カテゴリー別アーカイブ: 電気磁気学

特性インピーダンスとエネルギー伝送特性

はじめに(すでに公開した心算でいた。8月末の書き出し記事)
直流回路ではインピーダンスという捉え方をしないのが一般的だ。ほとんどオームの法則で、抵抗回路として取り扱う。しかし考えてみれば、電気回路は直流用と交流用と違う回路を使う訳ではない。電気回路はすべて、分布定数回路なのである。一般に、直流回路解析でインピーダンスは使わない。しかし乍ら電線路の構造は全く同じである。二本の電線を張ればそれは必ずコンデンサとコイルの機能を持った電線路である。電気工学としての直流回路の取り扱いでは、インピーダンスなど必要ないだろう。だが、電磁気現象として考えるとき、電気工学ではなく物理学としての回路現象が大切なはずである。負荷が変化したときのエネルギー伝送特性はどのような意味で理解すべきか。それは必ずエネルギーが分布定数回路の中を伝播する現象となる。何がその伝送特性を決めるかが物理学の問題になる。今、「電気回路のエネルギー問答」の記事を書いている。その中で電力の意味で壁に突き当たっている。時間軸上に描く電力波形p[W] のエネルギー時間微分値という瞬時値とはどの様な物理的意味を持つものかと考えれば、理解に窮してしまう。エネルギーの電線路伝送問題の筈であるからと、電力の意味の思案の途中に居る。その中での一つの問題として、直流も基本的にはエネルギーの伝送問題の筈と思い、直流回路の電線路の分布定数回路としての特性インピーダンス問題を取り上げようと思った。(2019/09/19)この記事は8月末に「直流回路のエネルギー伝送特性」として書き始めた。しかし書き進む内に特性インピーダンスの算定の話に変わってしまった。その特性インピーダンスは空間の電波や光の伝送特性初め、電力送電線路や超高周波伝送路に共通した物理的意味を持っていると考えれば、そのすべてに統一した特性としてとらえるべきと考えるに至った。そこで表題を改めて、特性インピーダンスに絞ろうと考えた。この特性インピーダンスに関する記事に、既に特性インピーダンスから見る空間の電気特性という記事があった。その時点より、統一的に電気現象を捉えた筈である。

エネルギーの電線路空間伝送

電気エネルギーは決して『電荷』によって運ばれる物理量ではない。『電荷』を具備するという電子や陽子が電線路導体内を流れ伝わると言われても、そこには『エネルギー』を運ぶ論理は観えない。『電荷』は回路を往復周回する論理で理解されるから、行きと帰りで『エネルギー』の運び手としての役割を果しえない。『エネルギー』は電線路内の空間を伝送される、即ちそれ自身が実在する物理量として空間を伝送すると解釈しなければ、物理学理論としての論理性は観えない筈だ。『エネルギー』は他の代替物理概念量によって伝送され得るものではない。『エネルギー』自身が空間を光と同じく伝播するものである。そこには光が空間エネルギーの分布波であるという基本認識がなければ理解できない壁となろう。直流電気現象も、電線路の分布定数回路の空間を伝送するエネルギー伝送現象と理解しなければならない。電子などが流れる現象ではない。超高周波のマイクロ波通信だけが分布定数回路の伝送現象ではなく、直流も全く同じく、その伝送は分布定数回路伝送現象なのである。

先に記事光エネルギーと速度と時空で取り上げた右のエネルギー伝播の図がまさしく直流回路のエネルギー伝送の話になっていた。この分布定数回路で、負荷抵抗が特性インピーダンスと同じ値の場合が負荷端でのエネルギー反射現象が起こらない伝送現象になる。古い生徒実験として取り入れた自作分布定数回路の報告記事があった。それが 分布定数回路と実験 である。そこに超高周波であるが、分布定数回路のエネルギー伝送の意味を理解するに参考となる実験データが載っていた。その負荷抵抗が特性インピーダンスの場合(第8図の特性インピーダンスに等しい負荷抵抗が500Ωの場合がそれである。)の定在波測定結果で、ほぼ一定値になっていることにその意味が示されている。それは負荷端でのエネルギーの反射がない伝送形態である。このエネルギーの反射現象で、驚くべき実測結果が有るといわれている。それは送電線路の開閉サージの電圧が定格電圧の7倍まで上昇した異常現象が起きたと。それは線路絶縁対策としては大問題である。送電端と無負荷受電端間のエネルギー往復反射の結果による現象である。電線路とはそのように、如何にも分布定数回路としてのエネルギー伝送に伴う複雑な特性を示す回路だ。単純な電線路ではない筈だ。少し脇道にそれたが、電線路は物理的なエネルギー伝送現象の空間であることを先ず認識して置かなければならない。

電線路と特性インピーダンス 分布定数回路と実験 の記事の線路定数を例に、特性インピーダンス500Ωの場合の分布静電容量C[F/m]と分布インダクタンスL[H/m]の定数値を算定してみよう。上の分布定数回路と実験のページ -123-に

Zo=(276/√εs)log(2D/d)=500[Ω] (2)

なる式がある。この式は、参考書の 新版 無線工学 Ⅰ 伝送編 宇田新太郎著 (丸善)p.95 に(4.6)式として載っている。この式の算出法が理解できないでいる。

そこで、平行往復導線の特性インピーダンスZoの算定法はどうするかを考えてみる。筆者は、電力工学での送配電線路の定数算定法を昔学習した。その教科書を紐解いてみれば、インダクタンスは線路電流による磁束鎖交数からの解釈であり、静電容量は電線路分布電荷がその理論の基をなしている。その理論的解釈で、実際の送電線路の回路定数・分布定数[mH/km,μF/km]が的確に算定されている現実の不思議をどう理解すべきか。

Fケーブル(屋内配線用)の特性インピーダンスの試算

上の算定式(2)式が高周波での特性値として極めて正確に思える。ちょっと寄り道をして、方向違いの商用周波数用屋内配線用として多用されるFケーブルの特性インピーダンスを算定してみよう。1.6mm銅線2本の平行ケーブル。絶縁厚0.8mmでD=3.2mm 、d=1.6mm とする。さらに、ビニル絶縁材の比誘電率εs=4.5とデータから選ぶ。そこで得られた特性インピーダンスはZo=78.3[Ω]程度と算定される。以上は一つの比較算定例とする。

特性インピーダンス算定式の係数、[276]がどのような根拠で得られたか?その訳が一つ解決した。送配電線路の教科書の中から糸口を探せた。そこで、まず特性インピーダンスの算出根拠を論じる前に、その手法の論理の妥当性を考えたい。それは最初にインダクタンスの算定手法について、電流 1[A] の物理的空間として、別に取り上げる必要があろうと考えた。インダクタンス算定式にまとめた。

