カテゴリー別アーカイブ: 電気磁気学

ロゴウスキー電極空間の磁界

はじめに(2020/06/09)。
電気工学の分野に「高電圧工学」がある。高電圧送電系統の安全設計に欠かせない基礎工学部門である。雷が送電線路に及ぼす影響を調べるに、高電圧放電現象を研究する標準電極がロゴウスキー電極である。直流の高電圧をその電極間に印加すれば、その空間は静電界と言う電場になる。電気理論では、その電極の間の空間には一定の静電界が両電極のプラス、マイナスの『電荷』によって発生すると成っている。決して磁界は存在しないことになっている。実は大学の卒業研究が高電圧のアーク放電に関するものであった。電力回路制御論と電気磁気学理論との理論的統一への道が高電圧工学のロゴウスキー電極間の空間のエネルギー流に導かれて、今日の物理学理論の根源を問うことになった。The electron did not exist in the world. (2020/05/15)。それは1987年春からの、中曽根臨時教育審議会(*)の不気味で、不可解な中での政治と教育の中立性に関わる事件とも言えよう。

静電界中の磁界。初めに結論を示そう。それが下図のロゴウスキー電極間の空間のエネルギー流である。自然界には『電荷』は存在しない。だから、高電圧工学の研究の基礎概念である『電荷』による電極空間の電界は実際はその空間を還流しているエネルギー流の場である。その空間にマグネットを設置して、いわゆる電界強度を強めれば、磁石のマグネットの向きが変化する。現在の科学理論の『パラダイム』では解釈できない現象である。以下の記事の結論を示した。

 

ロゴウスキー電極間の空間に、磁界が存在することを実験で確認した。今になれば、電界と磁界は単独の電磁場とはならないことを当たり前のことと認識している。だから静電場に磁界が在って当然との認識に在る。しかしそれは、現在の電気理論の教科書の解釈には無い。それが「科学パラダイム」と言う現在の科学理論の世界に問う緊急の課題でもあることになる。

『静電界は磁界を伴う』-この実験事実に基づく電磁界の本質-
その実験結果の写真は Friction heat and Compass (2020/03/22) でも説明した。

『静電界は・・』の結果の、そのむすびに、 4. 実験事実に基づいた電磁界への考察と課題 として良くまとめてある事を知った。現在は、そこで指摘した課題を忠実に確認して、全体像として科学理論の矛盾を解明してきたと一つの安堵に居る心地だ。その翻訳を印す。

以下の翻訳文の中に出てくる方程式とその番号(3)、(4)および(5)を示した。これらの式はマックスウエル電磁場方程式を光速度ベクトル c=cj によって表現したものである。エネルギーの伝播方向を座標のyj軸とした。なお、(3)式はポインティングベクトルであるが、この式は瞬時値としては余り意味が無い(1秒間の値と見える)ので、別に取り上げて論じたい。
(翻訳)
4. Consideration of electromagnetic fields based on experimental results and future challenges. It was experimentally confirmed that a magnetic field exists in a constant electric field (electrostatic field) as shown in equation (5).Therefore,it can be said that equations (4)and(5) are basic equations that express the essence of electromagnetic fields.The meaning of equation (4) also includes the concept that there is an electric field around the permanent magnet and the earth,and there is also a flow of electromagnetic energy. Next we discuss the relationship between “charge”and”energy”as an important point discovered from the experimental results.Figure 3.The fact that the directions of b and c are opposite,we must conclude from Equation(3) that the directions of electromagnetic energy flow are opposite in b and c. This means that “positive charges”radiate electromagnetic energy to the surrounding space,and “negative charges” have the property of absorbing energy from the surrounding space.Although the current electromagnetic field theory is constructed based on the concept of Coulomb force acting between electric charges, experimental facts demand the need to regard it is “field proximity force”from the concept of electromagnetic energy flow.I am keenly aware of necessity of revising the laws supporting the current electromagnetic field theory from the electromagnetic energy flow and it’s propagation trajectory.

新世界―科学の要― (2015/03/05) にロゴウスキー電極間の空間のエネルギー流を示した。その意味を冒頭に既に示した。結局その結論が上のむすびで述べた目標であった。

ロゴウスキー電極の負極性の電極間のエネルギー流は、Fig.Energy flow and proximity action force. の図のように流れると一つの結論に到達した。そこにはマグネットの磁極近傍が Axial energy flow の場であるとの解釈が必要だ。その事によってはじめて電磁場の電磁力がエネルギー流間の近接力によるとの解釈に至る。発表当時に予稿論文で述べたとおり、下部電極側は正の電荷として理論は捉えているから、そこからエネルギー流が外向きに流れ出る意味で同じことと言えよう。上部電極は周辺からエネルギーが流れ込む意味で、適切であった。

「課題」アーク放電に関して。図のような静電界中のエネルギー流で解釈する根拠はあくまでも感覚的なものに依るため、論理的な論拠は無い。場合に依れば異なるエネルギー流であるかもしれない。図の解釈では、「アーク放電」の発生原因を説明する論拠の見えないことが欠点である。負電極面から流れ込むエネルギー流が電極空間で竜巻状に回転しながら正電極側から外に流れ出るのかも知れない。そこに軸流によるアーク放電路の発生が見えるかも知れない。なお、負電極近傍空間がエネルギー密度の高い不平等電磁場空間(エネルギーギャップ)が電圧の意味である。

今でも驚嘆に感じることは、イギリスのバートランド・ラッセル博士の『物理概念はエネルギーに集約されるだろう』と言う自然世界への感覚である。博士に拍手。

(*)戦後75年を前にして。思う事様々に。

電気磁気学とエネルギー

Electromagnetism and energy.(2020/5/29).

Energy is the physical quantity of the dimensional joule that actually exists in space.Moreover,it is a basic physical quantity equivalent to the length of space and the seconds of time.Light and electromagnetic energy are typical examples. The electric and magnetic fields of electromagnetism are only technical evaluation concepts of energy that actually exist in space.

Energy wave

エネルギー波を図に表現するのは難しい。必ず3次元空間に分布している光速度の流れであるから。電磁気学はマックスウエルの方程式で解釈されるのが一般的な手法である。それは現代物理学の科学論の基本となっている。しかし、その解釈にはなかなかエネルギーと言う空間に実在する物理量を的確に捉えているとは思えない。変微分方程式によって表現される数式は一般市民が理解するには困難が伴う。ここでは、その方程式の意味を光の空間分布エネルギー波として捉える解釈法によって、簡便に理解できないかと工夫してみたい。何も難しい式が深い理解をするに必要である訳ではないのだ。光はただ空間に分布したエネルギーの流れでしかないのだ。その意味を空間の像として捉えることが先ず必要であろう。何も電界や磁界の意味を知らなくても良いのだ。先ず、エネルギーの流れる空間座標を決めよう。3次元の方向を単位ベクトルijおよびによって確定し、y軸方向へのエネルギー流を取り上げる。この空間体積を持ったエネルギーが光速度coで伝播すると仮定する。その流れに金属導体を置けば、導体に対してエネルギーの流れが、ある電気的信号を生み出す。このエネルギーの流れという意味がなかなか理解されないようだ。それは学校教育で、『電荷』や運動エネルギーの質量が物理学理論の基礎概念となっていて、空間に流れる『エネルギー』と言う物理量が教えられていないところにその原因があると思う。エネルギー その見えざる正体 (2018/11/6) でその意味を述べた。 

マックスウエル電磁方程式

空間を流れるエネルギーを電気磁気学と言う科学理論で解釈している。その方程式が上の二つの偏微分の式である。座標の原点からの位置ベクトル r の点での電磁エネルギーの意味を、電界ベクトル E(r,t) と磁界ベクトル H(r,t) で解釈する手法を完成した。電界も磁界もその内容は基本的に3つの軸成分として解釈する一般化で認識される。それは実際にはあまり意味が無いのだ。電磁エネルギーの光速度伝播に対して考えれば、電界と磁界が直交したそれぞれ一つの成分としてみれば十分である。その意味を図に示す。

図と(1)式の意味。電界も磁界もその概念は基本的に、ファラディーの法則とアンペアの法則が基になっている。電線やコイルの周りの空間に生じる現象を電圧と磁気で統一的にまとめたものと思う。その本質はエネルギーの光速度流であり、その電気技術解釈法として直交した電気と磁気ベクトルで表現した式である。その意味を図にすれば上のように表現できよう。エネルギーがy軸方向に伝播する時、その電界ベクトルをz軸の成分と仮定する。磁界は電界に直交したx軸成分と見做す。このように決めれば、電界の偏微分の回転 rotEは

