎研究

(2021/05/22)。マグネットの世界。

基礎研究とは不思議な意味だ。
これだけ科学技術の恩恵の中で生活している。長い伝統に支えられた電気技術の中で、磁気の意味は解っている筈なのだ。しかし、その理論は少し人が複雑に解釈し過ぎた概念で構築されたものだ。自然はそれ程複雑な意味ではないように思う。マグネットは日常生活にとても便利な生活用品となっている。

マグネット。
マグネットは科学理論での解釈には磁束がその基礎概念となっている。しかし自然はそんな磁束など持ち合わせていない。

マグネットの力。それは『エネルギー流』 -Axial energy flow-  の間の近接作用力だ。図の青い色で仮想した。


マグネットの特徴はその力の謎に隠されている。科学技術としてマグネットを捉えれば、S極と N極がありその二つの磁極の間にとても強い引力が働く。 それだけで利用できるから、技術的にはその原理など過去の法則で十分だ。という事で済まされる。磁極間の離隔距離 x と力 f の関係には興味を抱かない。しかし、本当に過去の法則通りかどうかを実験で確認してみようと思えば、それは「基礎研究」になる。おそらく法則通りの結果には成らないだろう。問題はその『力』の測定法がとても難しい筈だ。実験器具とその測定法(秤と仕組み)をどの様にするかがその結果に響く。なかなか思う通りの、実験結果が得られないかも知れない。元々磁束など自然界の無い上に、その概念では近付くとどのように変化するかの科学的論理はない筈だから。

磁束概念の否定。実験結果の予測をすれば、磁束の意味が分からなくなるだろう。間隔 x と力 f の間に磁束量が関わる結果はない筈だから。物理学教室におられる研究者がやる意味はある筈だ。それが基礎研究と言うものだろう。実験も無く申し訳ない記事です。

電荷Q[C]とは何だ❕

(2021/05/18) 。「電荷とは何か」と検索した。「受験物理ラボ」に筆者が指摘したかった電荷問題があった。参考にさせて頂く。

電荷の論理性 (2020/10/26)で取り上げた課題でもある。

『〈問題〉二つの電荷の帯電体があり、接触すると、電荷は幾らになるか。

〈回答〉二つに等しく分かれるから、

{4.0×10⁹ +(-6.0×10⁹) }/2 = -1.0×10⁹ [C]

の電荷量となる。』と言うような解説である。

電荷が自然界に実在すると言う科学認識に立てば、当然上のような問題が取り上げられてもおかしくない。それは科学常識の科学パラダイムであるとも言えよう。

ただ帯電体の形状と『電荷の保存則』に対して、どう理解すれば良いか少し疑義は在る。プラスの電荷とマイナスの電荷は相殺して消えてしまう事に成ると言うのも解る。もし、両電荷とも等量なら、

4.0×10⁹ +(-4.0×10⁹) = 0[C] 

と、ゼロ[C]になる。

ここで、この電荷概念の不可解な疑問が起きる。この世界で『実在』するものがその存在も無かった如く消え去るなど、『あの世の幽霊』の話としか考えられない。実在する物は光などの『エネルギー』から成り立つものである。コンデンサの電極に正と負の電荷が充電されたとする(実際は電荷などでなく、『エネルギー』の貯蔵であるが)。その電荷が合体して消滅したとする。その時ただ消滅するだけでなく、アーク放電などで火花として光の『エネルギー』が放射される筈である。それが技術の世界の現実である。

電荷Q[C]が空間に在ると科学パラダイム・物理学理論によって仮定する。

Q[C]とその周りの空間の物理学的状況をどの様に解釈するか?図は古い記事のものだ。

電界強度ベクトルE(r)[V/m]の空間点p(r)のエネルギー w(r) [J/m³]を認識する筈だ。それは電荷Q[C]がもたらした空間の『エネルギー』の筈だ。物理学理論でこの『エネルギー』を認識するか無視するかを確認してもらわなければならない。この程度の電気概念にきちんと解釈を示さなければ、物理学理論の教育的意義が無くなろう。この認識がマックスウエル電磁場方程式の『エネルギー』の解釈に繋がるのだ。電波が横波だ等と逃げてはいられない筈だ。電界も磁界も『エネルギー』に無関係では済まないのだ。

むすび。 電荷概念はそのエネルギーとの関係の論理的な収拾がつかないのではないか。電荷Q[C]が空間全体に無限遠方まで、『エネルギー』を伴う等となれば、理論の野放図な無責任論となる。市民が誰でも分かる理論である事が物理学理論に求められているのだ。教科書を書かれる方は、空間に表現する「電荷と電界とエネルギー」の関係を御理解されていると思う。曖昧な内容を教える事は子供たちに申し訳ない。教育機関及び関係者の課題である。