同じく静電容量算定式についても纏めたい。静電容量算定式と理論にまとめた。

 

 

電気回路のエネルギー問答

はじめに(この記事は、早や一か月以上前の8月5日に書き始めた。今9月17日でまだ投稿できていない。次々と新たな課題が生まれる。その単体問題として幾つかまとめた。電圧・電流とエネルギーと時空 (2019/08/11)、光エネルギーと速度と時空 (2019/08/23)、電流1[A]の論理性‐考える理科教育への科学者の社会的責任‐ (2019/09/07)、空間定数とエネルギー伝播現象 (2019/09/14)。)

遥かなる呼び声がする。何度も関わってきた筈のことであるのに、未だに未練がましく電気回路に呼び止められているようだ。『瞬時電力』の物理的意味 (2018/03/15) に疑問を呈した。エネルギーの物理量を理解しているかと自問した。実験的検証の技術と人の自然認識の関係を自然と科学理論の架け橋はいずこに(2019/05/13) にも述べた。極めきれない概念量にエネルギーがある。

エネルギー量の単位 1[J] とは? その量は小さいが、世界を知る基本単位として大きな意味を含んでいる。それは1[g]の純水の温度を0.24[°C]だけ高めるに要するエネルギー量でしかない。

物理量のエネルギーは空間に実在する量である。

今まで、様々な電気回路の問題を取り上げて考えてきた。もう一度エネルギーの意味を電気回路の中でまとめておきたい。

単相交流回路のエネルギーから、最後は三相交流回路の「瞬時虚電力」の物理的意味をまとめたい。

〈問答1〉電源からのエネルギー送出量を決める要因は何か。

エネルギー流は如何に

電源が直流であろうが交流であろうが、その電源はエネルギーを供給する元である。電気回路論では電圧と電流という電気量で評価し、解釈する。しかし負荷で利用するのはエネルギー量である。図で、スイッチを直流側に投入すれば、伝送路の電圧は負荷まで主に電源電圧Esによって支配される。負荷までの電圧はどのように決まるのか。何がその電圧を決めるのか。

〈問答1-1〉無負荷線路の電圧 短い電線路を電源につないだ。つなぐ前は電線路には何の電気的意味もない。触れても何も感じられない。スイッチが投入されると、今度は電線に触ることは危険になる。何故だろうか。電線路にどのような電気現象が起きたのか。こんな愚問あるいは哲学問題は決して電気回路論では取り扱わない問答である。皆さんはどう答えますか?電源はエネルギーの供給源といいました。当然エネルギー以外ありません。それではどこにエネルギーをどのように送出するのでしょうか。金属の導線を繋いだのです。導線の中の金属原子結合空間でしょうか。決して『電荷』や電子では解釈困難のはずである。答えは電線路が握っているのでしょう。

〈問答1-2〉 電線路の物理的意味。

単相の2本の電線が張られれば、それは電気エネルギーを伝送する空間を規定する電気回路となる。金属導体が挟む空間は電気要素の静電容量という場となる。負荷があるかないかに関わりなく,エネルギー源の電源に繋がれた時点でコンデンサの機能を持つ。ただそのコンデンサに自動的にエネルギーが流れ込むことになる。流れる速度を規制するのが電気要素のインダクタンスである。それは自由空間を伝播する光のエネルギーの関係と基本的には同じ現象である。ただ、光のエネルギーが伝播するのに電線路はなくても、空間自体がエネルギーを伝送する真空誘電率と真空透磁率の伝送特性を備えているのである。電線路は金属導体で伝送空間が局所的に制限される点が異なる。そこに電圧の2乗の意味が働く。電圧・電流とエネルギーと時空 に答えを示した。

〈問答2〉 電気回路の電気量の波形を観測できる。その波形の物理的意味は何か。表現波形にも観測できる波形とできない波形がある。右に(問答2)観測波形の物理的意味。として回路と検出の図を示した。一般的には電圧と電流波形が普通の観測波形となろう。電圧と電流の積をとれば、電力の波形も観測できる。

 

【回路条件】具体的な回路条件で考えよう。

 

 

 

 

〈問答2-1〉電流波形の物理的意味 不可解な電流の物理学的概念について考える。電荷の時間微分 [C/s] を電流アンペア [A] と定義している。いくら不可解だといっても、オッシロスコープで実際に電流波形が観測できる。電圧波形 v と電流波形 i は図のように簡単に観測できる。ただし、図には電流 i を有効分 ia と無効分 ir に分けた波形も記した。電流波形 i は観測できるが、ia や ir は観測できない。ここでは電流 i についてその物理学的意味を考える。実際の観測は、電流も電流計のシャント抵抗と同じく回路の抵抗降下電圧を検出して、電流と解釈しているのだ。だから、本当に電流という電荷の時間微分値を計っている訳ではない。電線の中の電荷の挙動など観測できる訳ではない。電荷量[C(クーロン)]の時間微分[d/dt]値、電流[A=dC/dt]が流れるとはどの様な物理現象か?例えば、電線路の導線のある点に1[A]が流れるとは電荷がどのような状態と解釈するのですか?ここにも、「見えるもの(波形) 見えないもの(意味)」が隠されている。電流が電線の中を流れる電子の逆流等ととても難しい哲学的で抽象的な概念で解説するのが科学論の論理性に適っているとお考えですか。愚直に、科学論の言わんとする概念や内容を自分の心に共感して納得できるかどうかを追究する過程で、納得できない矛盾に突き当たれば、その矛盾を取り除くにいかなる道があるかを探るだけである。その結果が『電荷』には科学論の基礎概念の資格がないとの結論に達してしまった。だから『電流は流れず』などの表現を使ってきた。電気回路現象から否定した電荷概念が科学論全体にいかなる混乱を与えるか、計り知れない恐ろしさを抱く。考えれば、電流が電荷の何々という意味で理解できない訳で、エネルギーとの関係で捉えなければならないものだ。前の記事電圧・電流とエネルギと時空で示した 電流の2乗  i^2^[J/H] から、線路定数 μ[H/m] による電線路のエネルギー流 μi^2^ [J/m] の意味を捉えた科学技術量が電流だと解釈すればよい。