(3)式の意味になる。電界ベクトルの値がy軸に沿って如何に変化するかの空間微分値になる。ここで、独自の解釈で微分するdyの意味をベクトル値と捉えなければ折角の空間ベクトル計算の意味が無い。∂y=∂yでの分数計算は、規則として定義されていないと思う。文献(1)によって規則を決めて取り扱う。それが (4) 式である。この(4)式により、(3)式のように計算される。

この(3)式は座標上では点線のように表される。電磁場方程式の(1)式のように、右辺の磁界 H(r,t) との関係が何故成り立つか。右辺は時間 t での偏微分である。その意味を次のように捉える。

磁界ベクトルを時間 t で微分する意味は、y座標上のある点で、磁界 H が到来する波動の変化即ち時間微分値を評価することになる。それは時間を光速度ベクトル coj距離 dyj=cojdt 即ち dy=codtに変換したと同等である。この波形は図の rotE(r,t) の点線の波形と同じくなる。電磁場方程式の(1)式で、何故右辺に空間定数の透磁率μoが必要かは少し分かり難い。両辺の次元をとれば、[(J/F)^1/2^/㎡]となり等しい訳だが。その意味には、電界と磁界の間には特性インピーダンス Zo との関係、(5)式がある。(5)式の単位記号で少し混乱がある。特性インピーダンスZo[Ω]は透磁率μo[H/m]の単位[H(ヘンリー)]と誘電率εo[F/m]の単位[F(ファラッド)]から、磁界の記号H[A/m]と混同しやすい未解決の問題がある。 この関係は電気回路で、電圧と電流と特性インピーダンスZo=√(L/C) [Ω]との間の関係とも同じものである。ここでの電圧と電流の意味にもオームの法則での意味と異なり、電気回路を分布定数回路として見たときの、光速度伝播エネルギー波の定在波の意味に関係したものである。直流回路でもその伝播現象はエネルギーの光速度伝播なのである。負荷とのインピーダンス整合問題によって初めて理解できることで、少し自然現象の深みに踏み込む必要が有る。その点だけ指摘して過去の記事にゆだねる。負荷との整合問題はまだ結論に至っていない。しかし昨年、特性インピーダンスとエネルギー伝送特性 (2019/10/6)および分布定数回路空間の世界 (2019/10/14) で電気回路空間の意味が見えてきた。

電磁エネルギーと特性インピーダンスZo。

電磁エネルギー w(r,t) [J/㎥] が光速度 co= 1/√(μo εo) [m/s] で伝播する。そのエネルギー流を電界とか磁界と言う概念で解釈する手法が所謂電気磁気学の理論である。そのエネルギーは上の(6)、(7)式の意味である。空間の特性インピーダンス Zo=√(μo/εo)[Ω]によって電界と磁界の関係が変換できる。

まとめ。電気磁気学と言う理論物理学の一つの分野は自然科学の理論体系を形作る基幹分野となってきた。しかし、今それも所謂『パラダイム』と言う一つの現代社会の仮想的科学論の姿でしかないと言わなければならなくなってしまった。自然は単純で、純粋でしかも見え難い複雑性を秘めたものと言える。電気回路で、懐中電灯の物理現象は電池からの電線で囲まれた線路空間しか電気エネルギーは通らないと感覚的に捉えなければならないのだ。しかし、そこに科学技術論として、『オームの法則』がある。決して電線の中に『電流』も『電子』も流れるような現象は自然の世界にはないことを解ってこそ、その法則の偉大な意味がより深く理解できるものと言える。その意味で、30数年前に勉強させて頂いた有名なマックスウエルの電磁場方程式の意味をエネルギー伝播現象として、その電気概念を紐解いてみた。上手く出来たかどうかは分からない。

文献(1) 金澤 喜平: 力密度 f=rot(S/v)とベクトル算法 日本物理学会講演概要集 第1巻第2号第2分冊。 p.196.(2006.9.24)

 

電気エネルギーの測定法(電圧)

はじめに(2020/4/19) 電気回路技術は驚くべき文化に完成された。その基本には「オームの法則」がある。『電圧』と『電流』という二つの技術概念に依って誰もが理解し易い回路技術として、現代社会の基盤技術となった。しかし、その『電圧』や『電流』と言う計測量の意味を考えれば、そこにはとても深い哲学的問題が隠されているのだ。その意味を知ることは深く電気回路技術の中にある自然現象の活用の科学技術力とそこへの叡智の結晶が結実している意味を知ることにつながる筈だ。電気回路には、基本的に自然の本源である『エネルギー』を如何に活用するかの手法を獲得した技術の結晶が隠されているのだ。その測定法を通して電気技術が如何に自然との関係を活用しているかを深く理解できる筈だ。その事は『電流』とは、『電子』とは何かが理解できることにつながるだろう。科学技術が飛躍的に発展し、日常生活に深くその影響が及び、人がその恩恵に浸りながらも、誤った物理学理論によって曖昧な科学理論常識に染まる傾向が強まってしまった。地に足を付けた地道な自然観であるべきところ、誤った理論によって人の意識を曖昧な思考の方向に導いてきた。その代表が『電子』の概念である。『電子』の空間像が示されずに、その『負』の実在性が論じられずにここまで来てしまった。その意味を解きほぐす道はあくまでも具体的な技術の意味を通して理解するより道はない。『電子』が如何に曖昧な概念であるかを電気回路の測定の意味を通して考えてみたい。半導体で論じられる量子力学について論じるほどの力を筆者は持たないが、少なくとも電気回路における電線内を流れると解説される『電子』は全く役に立たない仮想概念である事だけは強調しておきたい。

『電圧』は『エネルギー』の計測、技術評価量。

電圧とは、その回路の電線で囲まれた空間に『エネルギー』をどの程度貯蔵した状態かを知る、あるいは評価する技術的基準量である。電圧計は何を計っているかを知らなければ、『電圧』の物理的意味を知ることはできない。水を高い所から流す力の仕組みと同じ意味が『電圧』であるというような、怪しい論説が多くある。その解説ではやはり水のような何か流すものが必要になり、結局『電流』とか逆向きに流れる『電子』が必要になって来る。電線の中には何も流れていないことを理解しなければならなし、電線路空間が有ればその空間を通して幾らでも自由に電気の『エネルギー』は伝送できる。しかもその即応性は光速度で対応できるのだ。電気(と言う『エネルギー』)は光と同じように真空や空気の空間がその最も特性を発揮できる場である。ここで言う『空間』とは、電気については真空以外にも、コンデンサの金属板に挟まれた空間あるいはその誘電体空間、コイルの巻き線で囲まれた空間や鉄心あるいは抵抗体内の結晶構造体内の空間、更に電線路の電線間の空間あるいは絶縁電線の絶縁体などの空間などを指す。例えば、ガラス戸やレンズは光も電波もその『エネルギー』が伝播する空間と見做せよう。しかし、電線の金属体は基本的に『エネルギー』の反射体と見做すべきだ。だから金属の電線内には電気の担い手と科学常識になっている概念の物理量(『電流』や『電子』)は流れない事を理解しなければならない。

コンデンサとコイルの貯蔵エネルギー。

VOLT and ENERGY 直流電圧 V の回路にスイッチ S を通してコンデンサC[F] とコイル L[H] の回路を繋ぐ。

図のスイッチSを投入してからどのように『エネルギー』が貯蔵されるかを、少し数式で考えてみよう。その電気現象は所謂過渡現象を経て、『エネルギー』が貯蔵されることになる。過渡現象は数式では一般に指数関数(*)で表現される。ー(*)指数関数での数学的問題は幾ら時間がたっても定常状態にならないという論理性の現実的矛盾を抱えているー。