電流 i を有効電流 ia と無効電流 ir の2つの電流に分離して図に示した。それは次のようになる。

i=ia+ir= √2 ×10 sin(ωt-θ) , ia=11.31sin ωt , ir= -8.48cos ωt

ただし、θ=tan^-1^(12/16)=36.87 [°]=0.205π [rad.]で、力率 cosθ=0.8である。

<問答2-2> 電力波形の物理的意味。電線路の各部で、そこの電力は電圧と電流の積で解釈される。電力工学やその技術感覚では電力と言えば、何の躊躇もなく電圧と電流の積で p=vi [W=(J/s)] と捉えて理解する。

電力波形の意味 この電力とその波形の物理的意味は何かとあらためた考え直すと、よく分からないことに気付く。それは時間軸上に描かれる電力波形が,時刻のその瞬時におけるエネルギーの時間微分という物理的不明確な概念をどのように理解できるかという問題である。電圧と電流の積が電力ということが表現する意味は何か?ということだ。「積」の[×]と言う記号の意味は何か。巷の専門的記事の解説は如何にも当たり前のように電力の単位ワット[W]で納得しているようだ。恐らくすべての専門家が疑問にも思わないのだろう。その常識的基礎の電力の意味が分からないと言えば、専門家の中には入れないだろう。専門家とは共通の学術的基礎の基盤の上に立って論議のできる人たちから構成された職業的繋がりの集団であるから。しかし電力という単位の意味が筆者には理解できないのだ。ある時刻における、ある電線路の位置で、その点の電力という『エネルギーの時間微分値』とはどの様なエネルギー像で捉えればよいのか。[W]は[J/s]で、その電線路の位置の1秒間の値など決して電力波形で表現できる筈がない。時間軸上に表現すればそれはその瞬時の値で時間の長さはない筈だ。1マイクロセカンド[μs]の時間での微分値と言ってもそれは瞬時値ではない。しかしながら、誰もが上の図のように電力の波形 p を描いてその意味を解釈する。その波形の物理的意味が明確ではないにも拘らず。このような論法は、科学技術論の専門的仲間同士の論議にはならないのである。しかし時間軸上の瞬時値波形には決して時間での微分値概念は描けないのである。磁束での変圧器の鎖交磁束の論議と同じく専門的な話が進まないのだ。もともと電圧(磁束の時間微分)、電流(電荷の時間微分)も時間微分値の概念であるから、同じことではあるが。この先の論議が本当の自然現象の物理的意味を探る話になるはずだ。それは哲学道場での論議になる。所謂東洋的削ぎ落しの思考の場となる。物理学とは何かを問う話にもなろう。例によって JHFM 単位で考えれば、電力は次のように表現できる。

電圧[(J/F)^1/2^] × 電流[(J/H)^1/2^] = 電力[J/(HF)^1/2^]

この上の式が表す次元と電力の意味を理解しようと考えても、筆者は電圧と電流の積の物理的意味さえ捉えきれていないのではないか。理解できない、分からないあるいは不思議だと感じた時が、それが新しい理解の道の入り口になるのだ。疑問こそ宝玉、道標。疑問に思わなくなったら進歩は途絶える。書いている筆者自身が分かっている訳でなく、これから答えを探す旅。第一歩は、何が分からないのか探る、その道の入口を探すこと。とボーっと過ぎる時間の中で一つ見つけた。光の速度が空間定数で決まる訳を。それが時間の次元[s]が[√(HF)] と同じ意味である訳が見えた。光エネルギーと速度と時空 の記事とする。電力の意味はその後に託す。電力p[J/s]の意味と解析(1)意味 (2019/09/ 16) に回答の一部を示した。

むすび

この記事のはじめに挙げたように、電力の意味を尋ねて、途中でいくつかの問題に結果をまとめた。電力p[J/s]の意味と解析法(1)意味 にようやく一つの納得できる結論に到達した。次に具体的な負荷特性との関係をアドミッタンス解析法としてまとめて、電力の姿を自分が納得できるようにしたい。

 

電流1[A]の物理的空間  (インダクタンス算定式)

電気回路の構成要素はインダクタンスと静電容量そして抵抗である。その中で電流と直接関係するのがインダクタンスである。電線路の特性は特性インピーダンスが握っているといってもよかろう。その特性インピーダンスの算定式には電線路単位長当たりのインダクタンス[H/m]が欠かせない。平行導線路のインダクタンスL[H/m]の算定は電流概念がその拠り所となっている。そのインダクタンスの算定理論における電流1[A]の物理的概念がいかなる意味を持っているかを確認したい。基本的には電流によって、その周りの空間には磁束が発生するという電気理論が前提になっている。

インダクタンスの算定回路空間。

磁束鎖交数φa=LI[Wb] をインダクタンスL[H]と電流I[A]の積で定義する。電流の比例定数がインダクタンスL[H]である。

次元は電流が[(J/H)^1/2^=A]であるから、磁束量あるいは磁束鎖交数の単位[Wb]は次元で、[Wb=H(J/H)^1/2^=(HJ)^1//2^]となる。

さて、インダクタンスL[H]の算定は電流I[A]が流れている導線周りに発生する磁束量の計算によってなされる。図は平行導線路の場合で、導線aとbの往復線路である。まず、算定法では導線1本について計算される(文末の文献 p.93    5.3 インダクタンス 参照)。a導線の電流I[A]によってa導線の周りに発生する磁束を計算する。図1.に電線路単位長当たりのa導線の自己インダクタンスが示されている。その第1項の2分の1は導線内部電流による磁束計算量である。しかし実際は導線内部に電流など流れていない訳であるから、少なくともその項は無意味と考える。第2項は導線半径rと線路離隔距離Dによる自然対数である。その計算結果の訳は次の示す。

a導線からxの位置に、その電流I[A]によって生じる磁束は、その磁界Hx=I/2πx[A/m]にその空間の透磁率μo=4π×10^-7^[H/m]を掛けて、磁束密度Bx=μo×Hx[Wb/㎡]と算定される。電線表面rからDまで、単位長さ1[m]当たりの面積1×dx[㎡]で積分すると、 2I∫(1/x)dx 10^-7^[Wb/m] =2I×10^-7^ln(d/r) =LI [(HJ)^1/2^/m=Wb/m]と、自然対数式となる。

上の算定に関する質疑。

  1. b導体の電流は考慮しない。それは何故か?コイルの場合の鎖交磁束は全体の一周電流分で考える。
  2. 磁束は図のΦaのように導体aを周回していると考えるのか?コイルの場合は、コイルの外側には磁束はない筈だから。
  3. もし導体を磁束が周回していると考えるなら、物理学理論では、磁界Hx[A/m]の場には(1/2)μoHx^2^[J/㎥]のエネルギー密度がある筈。理論的には、そのエネルギーが導線の周り全体にある筈だ。しかし、そのエネルギー量はほとんど計算には意味を持たないことになっている。更に、そこに磁束の電流との鎖交数という意味にも特別論理性があるようには見えない。円周の長さ2πx[m]を計算の基に考慮しているが、実際の計算にはrからDまでの積分として周回の意味は特にないようだ。
  4. 電線内部磁束鎖交数による 2分の1は必要ないと考える。