(1) 貯蔵エネルギーと電圧の関係。係数の2分の1は省く。

最終的に、貯蔵エネルギーは(1)式のようになる。その貯蔵エネルギーは結局電圧によって決まる値である。だからその電線間の電圧Vは貯蔵エネルギーの量から(2)式の意味であると解ろう。『エネルギー』の単位、次元はジュール [J] であるから、電圧の単位、次元は(2)式から [(J/F)^1/2^] であると解ろう。電圧の単位はコイルもコンデンサも同じ静電容量の単位ファラッド [F] に関係した物理的意味を持っているものと理解できよう。それは当然のことで、電線路は最低二本の電線で組み立てられる。その電線の間には静電容量がある。その静電容量の空間に貯蔵された状態で電気の『エネルギー』が分布して電気の送配電系統が成り立っているのだ。この電圧の次元あるいは単位の意味を理解することが電線路の物理的意味の理解に欠かせない事なんだ。(2)式のコイルの場合について、その次元について付記しておく。(r/√L)はr[(H/F)^1/2]により、[(1/F)^1/2] となるから。

(2) 要素の端子電圧と回路時定数。

コンデンサの端子電圧vcとコイルの端子電圧vlは(3)式のように評価される。コンデンサの電圧は最終的には電線路電圧値 V に等しくなるが、それまでは指数関数の変化になる。コイルの電圧vlは最終的に零となる。コイルに『エネルギー』が貯蔵されるとコイルの端子電圧は恰も回路から切り離されて、線路側には接続されていないと同じ状態になる。コイルには内部空間に『エネルギー』だけが貯蔵されたことになる。厳密にはコイルの抵抗分があるからその分の電圧は残る筈ではあるが。

指数関数の累乗の次元は『無次元』でなければならない。時間 t[s] に対して時定数が rC[(HF)^1/2^]  =L/r[(HF)^1/2^] =[s] となっているから理に適っていることになる。

(*)この指数関数式は無限の時間でも論理的に零には成らない矛盾を抱えているが、その辺は数学的に曖昧でも良いとなるのだろうか。文末に指数関数の図を示す。

(3)貯蔵エネルギー計測法。

コンデンサとコイルの貯蔵エネルギーの時間変化は(4)、(5)式となる。両方とも同じ式で表される。ここでさて、線路の電圧をどのように計測するかとなる。コンデンサ内の様子を外部から伺い知ることはなかなか出来ない。コンデンサの電界と言う状態を知る方法が無いから。それに対して、コイルの中の状態は運良く、磁気と言う誠に都合の良い自然界の贈り物がある。それはコンパスや磁石と言う身近な電磁気現象の具現像として自然世界の顔を示してくれている。アンペアの法則やファラディーの法則あるいはレンツの法則等あらゆる電気現象を外部から観測する手段として活用されているのが「磁気現象」である。何か空間の秘めた「力」を磁気が持っている。当然のこととしてコイルの秘めた空間の力を『測定法』に活用することになる。自然世界の現象を探る科学技術の始まりである。19世紀に『電圧計』「電流計」が開発された。もちろん『電圧』はボルタの電池や熱現象を利用した電池などからその安定した『電圧』を開発利用してきた訳であろう。まだ当初は『電荷』概念は明確ではなかっただろうと考えたい。

(4)『電荷』と『電子』と『電圧』の間に横たわる現代物理学理論に基づく論理性の不可解。

電気回路論で、電線路の『電圧』をどのように解釈するだろうか。プラス端子とマイナス端子の間の空間に生じる『電圧』の原因を何に求めるか?プラス側には『正の電荷』、マイナス側には『負の電荷』が分布してと解説が始まるだろう。そこに思考停止の現代物理学理論が在るのではないか?『正の電荷』と言うその正体をどのように認識するのだろうか。簡単に『正の電荷』がプラス側の電線に雀が止まるように集まるのだろうか。どんな理論によって『正の電荷』だけが一方の電線に集まるのか。みんなが電気現象の基本法則と崇める「クーロンの法則」では、同じ『電荷』は反発し合うと大原則を学習して居るにも拘らず、無意識に所が変れば同一電荷同士が集合体となって結び付く。金属電線の中に『プラスの電荷』とはその正体はまさか『陽子』とならないだろうから『電子』の抜け殻の『+金属イオン』だろうか。図に示したように『+金属イオン』は銅線なら銅イオンしかない。『+金属イオン』を置き去りにして、その『電子』はいつの間に隠れて逃げ去ったことになるのだろうか不思議だ。科学理論は論理性がその身上の筈だ。一方反対のマイナス側の電線にはマイナス電荷の象徴の『電子』が集合すると解説されるだろう?図のように『電子』の密集状態が出来るとなろう。それでプラスとマイナスの電線路空間図が完成して、『電圧』の科学的理解ができるとなり、万々歳となって終わるのか?そこへ『電圧計』を繋ぐとどうなるかを考えれば、思考停止で終われないだろう。そこに不可解と言う意味が追加される。まず、乾電池に電線を繋いで配線すれば、それだけで電線間に電圧が掛かる。プラスの電線の銅金属からどのようにして『電子』を引き剥がすのだろうか?プラス側の銅線には電線内に電界などできない筈だ。電界もないのに銅金属から『電子』を引き剥がす論理的根拠が欲しい。その辺の高度な専門性は大学院などの物理学科の博士課程などで高等教育を受けた専門家やその指導者が答えるべき内容であろう。余りにも専門性のない素人の疑問では答えるに沽券(コケン)に関わる話となろうか。乾電池から『エネルギー』をランプに送る。その時『電子』が電池のマイナス側から流れ出し、ランプを通って電池のプラス側に戻る。どれ程の『電子』が集団高密度で『電子』の密集分布電線の中へと流れて行くのだろうか。流れ出す時点で、『負電荷』量が増加しても、線路『電圧』に影響を及ぼさないで済むのだろうか。さらに、ランプで『電子』はどのようにフィラメントの抵抗体で光を放射する物理学理論を展開して、電池のプラス側に戻り、『電子』の面目即ち電池から『エネルギー』を伝送する役割を果たすのだろうか。『電子』がただ電池の負極から流れ出て、電池のプラス側に流れ込むだけの『電子』の役目で、電磁気学という学問の科学理論の論理性が唱えられるというのだろうか。とてもその論理性が見えない科学理論に思えるのだが、皆さんはそれで安心できるのか?

(5)コイルの貯蔵エネルギーの磁気特性の活用法と『電圧』計測。(2)式によってコイルのエネルギーW[J]とすれば、図のように線路電圧によってコイルのエネルギーから電圧を測定できよう。そのコイルのエネルギーをどのように計測に活用するかとなる。

簡略計測法。最も単純にエネルギー量W[J] が有るか無いかは図のようにコンパスの振れで分かる。しかし、これでは計測には成らない。

可動コイル型計器が直流回路には使われる。貯蔵エネルギー保有のコイルを磁石の間に配置すると、コイルはW[J]の平方に依った回転角度を示す。測定器の概要は図のようになる。

むすび

電線路の直流電圧を計る『電圧計』がどのように、何を計っているかを示した。この測定法で、直流電圧を電線路の『電荷』分布で解釈する論法の矛盾を論じた心算だ。このコイル内に『空間エネルギー』がコイルの巻き線に沿って軸性の回転流として貯蔵されている。その回転方向は丁度『電子』が流れるという電子論のその向きであり、『電流』の逆向きである。この電圧計の測定量の意味を知った上でも、もし『電荷』分布が電線路電圧を決めると解釈するなら、それが現代物理学理論の『パラダイム』という事であろう。更に一言付け加えておく。コイルの貯蔵エネルギー W を抵抗r による『電流』で計算して式を導出した。しかし実際の物理現象は電線の負側を『エネルギー』がコイルの端子電圧の時間積分に関係した過程を経て、コイルに入射するのである。しかし、その状況を『エネルギー』の様態として観測することはできない。『エネルギー』が実在するにも拘らず、その『エネルギー』の姿を眼前の空間に見る事が出来ないという、自然世界の掟によって支配されているとしか考えようがない。科学理論は実験的にその値を検証可能でなければならない人の決めた矢張り掟と言うべきものに縛られている。そこに現代物理学理論が認識不可能な空間の『エネルギー』である物の意味に在るのだろう。どんな方法でも電線路の空間に在る『エネルギー』の分布を観測することは残念ながら出来ない。それほど空間に在る『エネルギー』は神秘的な物理量である。

指数関数

電圧と電流の正体 (2013/5/16)

『Electrons』の紋所と科学理論

はじめに お読み頂くには恥ずかしいような低次元の科学論である。何処かに落ちこぼれていたモノを繋ぎ合わせたお伽噺とお笑いください。実は、電気回路の計測器で、電圧計と電流計があり、その意味を理解することがとても良い電気現象の解釈例題になるかと思った。その測定回路はコイルの内部空間の自然現象(『空間エネルギー流』)を巧みに利用した、優れた科学技術の結晶なのだ。その測定器の過去の記事を考えながら、纏めようとして、躓いたのが『electrons』と言う「お方」の姿の不可解さであった。何方かが明確な『electrons』の空間像をお示しいただければ幸いと思ったのが以下の記事の切っ掛けです。後から付け足しの前書き。

一本の銅線があった。今でも、その中を『電子』というとても不思議な「お方」が通っているとお偉い方々が仰っている。みんながその通りと、それを信じて疑うこともない。水戸のお殿様のお話、TVドラマに「この紋所が眼に入らぬか!」がある。そう言われれば、平身低頭で御もっとも、御尤もとなる。
 そんな「お方」に肘鉄砲を食らわすように、撥ね除けたら世間から爪弾きされるは必定だ。
 その「お方」は不思議なお供を連れている。一本や二本では表現できない、頭も尾もない閉塞環の『磁束』と言うリング坊主(div B = 0) を連れている。その磁束はどれ程の大勢なのか定かでないが、護衛役よろしく、必ずどの程度かの、付かず離れずの間を取って侍るかのように、兎に角どこにでもお付きになっているようだ。そんな『電子』と『磁束』の関係について、その論理性を考えてみたい。『電流』は流れていないで、『電子』が電気回路を流れると解釈する事が最近の科学理論の常識と見做す風潮にあるようだから。

『electrons』と『磁束』の因果関係?

銅線のコイルに電流が流れるという。本当は『electrons』がその金属の導線の中を通っているのに、『electrons』でなく電流が逆向きに流れると勘違いして決めてしまった。実際は図のように『electrons』が流れているのだと。その『electrons』が流れると磁束がその電線の周りに発生する。『electrons』の電気回路における役割は何だろうか。『electrons』は負の『電荷』と『質量』を兼ね備え持った不思議な「お方」だ。なかなか凡人には、その負の『電荷』と言う具備条件の意味を理解しようと努力してみても、未だに腑に落ちない。矢張り素直に言われる通り御尤もと腹に収めれば、爪弾きされずに済んだのかも知れない。磁束と言うリング坊主は『electrons』のどの様な袖の下から繰り出す代物かと悩んでしまう。ある所には、『電荷』も『質量』も10桁のとても厳密性のある物理的権威を持って御達しが成されている。それを誰も本当ですかと疑うような非難はできない。今日も、ダッシュボードに励磁電流とは (2019/4/14) とご覧いただく記事が載っている。

『磁束』は『electrons』のどの様な機能によって創り出されるのだろうか。『電荷』は『磁束』も身に纏っているのだろうか。まさか『electron』の具備条件の『質量』は『磁束』の発生に関係ないだろう。『電荷』のクーロン[C]と言う物理単位に『磁束』のウエーバー[Wb]と言う物理単位が隠されているのだろうか。そんな付帯条件が『電子』に加味されているとはあまり聞いたことがない。御専門の方々がおられる筈だから、凡人にも分かるように御解説いただければ嬉しく、感謝申し上げたい。『electrons』は遠く離れた空間にも『磁束』を張り巡らす超級の能力をお持ちのように思える。普通は『電流』が『磁束』を作り出すとなっているのだが、『電流』は実際には流れて居なくて、『electrons』が電線の中に隠れて流れていることになっているから、その『electrons』の『磁束』発生の仕組みを皆さんのご理解成される程度に少しは分かりたい。『electrons』はどの程度の距離までその能力を発揮するのかとても興味を覚える。

空間を飛ぶ『electrons』も『磁束』を周りに纏いながら速度を上げるのだろうか。『electrons』の持つ『電荷』が原因でないとしたら、他の何が『磁束』発生の原因となるのだろうか。とこのような疑問を膨らませると益々『electrons』や『電荷』のお姿が、その実在性が信じられなくなるのである。有名な「アンペアの法則」による『磁束』発生の物理学の原理が本当かと疑いの深みにはまってしまったのが、『静電界は磁界を伴う』の『電荷』否定の実験の基になった。新世界への扉 コンデンサの磁界 (2011/2/20) 。

勝手乍ら以下に『静電界は磁界を伴う』-この実験事実に基づく電磁界の本質―と言う過去の発表記事の前書きを載せたい。

1.まえがき 現代物理学の基本概念に電磁界理論がある。その電磁界解析に欠かせないのがマックスウエル電磁場方程式である。しかし、マックスウエル電磁場方程式には時間的に変動しない電磁界いわゆる静電磁界に対してはエネルギー伝播の概念は含まれていない。この解釈から「電荷も電流も時間的に不変である限り電気と磁気とは別々の現象である。」(1)という当然ともいえる結論が得られる。しかし、マックスウエル電磁場方程式をエネルギー伝播と言う観点から考察したとき、筆者は「電界あるいは磁界のみが単独に存在するような場は有り得ない。」と言う結論に到達せざるを得ない。

2.空間瞬時電磁界ベクトル解析式の導出 

がその部分である。それはコンデンサ内の『エネルギー』を実験的に、磁気コンパスで測った内容だ。

まとめ

計測器と『空間エネルギー』。『空間エネルギー』の貯蔵空間の一つがコイルである。その空間の『エネルギー』の織り成す磁気的と解釈する自然現象の技術利用が『電圧計』『電流計』なのである。

鋏の磁気?

はじめに

急に気付いた、今まで珍しい現象が有るものだ位にしか思わないでいたことを。見ても気付かない事が有るという、その意味は自分の意識の有り様を理解し、考えるに充分な価値のあることだ。過去の電気工学論で、絶対的実在量と確信していた電流(電線金属内を負電荷の電子が逆向きに流れるという科学論の電流。そんな電荷が導体内など流れる訳がなく、電線路空間内をエネルギーが流れる現象を電気技術論として捉える概念として構築したものが電流計で計測する電流技術概念なのだ。)が自然世界に存在する物理量でなかったと気付いたことから見ても、何も不思議な事でなく日常的に有り触れた人間の意識の姿であったかも知れないと気付いた。物理学理論の根源的「原子像」も原子核の周りを電子が周回しているという科学的、社会的常識の標準理論で世界が支配されている。誰もその「原子構造」を疑いもしない。それを理解できない原子像と否定するのは筆者が常識外れの素人か、偽科学論者として排除されるかも知れないが。『電荷』を否定した筆者には、原子構造論を疑う事は至極当たり前の自然科学論の心算で在る。そうであっても、何年先、何十年先になって皆さんが気付くかと考えれば、それも気付きの人の意識の問題として不思議な事でないのかも知れない。今回は高が鋏の磁気現象でしかないが、とても大事な意味が含まれている。

それが右の砂鉄模様である。コンパスで確認した結果が写真に示した磁極N Sである。今回改めて気付いたことは鋏中央部が何故磁極 N になるのかという事である。磁気はマグネットのように、磁性材料の両端に在るものだ。金属の真ん中に磁極がある等と言う磁界はあり得ない。直ぐにそんな訳が無いと気付いて当然だ。しかしそのことに気付かないで過ごしてきた。今回の気付きの、その切っ掛けとなった事に、『ハルバッハ配列』の磁気現象の存在を知った事があるかも知れない。この鋏の磁極 N はどのようなエネルギー流によって生まれるのかという疑問に気付いた。磁極を磁束描像で認識することには論理的な説得力に成らない基本認識からの疑問である。この写真に示した砂鉄模様は、今までの物理学理論への認識を新たな捉え方に切り替えなければならない実験的証明の意味を示している。鋏が何故磁気を帯びるのか?ほとんどの鋏をコンパスで調べれば、何等かの磁気を帯びた結果を示すはずだ。そこに隠された意味が有る。その意味を解き明かしたい。