以上の質疑があるが、算定式の第2項は実際の利用で、有効性を示す。さらに、平行2線式電線路の単位長当たりの自己インダクタンスL[H/m]は何故か導線1本当たりで計算する。その訳を次のように解釈した。以下の解釈は削除させていただきました。上の質疑1.のb導体の電流分を平行2線式電線路で考慮しない理由の解釈に、削除した記事が間違っていたかと考えた。

むすび

インダクタンス算定式(電線路単位長さ当たり)

L=0.4605log(2D/d) [mH/km]=0.4605×10^-6^log(2D/d)[H/m]

と得られる。ただし、d=2r であり、自然対数と常用対数の間に ln x =2.3026log x の関係がある。

このインダクタンス値ともう一つの静電容量算定式により、電線路の特性インピーダンスおよび伝播定数が決まる。その特性値により、高周波分布定数回路から、同軸ケーブル(この場合は少し考慮必要)および三相送電線路の特性まですべて統一的に決まる。

電流1[A]の空間の意味をインダクタンス算定式に関する観点から考察した。厳密な意味ではその電流概念の論理性が保証されているとは言い難い面がある。しかし技術的な算定式ではとてもよく実際の応用で適合している。科学技術と自然現象との関係の捉え方には慎重な解釈が必要と考える。

(参考文献) 電気学会大学講座 送電工学(改訂版) 電気学会 15版(昭和49年)

空間定数とエネルギー伝播現象

空間とエネルギ-伝播現象の関係を図にまとめてみました。

 

 

 

 

 

 

 

 

 

 

 

 

 

エネルギー伝播特性 光を含めすべてのエネルギーの伝播現象がその空間定数、透磁率μ[H/m]、誘電率ε[F/m]によって決まると考えてまとめた。細かな点では違いもあるかも知れないが,エネルギー流という物理的実体の流れを総合的に捉えれば、その伝播現象の基本的姿は図のようになろう。特に電気回路の具体的現象を考えると、回路が電線路導体で囲まれた空間内を流れるエネルギー流の現象と見えてくる。長距離送電線路の伝送方程式では、回路定数による分布定数回路としての捉え方が基本となっている。その中に特性インピーダンスZ=√(L/C)[Ω]と伝搬定数γ=ω√(LC) [rad/m] がある。この中で、伝搬定数にはω[rad/s] という角周波数が含まれている。それは定数に入れるべきでないと考え、伝播定数としてγ[s/m]の速度の逆数を定数にした。電気回路のエネルギー伝送現象を考えるにはこの伝播定数の方が分かりやすいと思う。それはエネルギー伝送現象について光エネルギーと速度と時空で、電力p[J/s]の意味と解析法の記事で明らかにした。この電気回路定数との関係を述べた。

むすび 科学技術はその広範な分野に分かれて、それぞれ独自な理論を構築しているように思える。そのため各分野を統合して考察する機会が失われているように思う。未来の科学には生活感覚から観る市民の理解できる易しい解釈・解説が求められる。そこに全体を統合した捉え方をするには、ますます科学全体に共通した矛盾の無い少数の基礎概念の提示が求められるはずだ。その市民科学への寄り添いに科学者の努力と責任が求められよう。そんな意味を込めて、真空空間の空間定数による光エネルギー伝播特性を基準にした、すべてに共通した捉え方の一端を提示した。光と電気エネルギーは同じ空間エネルギー分布波の伝播現象だという意味を。スマホの通信も電気回路も同じエネルギーの伝播現象であることを。

 

分布定数回路と実験

はじめに

遥か昔の報告記事がある。1964年(昭和39年、新潟地震6月と日本でのオリンピック10月があった年)から、工業高等学校での初めての担当科目が電子工学であった。電子工学を担当するように告げられていたので、大学を卒業するまでに、電子工学の基礎Ⅰ,Ⅱ W.G.ダウ 著 森田清他訳 (共立出版)を購入し、勉強して何とか間に合わせた。当時を思い出すと、真空管の空間電荷効果2分の3乗則について話したことを覚えている。まだ半導体の話は教科書ではそれほど扱われていなかったと思う。特に分かりにくい内容と思ったのが分布定数回路の現象であった。教えるにも自分がよく分からない。それで、回路を組んで分布定数回路実験を生徒実習に取り入れた。その内容を、「分布定数線路実習に対する一考察」として、新潟県工業教育紀要、第3号、昭和42年(1967)に投稿した。初めて書いた記事である。内容は実験データなどあまり他にはない資料で、貴重と思うので、ここに掲載させてもらう。今、直流回路のエネルギー伝送特性 を書いている中で、分布定数の話を載せる関係から、良い参考資料と思った。

この発振回路は、双3極管2B29を使った回路である。筆者の作れる回路でなく、ある事業所の払い下げ通信機を手に入れ、その心臓部である発振回路を使わせて頂いた。

 

 

 

 

発振回路の陽極部に、実験用分布定数回路を結合する部分を作った。図4.のように実習室の端から端まで平行分布定数線路を張った。

この分布定数の構造は屋内配線用の軟導線1.6mmΦを線間間隔52.2mmとして、特性インピーダンス500Ωとした。

 

 

 

定在波の電圧、電流測定装置を第5図及び第6図として示してある。新版 無線工学 Ⅰ(伝送編) 宇田新太郎著 (丸善) を全面的に参考にさせていただいた。測定原理はp.85.に示されてある。しかし具体的な実験に取り入れた回路方式についてはどの様な理解のもとで決めたかは今は覚えがない。

 

定在波測定内容と実験結果。色々の測定結果のデータが示してある。実際の実験結果であるから、その意味では貴重な資料となろう。

 

 

 

 

【Ⅶ】検討 実験結果に対する検討結果が記してある。専門的には幼稚なものかも知れないが、結構真剣に取り組んでいたと感心する。

 

 

 

 

 

検討の続き。

 

 

 

 

 

以上の6ページ。

むすび

実験では、発振周波数が160MHz程度であった。その中でとても興味ある経験をした。この分布定数線路に直管蛍光灯40Wを挿入した。蛍光灯の発光原理は水銀ガスの励起波長数千Åの筈である。160MHzで蛍光灯が発光するとは信じられない。「量子力学」とは何か?と疑問が浮かんだ。

昔、1980年割愛人事と言われて、長岡技術科学大学に転勤するつもりでいたが、その春4月辞令をいただいた時には辞令の「前職欄」が空欄であった。その意味が分かった時には、正規の職業に採用された事がなかった労働基本法から外れた道であったと理解した。大学には研究実績と研究能力がなければならず、筆者のような者はまだ未熟と解釈して我慢してきた。今も、新潟県から転勤した履歴はない。退職金は転勤したから支払ったと大学事務局から言われても、労働基準法に抵触しないかと理解できずに心配で身動きできずに、急に昔を思い出して。どう解釈しても、1939年12月01日生まれた翌年舞鶴鎮守府への戸籍転籍とその後の戦後の1949年4月戸籍戦後隠蔽処理(原戸籍抹消糊付け改竄)が根本原因であろう。年金証書の氏名がカタカナ表示など政府機関に氏名が無い。だから、私は偽物か などの事件となる。

電圧・電流とエネルギーと時空

今、電気回路のエネルギー問答 を書き始めた。その途中で、一つまとめておきたいと思った。その問答の中の一つの答えでもある。物理学理論では、エネルギーは主役ではなく、何か端役あるいは誘導量という捉え方で理解されているように思う。しかし、電気技術から見た場合、電気回路現象を考えると回路内を伝播するのは光と同じエネルギーしか見えない。それでは電圧とか電流という電気量は何を表現したものかと、そこに戻ってしまう。また物理学理論では、あまり重要視されていない空間概念がある。それが誘電率と透磁率である。世界を支配している物理量の代表が光エネルギーであるとの認識に立った時、その光速度を規定する原因がその伝播する空間特性にあると考えざるを得ない。

光速度=(透磁率×誘電率)^-1/2^ =  1/√(με) [m/s]

ただし、μ[H/m] 、ε[F/m] から、[(HF)^1/2^]=[s] である。

空間の誘電率は空間長1m当たりの静電容量[F]、空間の透磁率は空間長1m当たりの誘導値(インダクタンス)[H] で、その空間を伝播する光エネルギーの空間共鳴現象としての伝播特性を呈すると解釈する。光を世界基準の物理量と見做した時、その伝播する空間の長さと時間を規定する「時空」概念として時間[s]と長さ[m]の時空基準を光エネルギーと速度が決めていると見做せる。この何もない空間が電気回路のインダクタンスやコンデンサの回路定数の単位ヘンリー[H] やファラッド[F] との関係で解釈できることの中には、そこに物理量『エネルギー』という空間伝播実体である光の『エネルギー』が空間分布として存在するからと理解する必要がある。光には振動する実体はないのだ。観測技術としての評価概念が振動数である。

上の解釈で電気量を解釈したとき、

電圧の2乗、電流の2乗と次元

その2乗値の単位はエネルギー[J] との関係で図のように認識できる。

次の問答の記事の答えともなるが、電線路には回路特性として単位長さ当たりの静電容量と誘導インダクタンスを備えている。その電線路単位長当たりの静電容量をε[F/m]とすれば、その電線路には1m当たり εv^2^[J/m] のエネルギーが線路空間に存在するとなる(係数1/2は省いた)。このように考えた元に、例えば電流を取り上げて考えた時、アンペアの単位が[C/s]と言う電荷の時間微分値であるということである。電線路の電荷の時間微分とはどんな意味か分かりますか。電流計で測る点で、その電線内の電荷がどんな意味と捉えるのですか。電流波形で描く時間軸のある時刻の電流値とはその電線の中に電荷が時間的にどのように存在し、変化していると考えたら、その電流の意味を納得して理解できるのか?その辺の電流概念への疑問から、どう考えても電流概念棄却の結論にならざるを得なかった過去がある。1987年8月に決断した研究会資料:電気学会、電磁界理論研究会資料 EMT-87-106 である。その5.むすび に・・・電磁気学の基本概念である電荷や電流までも疑い、棄却さえしなければならなくなってしまった。云々と記した。

次に電流 i^2^[J/H] は線路定数の誘導量インダクタンス[H]との関係で、流れるエネルギー量に関係した捉え方ができないかと考えたが、今のところ答えに到達していない。(2019/08/19)追記。電線路にはその単位長さ当たりのインダクタンスという流れを制限する回路要素がある。μ[H/m]の分布定数があるとすれば、電線路の単位長さ当たりμi^2^[J/m]の流れる伝送エネルギーが分布していると考えることはできる。同じく負荷のインダクタンスL[H]とは当然の関係で、Li^2^[J] の貯蔵エネルギーとなる(1/2は省く)。

負荷抵抗R[Ω]の次元も[(H/F)^1/2^]である。抵抗も空間特性は誘電容量と誘導容量の意味を持っているものと見做せる。この見方をとれば、i^2^Rの単位は[J/H][(H/F)^2]=[J/(HF)^2]=[J/s]=[W]という意味で納得できよう。

JHFM単位系 1990年(平成2年)春にまとめた単位系である。マイケルソン・モーレーの実験とマックスウエル電磁場方程式の関係から得られた。色々あって、1998年4月2日に初めて日本物理学会で発表させて頂いた。物理的概念とその次元 日本物理学会講演概要集 第53巻、1号、1分冊、p.13.  関係記事 エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18) 。

まとめ 電圧及び電流という電気量はその根底には深い知恵が潜んでいる。その科学技術量を理解するには、自然との間の深いつながりを紐解かなければならないだろう。その辺に考えるということの意味があるのだろう。単に法則や原理ということで、それを鵜呑みにしていては本当の自然の深い意味を知ることはできなかろう。電圧と電流もその2乗に意味があるのであって、その平方を電気量の概念として実用化しているのだった。電圧、電流はその測定器があるということとの関係で、如何に優れた量であるかということになる。しかし負の電荷の電子が電線の中を流れているという解釈は誤っている。