磁場とは何か?-物理学の命題– (2016/03/29) で鋏に磁気の極性が生まれる事を取り上げた。何故鋏に磁極 S-N-S の配列が生まれるのか?磁極は『軸性エネルギー回転流』に依る物理的現象である。磁束も自然界には存在しないもので、科学技術理論・電気磁気学理論の構築に有効な概念として仮想的に創作した物理概念である。ファラディーの法則として電磁気現象を解釈する極めて有効な概念が磁束量である。磁石のように離れた物同士の間に働く力を、解釈するにはその空間に変化をもたらす何かが存在すると考えざるを得ない。その創作概念が磁束である。しかし、もし磁束があるとしたら、その磁束の何が『力』の基として空間で機能すると考えるのか。磁束が空間で太くなるとか、本数が増えるとか、力が強くなるにはその磁束にどのような空間の状況の変化を生むのかを説明しなければならない筈だ。しかもどんな磁束の式で表現されるのかを。磁気のクーロン力には磁束がない。それは距離の長さが変数である。磁界の原則を説明したdiv B = 0 は空間に磁束を発生する基の磁荷 m[Wb] は存在しないことを説明した式である。理解して欲しいことは、空間に『エネルギー』が実在するという事である。『磁束』と『エネルギー』との関係である。光は『エネルギー』である。光を観ようとしてもその姿は見えない。空間には『エネルギー』が、その代表として「光」があるが、それを見る事はできない。物の姿は「光」によって見る事はできるが、「光」を見る事はできない。電気コイルは『エネルギー』をその空間に貯蔵、保持すると解釈するが、その『エネルギー』があるとは解釈しないで、『磁束』で代用して解釈しているという事ではないのか。空間の電磁場を電界や磁界で解釈するとき、その空間の『エネルギー』を意識しているのだろうか。結局磁界や『磁束』もその空間の『エネルギー』の代用概念として使っているのじゃないか。電池は電気の『エネルギー』の貯蔵器だ。電池が何を貯えるものと考えるのか。『電子』を貯えるものではない。電子など『エネルギー』じゃない。電子が負荷を流れたからと言って、負荷がどのように『エネルギー』を使うと言えるのか。電子は『エネルギー』を背負って移動する訳ではなかろう。電池の『エネルギー』をどうして意識して解釈しないのか。電線で囲まれた空間を流れる電気の『エネルギー』を何故考えないのか。電磁気現象の本質はすべて空間の『エネルギー』の現象なのだ。目に見えない『エネルギー』や『光エネルギー』の空間場なのだ。

解析結果

磁極とエネルギー流 鋏の腹に当たる中心部が磁極Nである。鋏の鉄金属の中心がN極になる訳を磁束では説明不可能であろう。図解のように、丁度二つの磁石が N 極で向き合った磁気結合の構造をなしている。結局その結合がN極周りの図解のような、鋏のどの方向から調べても全ての面で軸性エネルギー回転流の磁極 N の指向性を示す。腹部のN極の鋏のどの方向でもコンパスを近付けると、そのエネルギー流がコンパスのS極のエネルギー流と同じ流れとなる。そのエネルギー流の合成分布が磁極の向きを揃える力を生む。鋏のN極のエネルギー流とコンパスの磁極 S のエネルギー回転流(その密度流ベクトル S [J/㎡s])に直交した方向に、二つの磁極の間での近接作用力

f = rot (S/v) [N/㎥]

が発生する。磁極周辺空間内を通して金属同士(コンパスと鋏)の間に作用力が生じることになる。

むすび

何故鋏が磁気を帯びるか?鋏の使いの機能、即ち2枚の刃を擦り合わせる事によって摩擦のエネルギーが原因かと考えた。しかし、その点の確認はできなかった。感覚的には、製造加工時の加圧ネルギーが原因かとも思える。今のところ不確かではある。

他の鋏でもその磁気分布を調べた。鋏によって、その模様も異なる。左上はその例だ。磁極が端に在る訳でもないことを示す。

 

 

 

電流と磁気と空間の哲学

哲学とは(2020/02/23)。「明解 国語辞典 改訂版 金田一京助監修 (三省堂)昭和29年4月5日。これは高校1年生の時から、今でも大切に使っている大事な辞書だ。そこに哲学:あらゆる仮定を排して根本原理を扱う学。とある。

電流とは何か?『電荷』とは何か?電子とは何か?磁気とは何か?その空間事象は如何なるものと解釈すべきか?それは自然科学の最も根源的即ち哲学的課題だ。電気工学理論では自然の真相は説明できないのだ。電子は流れず (2019/06/06) 。

科学への不信。 最近こんな言葉が有るようだ。誠に我ながら情けない。初めは電気工学の勉学の役に立てればとの思いもあって、己の認識を確認しながら時を重ねてきた。日本物理学会に参画させていただき、日頃の思いも発表させて頂いた。しかし辿り着いてみたら、そこには初めの思いと異なる結果に次々と遭遇し、己自身を題材にして知らず知らずに「哲学」の深みにはまってしまったかも知れない。何か深く考究を積み重ねているうちに、科学への不信などと言う風潮を生み出すような結果になってしまったのかと申し訳ない思いもする。筆者本人が信じられない程、物理学理論の矛盾の多さに困惑している。それも電気回路現象の本質が見えた結果としての結末でもあった。実は今ある磁場の意味を考えて、新しい磁気現象・マグネット磁場の記事を書き始めた。しかしどうしても、電気磁気学理論の根本法則である「アンペアの法則」についてもう一度その根本原理の意味をかみ砕いで自身で整理しておこうと思った。科学への真の信頼を取り戻すためにも。

アンペアの法則と磁気の概念

図1.直線電流と磁界 アンペアの法則を直線電流 I[A] によって表現してみた。電流ベクトルを直交座標 r = xi+yj+zk  で表現する。単位ベクトルをそれぞれ ij および k とした。p 点の座標 r の方向単位ベクトルは r/r となる。無限長直線電流による電流周辺空間に磁場が生じる現象を数式によって評価する基本概念として、アンペアの法則を捉えて良かろう。実際の技術的認識には極めて理解しやすい表現の法則である。その現象の物理的意味を考えるとき、何故電流の位置から離れた空間に磁界が発生するのかと言う疑問が浮かぶ。なお、電流は少なくとも往復2本の電線で囲まれた空間回路でなければ、電流概念も成り立たないことを付け加えておく。実はまたこの電流と磁界のことを考えると昔を思い起こす。昭和61年春のこと、高専の電気科4年生の電気磁気学の授業中に、電流の磁界Hの空間磁場模様を rot H [A/㎡] = J の電流密度空間として計算例題に選んでいた。と記憶している。その時廊下の窓から黒板の板書内容を写真に撮って行かれた。それは中曽根臨教審の関係の出来事と後で理解した。

電流はアンペアで、電荷の時間微分の概念である。それはあくまでも『電荷』の流れが離れた空間点の『磁束』即ち磁束密度(μH[Wb/㎡])の発生原因となる意味である。「クーロン[C]」が「ウエーバー[Wb]」を発生することになる、基本的に「次元変換」の自然現象解釈となる。『電荷』が『磁束』の意味を内包しているとは定義されていない。『電荷』は、その存在空間に如何なる物理的空間像で表現されるのかと言う疑問に答えていない。それは空間に描く『磁束』の空間像と結び付く『電荷』概念像でなければならない筈だ。物理的な基本概念で、その理解し易い物理的空間像が明示されなければならない筈である。それが論理性を基礎にした科学論を展開する場合の基本姿勢でなければならない。離れた空間座標点に何故『電荷』の運動で、『磁束』が発生するのか?磁束密度B=μH[Wb/㎡] は電流が磁界を発生すれば、自動的にそれは磁束と解釈する。空間は透磁率μ[H/m]の場と捉えている。何故か?と疑問を抱くこと、その疑問を子供たちに伝えることが教育の姿勢であるべきだろう。そんなに自然のことが解っている事ばかりではない筈だ。殆ど分からないと考えるべきじゃなかろうか。

電子と磁気。 

図2.電子と磁気 いろいろの解説記事で磁束の発生に電子スピンと言う用語が現れる。磁束の発生原因に電子スピンを唱える方は、電子のスピンと言う現象をどの様な空間像で捉えておられるのか?電子がスピンすると何故磁気が生じるのか。電子は空間的にどのような像で捉えているのか?電子は『電荷』と『質量』を備えた基本粒子となっている。『電荷』がどのような速度 v[m/s] の運動をするとそれが『磁束』に変換されると言うのか。

マグネット磁気。

図3.マグネット。マグネットの機能は磁束で解釈される。磁束は磁力の機能を何故発揮できると考えるか。実際マグネットはとても強力な磁力を発揮する。

 

図4.磁束と磁力 F(φ)?