科学論と電荷

はじめに どうしても思考が初めに戻ってしまう。1985年から2年間初めて電気磁気学・電気理論の授業をすることになった。基に既にあった「磁束は電圧時間積分によって決まる」の認識が「アンペアの法則」の電流による磁束発生理論への疑念を抱えての出発であった。振り返れば、命を守る地獄の中で纏めた『静電界は磁界を伴う』の1987年4月2日電気学会全国大会での発表となった。その時の所属はいったいどこにあるのか、今でも理解できない(4月発表の数日後自宅に、既に去った筈の高専校長から職員会議への出席要請の手紙が届いた。さらに次の年1988年の1月中頃どこからか自宅に、長岡工業高等専門学校の健康保険証が送られてきた。その時は既に、電磁界の物理的概念と地磁気の解釈 春の昭和63年電気学会全国大会 32. p.35-36 の発表予定で投稿していた。しかも全く所属分野の意識もなく、全学共通ぐらいの気分でいたかも。など混乱と理解に苦しむ疑問のまま今日までそのままである)。『静電界は磁界を伴う』の発表内容は結局『電荷概念否定』になる。その原点となった考えの状況を纏めておきたい。なかなか科学論だけの話ではないところが誠に不可思議である。しかも今になれば、その当時の政治的意味合いも含んだ長岡技術科学大学の邪魔者排除対象者として選ばれ、政府・文部省の「中曽根臨時教育審議会」に関係していたことであることが分かる。さすがに常識に疎い無知の筆者にしてみれば、このような意味不明で回りから嘲られたような仕打ちが続いたことは。精神的にも限界を超えていた。みんな政治意識に無頓着だった筆者の無知と相談しようもない孤立無援の中にいたことに関係していることだ。1988年10月、電気学会電磁理論研究会での、「瞬時電磁界理論の実験的検証とその意義」EMT-88-145.(1988.10.) の発表を機に大学から離れた。この研究会資料は世界の科学常識を問う実験データの写真集でもある。

“ミズリー号甲板上での無条件降伏調印式(1945/09/02)  1945年9月1日(海軍解散最終日)に父は『任海軍上等兵曹 舞鶴鎮守府』辞令。9月2日の調印式のため、日本政府代表団はゴムボートにて艦船への往復をした。父はボートクルーの任務に就く。1939年12月1日家族は舞鶴鎮守府へ戸籍転籍された。戸籍上に帰還の痕跡がない。公務員資格は?筆者存在の可否が根源にあったか?”今戦後74年が経過しようとしている、戦争の悲劇の意識が薄れ、政治意識の希薄さが危険な道につながる選挙にも無関心な世相の日本にある。政治はその選挙への無関心に対して、政治意識の重要性を教育に反映する対策も故意に回避しているように思える。今も所属機関もなく、研究発表もできない事態にある身として、思えば戦後処理にすべてがつながっていると。

「電荷への疑念」 電流は電子の流れとの解釈が科学論の基にあった。電子は電荷と質量の合成素粒子と理解していた。しかしアンペアの法則では質量は無視され電荷のみで論理が成り立つ。電子という時の科学論では質量を意識していないように思う。電流概念は電荷の時間微分でアンペア[A]であろう。その電荷が空間で運動すると何故周りの空間に磁界が発生することになるのか。その疑問が電気磁気学の授業をするに連れ強くなっていった。1986年10月1日ある方に『電荷』は存在しないのでは?と疑問を投げたと記憶している。その方は実験で証明する必要があろう。と仰った。確かにその通りと納得して、すぐに実験に取り掛かった。今でも何故高電界中の磁界検出が『電荷否定』の検証になると考えたか、その意識のつながりを明確に覚えていない。何の躊躇もなく翌日から高電圧内の磁界を検出すればよいと取り掛かった。オリエンテーリング用のコンパスをロゴウスキー電極の中に置き直流電圧を高めていった。しかし見事に失敗であった。火花放電が起き、コンパスの表面が黒く焼けた。これで終わりかと自室(ある人の部屋の間借り)に閉じ籠り、歩き回った。閃いた!!油入りのコンパスは地磁気には反応するが、電界の空間エネルギー流には反応しないのだ。それは空間エネルギー流をホール素子で検出する意味と同じ無意味なことと。それからが電界の空間のエネルギー流の何かをとらえられないかと考えて、マグネットの吊り下げ検出器を作った。クーロン力という解釈の指摘を排除するために、等方性の円平マグネットを使った。10月30日ごろと記憶している。その日の長岡市は、朝から雷が鳴りひどく荒れた天候であった。その時思った。天の神が自然の秘密を暴くのを怒っているのだと。それだけきっと磁界が検出できると予感していた。試作マグネットを電極間に近づけて設定。徐々に電圧を上げた。平板マグネットの矢印の方向が変化した。静電界は電荷による電界の空間と電気磁気学では解釈されている。しかし、その空間に磁気コンパスを動かす力が存在するとすれば、その訳を説明しなければならない筈だ。そもそも『電荷』とは何か、その空間像を認識しているか。アンペアの法則及びその電流、その法則による磁界の発生。ビオ・サバールの法則、フレミングの法則などその根源的物理概念は『電荷』である。それほど万能な『電荷』とは何者か。『電荷』が動くとその周辺空間の物理的状況に何が起こるか?それが『電荷』の空間像を考えた起点である。『電荷』は磁気特性を含有するか?

「電荷像と磁気」 電荷への疑念を膨らませた図がある。

電子の磁界発生原理は? 何も特別のことを考えた訳でもない。電子が電荷の具体的代表例だから、それが運動すると静止の時とどのような変化が生じるか。ただそれだけである。電流が磁界を発生させる原因だと物理学で理論構築されている。電流の基は電子だという。それなら電子が静止しているか、運動しているかで回りにどのような物理現象の差が起きるかという疑問でしかない。何も数式など要らない。『電荷』という物理的概念を探るだけである。まず、電荷は空間にどこまでその物理的存在を主張するのか。理論的にはどこまでも無限に意味を持つような解釈にあるように思われる。電界が電荷の周りに在るなら、それは空間エネルギー(1/2)εE^2[J/m^3]が存在する意味である。そのエネルギーは電荷とは異なる物理的実体ととらえるのか。そこに物理学としての論理性があるのか.あるいは電荷内の空間で完結するのか。そんな如何にも学術的科学論あるいはその手法からかけ離れた思考である。巷の科学論とでもいえよう。専門的学術論からかけ離れた素人的疑問は誠に科学論としてはお粗末で、始末に負えないと顰蹙を買いそうだ。電子の寸法もわからないから、実際は空間像を想像することすら無理なのであるが。

結び 『電荷概念はエネルギー流の認識の妨げになっている。』

『電荷否定』の科学論が伝統的科学論の世界で通用する見込みもないと危惧しながらも、ただその実験結果がだだ事でない科学革命の萌芽を含んでいるとの確信になった。その確信が全ての危険な先行きを無視して突き進む情念になった。社会に対する怒りを生み、遣る瀬無い身を恨んだ。そこに情報・テレビなどの操りの罠に引き込まれても行った。飛行機と花火にも踊らされた。陰で操る闇の日本社会。その中でも、現在ようやく物理学理論として『電荷』の概念が曖昧のままでは済まない意識が生まれつつあるか?と考える。科学論の革命が迫っていると。昭和57年度からの工業高等学校の文部省改定を前にして、もう工業高等学校では研究の余地はなくなると喜んで長岡技術科学大学での生活を想定した。しかし、結局望まれない人材として厄介者となってしまった。今思う。研究しか能のない世間知らずが役立たずで誠に困ったものと。しかしお世話になった川上学長も技術に対して理学への不信を抱いていたのではないかと思う。技術から、物理学理論の矛盾点にメスを入れ自然科学としての未来への進むべき道が見えてきたと筆者は思うようになった。『静電界は磁界を伴う』には相当御心配されたとも思う。また、今でも斎藤 進六 学長の創造性の「創」という文字は大きな傷を伴うという意味だとのお話が印象深く気持ちの上で拠り所となってきた。電気系の皆さんにもお世話になっただけで役に立てなかった。新潟県教育委員会が筆者を正式採用をしていなかった事務手続きはについては、今でも行政機関としての意味を理解できない。そこから「割愛」などできないと思う。

戦後処理問題:舞鶴鎮守府の軍籍問題を知ったのは平成7年頃であった。

リサジュー図形と技術

リサジュー図形は技術評価の観測手段として有用である。オッシロスコープで3次元(時間と平面)図形として観測できる技術手法である。先日、記事整流回路とリサジュー図形が見られていた。そこに図5.スイッチングとリサジュー図形(e.i)がある。電流ベクトルiの描くリサジュー図形は6角形の頂点の6点を示す断続のリサジュー波形となる。その直流側の負荷は平滑リアクトルLが在るため、直流電流は一定値となる。三相交流電流波形は方形波である。その為電流のリサジュー図形が6点のみになり、6角形の辺は見えない筈だ。瞬時に6点にジャンプ移動する筈だから。今回リサジュー図形の意味を理解するのに参考になるかと少し追加して置きたい。この三相全波整流回路で、負荷がリアクトルL=0で、抵抗のみの場合は電源側の電流も波を打つ

変動波形となる。この場合の瞬時空間ベクトルのリサジュー図形で、電流ベクトルi に変化が現れる。その時のリサジュー図形を示す。a、bおよびc相の電流瞬時値ia、ibおよびicの値から図のように6角形の頂点に臍のような軌跡が現れる。

 

 

 

 

 

 

この電流ベクトルリサジュー図形に似た波形が在る。pq理論のリサジュー波形を見つけて (2014/11/21)の写真②に似た波形が在る。この写真波形は、後に空間瞬時ベクトル解析法と交直変換器への適用 (2011/10/30)と言う研究会資料になった基である。この研究会資料のp.77~p.79 の3次元軌跡図はリサジュー図形である。電力系統監視システムとして有効な手法と考えた。電力系統の状態を瞬時監視手法として生かされる筈だ。系統の瞬時アドミッタンス値と言う捉え方は余りなかった手法と思う。しかし、諸般の事情によりもっと大事な『静電界は磁界を伴う』の物理学基礎概念への方向転換になり、大学の講座性も工業高校と同じような気分で意識なく、研究能力の欠落かと、人権侵害の中に居るとは知らず、非常識の立ち位置から居場所も無く頓挫した。昭和62年、63年に電磁界理論研究会で、 電磁エネルギーの発生・伝播・反射および吸収に関する考察(EMT-87-106) と 瞬時電磁界理論の実験的検証とその意義 (EMT-88-145) を発表した。それはパワーエレクトロニクスの電力部門の講座に所属する内容ではなかった事を後で理解したが、無我夢中の夢の中のこと。 考えてみれば、昭和39年から、新潟県教育委員会はじめ、採用説明会と事務の取り扱いを一度も受けた経験が無かった。共済組合の加入手続きも書類に記載し印鑑の捺印など、一切した事も無かった。しかしそんな中で30年、50年以上の思考で、不可解な電荷の物理学の本質に辿りついた。研究者の端くれとしての責任と社会への貢献の一部は果たせたかと。

電気工学とリサジュー図形としてはピタゴラスの定理とオイラーの公式そして電気ベクトル (2017/01/15) 、ソーヤータワー回路の謎 (2016/07/19) さらに励磁電流とは? (2019/04/14) および変圧器-物理学解剖論- (2011/09/13)などを過去の記事から拾っておく。

pq理論と瞬時空間ベクトル。そのリサジュー図形を理解するには少し専門的な意味を理解する必要があろう。三相交流瞬時空間ベクトル (2017/04/07)  および単相瞬時空間ベクトルと瞬時値 (2017/03/04) が参考になるか。三相交流に瞬時虚電力qのベクトルを導入したことで、電気ベクトル空間座標が時間と合わせて4次元座標となった。

力の概念と電気物理

視点一つが世界を変える。

不図疑問が湧く。今までの認識に疑問が種となって、新たな世界が驚きの中に膨らむ。今回は『力』である。電気と言う目に見えない現象故に、その世界描写は数学的な表記によってとても抽象的に描かれる。多くの法則によって体系化された学術理論の世界である。科学理論の世界は長い歴史の重みを背負って、何百年の時に亘って専門家の追究の試練に曝されて生き残って来た学術理論である。その根幹を成している概念は『電荷』である。それはクーロンの法則と言う偉大な科学技術論を論ずる基幹法則として誰もが一度は聞いたことのある法則であろう。『電荷』間に働く『力』の意味を解釈する法則である。科学理論は社会的に認知された、学術機関の専門家が推奨する権威ある理論で、広く学校教育での標準教科書として取り上げられたものである。そんな理論の根幹の「電荷」を否定することは、社会的大きな混乱を引き起こすかもしれない畏れ多さを抱える事でもある。自分一人の科学技術感覚からの『電荷』否定の挑戦であった。クーロンの法則を斬る (2013/01/06) の記事から6年が過ぎた。今回その法則に関して、力学理論の『力』の概念から改めて『電荷』否定の論証視点が浮かび上がった。気付けば当たり前のことと思う様な『電荷』に潜む矛盾点である。

力学論の力の概念

運動力学の『力』とはどのようなものか。そんな疑問を抱くことに意味があるのかと思うかも知れない。力が働くという意味で感覚的に感じるのは力を掛ける対象に、力に逆らう反作用のような抵抗がそこにはある。それが慣性体としての質量の意味だと思う。運動力学で力が掛ると、その対象は力によって加速度運動に成る。もし力の対象が質量体で無かったなら、その対象はどのような運動に成るのだろうか。図の力の概念に示したように、質量M[kg]が力に逆らって速度の変化を受けないような作用があるから力を掛ける側に、対象に作用するという意味が生じるのだ。もし対象に質量がなかったら、加速度と言う概念は存在しない。加速度の存在しない『力』の概念は力にはなり得ない。