何故磁束が磁力の基になると考えるのか?磁気のクーロン力には磁束は関係していない。磁気のクーロン力に表現される変数の『磁荷』は存在しないことで一般に解釈されている。マグネットは近付けると磁力が増す。磁束が変化するのか?磁束が磁力の機能を発揮するとの解釈はどこにも示されていない。それなのに何故磁束が磁力の重要な基の如くに考えるのか。

磁力の原因は何か?

何故マグネットは磁気を保持したまま、その磁力が弱まらないのか?磁性材料の代表が鉄である。何故鉄が強磁性体の特性を持っているのか。周期律表で、傍の銅は磁気特性を持っていない。原子構造の違いは電子の配列で解釈する。そんな違いが鉄と銅で生れる訳を、周回電子が発揮する程の物理的役割を持っていると考えられるだろうか?図2.の(2)鉄の磁気とは?で示したのは、鉄の電子スピンが磁束発生源だというような解説が有る。マグネットの磁気は本当に電子スピンによると解釈できるのだろうか。磁束が発生しても、何故その磁束が磁力を生じると考えるのか。昨年の記事 物理学理論と磁束 (2019/04/22) に重ねて、電子スピンを唱える方が、その具象像を御提示をされることを願い、求めて取り上げた。

『エネルギー』はどこにある。

図5.エネルギー流と磁力

マグネットや磁針の磁極 N 、Sの近傍空間にはエネルギーが流れている。そのエネルギーの回転流の方向は図5.の磁極間のようになる。この空間のエネルギー流の流速がどの様であるかは検証できない。空間のエネルギーは光速度に近いと考えるしかない。電線路の伝送エネルギー流からの推測である。そのエネルギー流が磁極NとS間で接近すると近接作用力として、周辺部に高密度の急勾配分布をきたす。磁力 f = rot (S/c) [N/㎥]はギャップ空間の周辺部単位体積当たりの力密度の解釈である。電気学会 電磁界理論研究会資料「資料番号 EMT-87-106」(1982) p.152 の(29)式である。

むすび

二つのマグネット間の砂鉄模様を観測すれば、ギャップを狭くするにつれ、砂鉄はマグネットの外周辺に集中し、マグネット中心部には砂鉄は無くなる。マグネットの磁力は周辺部のエネルギー流分布勾配の空間微分によって決まると解釈する。 電気磁気学の要-Axial energy flow- (2019/03/03) がある。また、コンパスと砂鉄の心 (2015/12/03) で砂鉄模様からエネルギー流を調べる意味を述べた。

帆掛船(2019年報告)

新しい子年を迎えて、今年が平和で、幸せな1年であったと次の年に渡れることを願います(2020/01/09)。

昨年も多くの自己問答を繰り返して、科学論の基礎概念として最後に残るものが『エネルギー』であるとの確信をさらに強くした。新たな不思議の発見のためにも、己を見つめるためにも昨年の記事をまとめておかなければならない。記事の標題の前に投稿の(月 /日 )を付けた。(2020/01/06) エネルギー像(物理学基礎論)と(2019/12/02) 燃料はエネルギーに非ず が参考になるかも知れません。

1.物理学的・化学的エネルギー

(1/5) 独楽の心 (2/7) 熱の物理 (4/22) 物理学理論と磁束 (4/29)  mc^2^から物理学を問う (5/21) 力の概念と電気物理 (6/14) エネルギーとは何か (6/29) エネルギー変換物語(炭火とエジソン電球) (9/14) 空間定数とエネルギー伝播現象 (11/13) 電池(エネルギー)の不思議 (11/17) 電気抵抗と物理特性 (11/19) 電池と電圧(エネルギーの基礎研究) (11/19) 電池と電圧(エネルギーの実験) (11/25) イオン化傾向とは? (12/20) 水の電気分解

2.電子・電荷とエネルギー

(5/26) 不可解な電荷 (6/6) 電子は流れず (7/6) 電子とエネルギーと質量 (7/28) 科学論と電荷 (10/23) 電荷と電圧の哲学 (11/20) サヨウナラ『電荷』 (11/27) 電荷方程式

3.光とエネルギー

(5/3) 光量子空間像(D線) (5/8) 光速度一定とは (11/2) 光と空間 (11/11) 軸性光量子像

4.電気回路とエネルギー

(3/3) 電気磁気学の要-Axial Energy Flow-  (3/17) 電気物理(コイル電圧) (3/21) 電気抵抗体の物理 (3/26) 電気物理(電圧時間積分とエネルギー) (4/3) 誘導エネルギーに観る技術と物理 (4/12) 変圧器の技術と物理 (7/16) 「高電圧」のエネルギー像 (8/11) 電圧・電流とエネルギーと時空 (8/23) 光エネルギーと速度と時空 (8/29) 分布定数回路と実験 (9/16) 電力p[J/s]の意味と解析法(1)意味 (10/1) これが電気回路の実相だ  (10/2) 電気回路のエネルギー問答 (10/6) 特性インピーダンスとエネルギー伝送特性 (10/31) 大学と基礎教育

5.電気工学と技術

(4/14) 励磁電流とは? (5/29) リサジュ―図形と技術 (9/22) 電流1[A]の物理的空間(インダクタンス算定式) (9/26) 静電容量算定式と理論 (10/14) 分布定数回路空間の世界

6.詩と科学と社会と文化

(2/3)負の科学技術と未来 (3/1)記事表示形式の違う訳は? (4/19) 月に立つは夢か (5/13)自然と科学理論の架け橋はいづこに  (5/18) 自然と科学理論の架け橋はいずこに (6/25) 津波前の急激な引き波―専門家に問う― (7/20) (8/2) 不思議とは (9/5) 『エネルギー』それが世界の根源 (9/7) 電流1[A]の論理性-考える理科教育への科学者の社会的責任- (10/28) Find more information here (11/24) 共謀罪は法の押しつけ (12/2) 燃料はエネルギーに非ず (12/25) 質量とMassの間に 

7.自然・日本の風景

(1/16) 地学ガイド 新潟の自然に感応して (4/25) 2019年の春  (5/10) 初夏の花 (5/18)蜘蛛の巣 (6/21) ダンゴ虫が何を? (7/4) 雨粒と波紋 (7/6) 生きる雨蛙 (8/3) 深山クワガタ (8/18)逃げ水現象の解剖 (8/28)実生の水楢 (9/4)岩ヒバ (10/20) 桔梗 季節に戻る (11/15) 秋の色 (12/3)霰の中に咲くサツキ

サヨウナラ『電荷』

(2019/11/27)追記。実験的検証法の電圧測定について。電圧の測定に普通の電圧計では巧くゆかない。一般に測定は必ず測定対象からエネルギーを取り込む。どのようにエネルギー量を失わずに測定するかの技術的工夫が必要だ。静電容量の小さいコンデンサで、電圧値が低ければ、実験の精度は得難いかも知れない。測定器の入力インピーダンスの大きなものが欲しい。あるいは減衰特性の写真判定など。電圧測定について一言ご注意申し上げたい。

電気理論の根幹をなす概念は『電荷』である。また電力技術・工学では『エネルギー』が根幹をなす概念でもある。『電荷保存則』と『エネルギー保存則』がともに重要な基礎をなしている。電池電圧や分布定数回路現象を最近考えた。急に気付いたことがある。やはり『電荷保存則』は論理的に矛盾している。コンデンサとエネルギーと電荷 (2017/08/31) で満足に答えられなかった問題があった。高校生からの質問のようだった。電池と電圧(エネルギーの基礎研究) (2019/11/13) に答えが出ていた。

実験的検証法

 

回路はいたって簡単である。コンデンサが電圧V0に充電されている。同じコンデンサをスイッチでつなぐ。電圧は幾らになるか?結果は図のように、『エネルギー保存則』に従った電圧になる。だだ、スイッチオンでの追加コンデンサの充電時に突入電流(電流ではなくエネルギーの突入ではあるが)で、エネルギー消散が起きる分の誤差はあろう。小さなコイルでの突入制限を抑える方法はあろう。兎に角、『電荷保存則』は否定され、『エネルギー保存則』に軍配が上がる筈だ。実験確認が可能と考える。以上急な思い付きの報告。

 

特性インピーダンスとエネルギー伝送特性

はじめに(すでに公開した心算でいた。8月末の書き出し記事)
直流回路ではインピーダンスという捉え方をしないのが一般的だ。ほとんどオームの法則で、抵抗回路として取り扱う。しかし考えてみれば、電気回路は直流用と交流用と違う回路を使う訳ではない。電気回路はすべて、分布定数回路なのである。一般に、直流回路解析でインピーダンスは使わない。しかし乍ら電線路の構造は全く同じである。二本の電線を張ればそれは必ずコンデンサとコイルの機能を持った電線路である。電気工学としての直流回路の取り扱いでは、インピーダンスなど必要ないだろう。だが、電磁気現象として考えるとき、電気工学ではなく物理学としての回路現象が大切なはずである。負荷が変化したときのエネルギー伝送特性はどのような意味で理解すべきか。それは必ずエネルギーが分布定数回路の中を伝播する現象となる。何がその伝送特性を決めるかが物理学の問題になる。今、「電気回路のエネルギー問答」の記事を書いている。その中で電力の意味で壁に突き当たっている。時間軸上に描く電力波形p[W] のエネルギー時間微分値という瞬時値とはどの様な物理的意味を持つものかと考えれば、理解に窮してしまう。エネルギーの電線路伝送問題の筈であるからと、電力の意味の思案の途中に居る。その中での一つの問題として、直流も基本的にはエネルギーの伝送問題の筈と思い、直流回路の電線路の分布定数回路としての特性インピーダンス問題を取り上げようと思った。(2019/09/19)この記事は8月末に「直流回路のエネルギー伝送特性」として書き始めた。しかし書き進む内に特性インピーダンスの算定の話に変わってしまった。その特性インピーダンスは空間の電波や光の伝送特性初め、電力送電線路や超高周波伝送路に共通した物理的意味を持っていると考えれば、そのすべてに統一した特性としてとらえるべきと考えるに至った。そこで表題を改めて、特性インピーダンスに絞ろうと考えた。この特性インピーダンスに関する記事に、既に特性インピーダンスから見る空間の電気特性という記事があった。その時点より、統一的に電気現象を捉えた筈である。

エネルギーの電線路空間伝送

電気エネルギーは決して『電荷』によって運ばれる物理量ではない。『電荷』を具備するという電子や陽子が電線路導体内を流れ伝わると言われても、そこには『エネルギー』を運ぶ論理は観えない。『電荷』は回路を往復周回する論理で理解されるから、行きと帰りで『エネルギー』の運び手としての役割を果しえない。『エネルギー』は電線路内の空間を伝送される、即ちそれ自身が実在する物理量として空間を伝送すると解釈しなければ、物理学理論としての論理性は観えない筈だ。『エネルギー』は他の代替物理概念量によって伝送され得るものではない。『エネルギー』自身が空間を光と同じく伝播するものである。そこには光が空間エネルギーの分布波であるという基本認識がなければ理解できない壁となろう。直流電気現象も、電線路の分布定数回路の空間を伝送するエネルギー伝送現象と理解しなければならない。電子などが流れる現象ではない。超高周波のマイクロ波通信だけが分布定数回路の伝送現象ではなく、直流も全く同じく、その伝送は分布定数回路伝送現象なのである。

先に記事光エネルギーと速度と時空で取り上げた右のエネルギー伝播の図がまさしく直流回路のエネルギー伝送の話になっていた。この分布定数回路で、負荷抵抗が特性インピーダンスと同じ値の場合が負荷端でのエネルギー反射現象が起こらない伝送現象になる。ある払い下げの通信装置の発振回路部を利用して、筆者が作成して生徒実験として取り入れた分布定数回路の報告記事があった(何故かこの部分が印刷から除かれるので書き換えた)。それが 分布定数回路と実験 である。そこに超高周波であるが、分布定数回路のエネルギー伝送の意味を理解するに参考となる実験データが載っていた。その負荷抵抗が特性インピーダンスの場合(第8図の特性インピーダンスに等しい負荷抵抗が500Ωの場合がそれである。)の定在波測定結果で、ほぼ一定値になっていることにその意味が示されている。それは負荷端でのエネルギーの反射がない伝送形態である。このエネルギーの反射現象で、驚くべき実測結果が有るといわれている。それは送電線路の開閉サージの電圧が定格電圧の7倍まで上昇した異常現象が起きたと。それは線路絶縁対策としては大問題である。送電端と無負荷受電端間のエネルギー往復反射の結果による現象である。電線路とはそのように、如何にも分布定数回路としてのエネルギー伝送に伴う複雑な特性を示す回路だ。単純な電線路ではない筈だ。少し脇道にそれたが、電線路は物理的なエネルギー伝送現象の空間であることを先ず認識して置かなければならない。

電線路と特性インピーダンス 分布定数回路と実験 の記事の線路定数を例に、特性インピーダンス500Ωの場合の分布静電容量C[F/m]と分布インダクタンスL[H/m]の定数値を算定してみよう。上の分布定数回路と実験のページ -123-に

Zo=(276/√εs)log(2D/d)=500[Ω] (2)

なる式がある。この式は、参考書の 新版 無線工学 Ⅰ 伝送編 宇田新太郎著 (丸善)p.95 に(4.6)式として載っている。この式の算出法が理解できないでいる。

そこで、平行往復導線の特性インピーダンスZoの算定法はどうするかを考えてみる。筆者は、電力工学での送配電線路の定数算定法を昔学習した。その教科書を紐解いてみれば、インダクタンスは線路電流による磁束鎖交数からの解釈であり、静電容量は電線路分布電荷がその理論の基をなしている。その理論的解釈で、実際の送電線路の回路定数・分布定数[mH/km,μF/km]が的確に算定されている現実の不思議をどう理解すべきか。

Fケーブル(屋内配線用)の特性インピーダンスの試算

上の算定式(2)式が高周波での特性値として極めて正確に思える。ちょっと寄り道をして、方向違いの商用周波数用屋内配線用として多用されるFケーブルの特性インピーダンスを算定してみよう。1.6mm銅線2本の平行ケーブル。絶縁厚0.8mmでD=3.2mm 、d=1.6mm とする。さらに、ビニル絶縁材の比誘電率εs=4.5とデータから選ぶ。そこで得られた特性インピーダンスはZo=78.3[Ω]程度と算定される。以上は一つの比較算定例とする。

特性インピーダンス算定式の係数、[276]がどのような根拠で得られたか?その訳が一つ解決した。送配電線路の教科書の中から糸口を探せた。そこで、まず特性インピーダンスの算出根拠を論じる前に、その手法の論理の妥当性を考えたい。それは最初にインダクタンスの算定手法について、電流 1[A] の物理的空間として、別に取り上げる必要があろうと考えた。インダクタンス算定式にまとめた。

同じく静電容量算定式についても纏めたい。静電容量算定式と理論にまとめた。

 

 

電気回路のエネルギー問答

はじめに(この記事は、早や一か月以上前の8月5日に書き始めた。今9月17日でまだ投稿できていない。次々と新たな課題が生まれる。その単体問題として幾つかまとめた。電圧・電流とエネルギーと時空 (2019/08/11)、光エネルギーと速度と時空 (2019/08/23)、電流1[A]の論理性‐考える理科教育への科学者の社会的責任‐ (2019/09/07)、空間定数とエネルギー伝播現象 (2019/09/14)。)

遥かなる呼び声がする。何度も関わってきた筈のことであるのに、未だに未練がましく電気回路に呼び止められているようだ。『瞬時電力』の物理的意味 (2018/03/15) に疑問を呈した。エネルギーの物理量を理解しているかと自問した。実験的検証の技術と人の自然認識の関係を自然と科学理論の架け橋はいずこに(2019/05/13) にも述べた。極めきれない概念量にエネルギーがある。

エネルギー量の単位 1[J] とは? その量は小さいが、世界を知る基本単位として大きな意味を含んでいる。それは1[g]の純水の温度を0.24[°C]だけ高めるに要するエネルギー量でしかない。

物理量のエネルギーは空間に実在する量である。

今まで、様々な電気回路の問題を取り上げて考えてきた。もう一度エネルギーの意味を電気回路の中でまとめておきたい。

単相交流回路のエネルギーから、最後は三相交流回路の「瞬時虚電力」の物理的意味をまとめたい。

〈問答1〉電源からのエネルギー送出量を決める要因は何か。

エネルギー流は如何に

電源が直流であろうが交流であろうが、その電源はエネルギーを供給する元である。電気回路論では電圧と電流という電気量で評価し、解釈する。しかし負荷で利用するのはエネルギー量である。図で、スイッチを直流側に投入すれば、伝送路の電圧は負荷まで主に電源電圧Esによって支配される。負荷までの電圧はどのように決まるのか。何がその電圧を決めるのか。

〈問答1-1〉無負荷線路の電圧 短い電線路を電源につないだ。つなぐ前は電線路には何の電気的意味もない。触れても何も感じられない。スイッチが投入されると、今度は電線に触ることは危険になる。何故だろうか。電線路にどのような電気現象が起きたのか。こんな愚問あるいは哲学問題は決して電気回路論では取り扱わない問答である。皆さんはどう答えますか?電源はエネルギーの供給源といいました。当然エネルギー以外ありません。それではどこにエネルギーをどのように送出するのでしょうか。金属の導線を繋いだのです。導線の中の金属原子結合空間でしょうか。決して『電荷』や電子では解釈困難のはずである。答えは電線路が握っているのでしょう。

〈問答1-2〉 電線路の物理的意味。

単相の2本の電線が張られれば、それは電気エネルギーを伝送する空間を規定する電気回路となる。金属導体が挟む空間は電気要素の静電容量という場となる。負荷があるかないかに関わりなく,エネルギー源の電源に繋がれた時点でコンデンサの機能を持つ。ただそのコンデンサに自動的にエネルギーが流れ込むことになる。流れる速度を規制するのが電気要素のインダクタンスである。それは自由空間を伝播する光のエネルギーの関係と基本的には同じ現象である。ただ、光のエネルギーが伝播するのに電線路はなくても、空間自体がエネルギーを伝送する真空誘電率と真空透磁率の伝送特性を備えているのである。電線路は金属導体で伝送空間が局所的に制限される点が異なる。そこに電圧の2乗の意味が働く。電圧・電流とエネルギーと時空 に答えを示した。

〈問答2〉 電気回路の電気量の波形を観測できる。その波形の物理的意味は何か。表現波形にも観測できる波形とできない波形がある。右に(問答2)観測波形の物理的意味。として回路と検出の図を示した。一般的には電圧と電流波形が普通の観測波形となろう。電圧と電流の積をとれば、電力の波形も観測できる。

 

【回路条件】具体的な回路条件で考えよう。

 

 

 

 

〈問答2-1〉電流波形の物理的意味 不可解な電流の物理学的概念について考える。電荷の時間微分 [C/s] を電流アンペア [A] と定義している。いくら不可解だといっても、オッシロスコープで実際に電流波形が観測できる。電圧波形 v と電流波形 i は図のように簡単に観測できる。ただし、図には電流 i を有効分 ia と無効分 ir に分けた波形も記した。電流波形 i は観測できるが、ia や ir は観測できない。ここでは電流 i についてその物理学的意味を考える。実際の観測は、電流も電流計のシャント抵抗と同じく回路の抵抗降下電圧を検出して、電流と解釈しているのだ。だから、本当に電流という電荷の時間微分値を計っている訳ではない。電線の中の電荷の挙動など観測できる訳ではない。電荷量[C(クーロン)]の時間微分[d/dt]値、電流[A=dC/dt]が流れるとはどの様な物理現象か?例えば、電線路の導線のある点に1[A]が流れるとは電荷がどのような状態と解釈するのですか?ここにも、「見えるもの(波形) 見えないもの(意味)」が隠されている。電流が電線の中を流れる電子の逆流等ととても難しい哲学的で抽象的な概念で解説するのが科学論の論理性に適っているとお考えですか。愚直に、科学論の言わんとする概念や内容を自分の心に共感して納得できるかどうかを追究する過程で、納得できない矛盾に突き当たれば、その矛盾を取り除くにいかなる道があるかを探るだけである。その結果が『電荷』には科学論の基礎概念の資格がないとの結論に達してしまった。だから『電流は流れず』などの表現を使ってきた。電気回路現象から否定した電荷概念が科学論全体にいかなる混乱を与えるか、計り知れない恐ろしさを抱く。考えれば、電流が電荷の何々という意味で理解できない訳で、エネルギーとの関係で捉えなければならないものだ。前の記事電圧・電流とエネルギと時空で示した 電流の2乗  i^2^[J/H] から、線路定数 μ[H/m] による電線路のエネルギー流 μi^2^ [J/m] の意味を捉えた科学技術量が電流だと解釈すればよい。

電流 i を有効電流 ia と無効電流 ir の2つの電流に分離して図に示した。それは次のようになる。

i=ia+ir= √2 ×10 sin(ωt-θ) , ia=11.31sin ωt , ir= -8.48cos ωt

ただし、θ=tan^-1^(12/16)=36.87 [°]=0.205π [rad.]で、力率 cosθ=0.8である。

<問答2-2> 電力波形の物理的意味。電線路の各部で、そこの電力は電圧と電流の積で解釈される。電力工学やその技術感覚では電力と言えば、何の躊躇もなく電圧と電流の積で p=vi [W=(J/s)] と捉えて理解する。

電力波形の意味 この電力とその波形の物理的意味は何かとあらためた考え直すと、よく分からないことに気付く。それは時間軸上に描かれる電力波形が,時刻のその瞬時におけるエネルギーの時間微分という物理的不明確な概念をどのように理解できるかという問題である。電圧と電流の積が電力ということが表現する意味は何か?ということだ。「積」の[×]と言う記号の意味は何か。巷の専門的記事の解説は如何にも当たり前のように電力の単位ワット[W]で納得しているようだ。恐らくすべての専門家が疑問にも思わないのだろう。その常識的基礎の電力の意味が分からないと言えば、専門家の中には入れないだろう。専門家とは共通の学術的基礎の基盤の上に立って論議のできる人たちから構成された職業的繋がりの集団であるから。しかし電力という単位の意味が筆者には理解できないのだ。ある時刻における、ある電線路の位置で、その点の電力という『エネルギーの時間微分値』とはどの様なエネルギー像で捉えればよいのか。[W]は[J/s]で、その電線路の位置の1秒間の値など決して電力波形で表現できる筈がない。時間軸上に表現すればそれはその瞬時の値で時間の長さはない筈だ。1マイクロセカンド[μs]の時間での微分値と言ってもそれは瞬時値ではない。しかしながら、誰もが上の図のように電力の波形 p を描いてその意味を解釈する。その波形の物理的意味が明確ではないにも拘らず。このような論法は、科学技術論の専門的仲間同士の論議にはならないのである。しかし時間軸上の瞬時値波形には決して時間での微分値概念は描けないのである。磁束での変圧器の鎖交磁束の論議と同じく専門的な話が進まないのだ。もともと電圧(磁束の時間微分)、電流(電荷の時間微分)も時間微分値の概念であるから、同じことではあるが。この先の論議が本当の自然現象の物理的意味を探る話になるはずだ。それは哲学道場での論議になる。所謂東洋的削ぎ落しの思考の場となる。物理学とは何かを問う話にもなろう。例によって JHFM 単位で考えれば、電力は次のように表現できる。

電圧[(J/F)^1/2^] × 電流[(J/H)^1/2^] = 電力[J/(HF)^1/2^]

この上の式が表す次元と電力の意味を理解しようと考えても、筆者は電圧と電流の積の物理的意味さえ捉えきれていないのではないか。理解できない、分からないあるいは不思議だと感じた時が、それが新しい理解の道の入り口になるのだ。疑問こそ宝玉、道標。疑問に思わなくなったら進歩は途絶える。書いている筆者自身が分かっている訳でなく、これから答えを探す旅。第一歩は、何が分からないのか探る、その道の入口を探すこと。とボーっと過ぎる時間の中で一つ見つけた。光の速度が空間定数で決まる訳を。それが時間の次元[s]が[√(HF)] と同じ意味である訳が見えた。光エネルギーと速度と時空 の記事とする。電力の意味はその後に託す。電力p[J/s]の意味と解析(1)意味 (2019/09/ 16) に回答の一部を示した。

むすび

この記事のはじめに挙げたように、電力の意味を尋ねて、途中でいくつかの問題に結果をまとめた。電力p[J/s]の意味と解析法(1)意味 にようやく一つの納得できる結論に到達した。次に具体的な負荷特性との関係をアドミッタンス解析法としてまとめて、電力の姿を自分が納得できるようにしたい。