電荷と力

図1.電荷と電界と力

さて、電気物理学では『電荷』がすべての電気現象の理論的論拠となっている。電場に『電荷』が有れば、その『電荷』はその点の電界強度によって『力』を受けると成っている。(1)式のように、空間にある電荷集合体+Q[C]が有れば、その周りの空間は立体空間全体に電界強度E[V/m]で定義付けられると成っている。その空間に、他の『電荷』が存在するとその電界Eによって力を受ける。電荷が-q[C]とすれば、(2)、(3)式の力を『電荷』が受けると言う。(3)式が有名なクーロンの法則の式である。なお (r/r)は座標ベクトルrの方向を示す単位ベクトルの意味である。荷電粒子が電磁場で力を受けて運動する現象は実際にあるから、確かに間違いとは言えない。しかし、上に示したように、『力』の概念で述べたことも間違いではない。質量がなければ、『力』は掛からない。『電荷』に慣性は無いから、それは『力』の対象にはならない筈だ。もし力が掛れば慣性のない『電荷』は直ちに無限速度で飛んで消えて、運動論の対象にはならない。前にも、荷電粒子加速と電磁力 (2015/01/31)で問題にした。今回不図した思い付きで、『力』の概念について気付いたことが質量の慣性と言う意味であった。クーロンの法則を斬る (2013/01/06)で『電荷』とその上の(3)式の否定を論じた。今回はっきりと納得できたのが質量の慣性と言うものによって初めて『力』が意味を持つという事であった。それなら実際に電磁場と言う空間での荷電粒子加速現象はどのような意味なのかという自然世界の認識の課題である。実際の電磁場での粒子加速運動論には必ず質量を必要とするから、電子にも陽電子にもすべての粒子には必ず質量が付帯している。そこで一応運動力学論としての辻褄が合わせられている訳である。しかし電気回路の電流論に成ると、電流の単位アンペア[A]=[C/s]には決して質量は必要ないから、『電荷』だけで論じられることになる。この『電荷』と『力』の問題は、世界で実施されている荷電粒子加速実験の理論的根拠の問題でもあろうかと考える。

電荷と電磁場

もう一度電荷とその電界の意味を取上げて考えて置きたい。『電荷』の意味を考える時、とても不思議に思うことがある。或るプラスの正電荷の集合体が空間にあると設定されて解説される。クーロンの法則に直接関係する電磁場の論考に於いて、どのような原理で同一の符号の『電荷』が集合し得ると考えるのか。同一符号の『電荷』は離隔距離の2乗に反比例して強力に接近は拒否される筈である。子供達に教える教育の場で、クーロンの法則が取上げられて、説明される時には同一『電荷』の集合は排除されると教える筈である。しかし、図2.のようにいとも簡単に『電荷』の集合体で理論の解説が成される。これも科学論の不思議と言わなければならない。その時の集合電荷の離隔距離はおそらくゼロの意識で論理展開しているのだろう。ゼロの2乗分の1は無限大の排斥力となる。この事は教育者側の科学論の論理性の問題としても無視できない矛盾論の筈であろう。それはさて置き、問題は電荷周りの電磁場の意味である。図2.電荷とエネルギー のように空間の誘電率がεo[F/m]とすると、その空間のエネルギーをどのように理論的に解釈しているかという問題である。係数が(1/2)の問題はさて置くとして、一応wr=(1/2)εE^2^ [J/㎥]のような電界のエネルギーが空間にあると解釈する筈である。『電荷』からの空間距離rの関数として、『電荷』周りにはエネルギーが分布していると解釈してよかろう。しかし、物理学理論で空間の解釈をする時はこのようにエネルギーを認識している筈であるが、荷電粒子加速などの場合には、この空間エネルギーをどのように解釈しているのかはハッキリしていないようだ。このエネルギーの問題は理論物理学における『電荷』の概念の捉え方に関わる問題であるから。と言うのは、このエネルギーが空間に存在していると解釈するかどうかが最初に問わなければならない問題なのである。そのエネルギーは電界がある限り、空間の無限遠までも希薄になっても存在することになるからである。空間に存在すると解釈するなら、そのエネルギーを理論物理学ではどんな物理量と考えるのか。即ち『電荷』の一部なのか、『電荷』と無関係のエネルギーなのかと言うことを問う問答なのである。この解釈・考え方は至極幼稚な素人的素朴な疑問なのである。しかしこのような考え方が、理科教育・自然科学論に求められて居る易しさの科学論の姿勢であると考える。高度な数学的理論展開では、市民が理解し、納得する自然科学論にはならないから。本当の自然科学論は日常用語で解説できなければそれは正しいとは言えないのだ。何故このように『電荷』とその周辺空間のエネルギーの問題を論じるかは、高度な理論を展開されている専門の方々こそお分かりの筈であるから。ついでにもう一つ図2-1.電荷と力とエネルギーとして、単位電荷が空間に分布していたとする。この場合は、『電荷』間には複雑な力が掛ることに成り、その空間のエネルギー分布も正と負の電荷によって、種類の違うエネルギーが存在すると解釈するべきなのかなど理論的に決まりの付け難い問題が残るようだ。本来エネルギーには『正』と『負』は無く、ただ『エネルギー』が存在するかどうかの問題であるから。そういう意味で、物理学理論の易しい解釈を求めての論考である。易しい理論的解説は難しい数学や数式は必要がない筈だ。『電荷』が『エネルギー』を持っているか、いないかを答える事ぐらい難しい事ではなかろう。結局『電荷』とは何かを問うことである。電気磁気学、電気回路論あるいは電気工学のそれぞれの解釈の場で、『電荷』が如何なる実在量かの描像を示す事が求められていることと思う。それは次の謎解きの話になろう。

理論と電磁現象の間の謎解き

波形観測に欠かせない電気製品にオッシロスコープがある。電子銃からの電子ビームを平板電極間に通すと、その電極の電圧信号に従って、電子ビームの方向を制御できる。蛍光面にその制御されたビームの軌跡が波形を描く。その原理が電子電荷の空間電界による制御と解釈される。これが科学技術の電磁現象解釈原理となる。技術としてはその原理を理解することが必要であり、それだけで十分立派な電気技術者の仲間に入れる。教育もその意味で技術理論の習得への期待が国家の教育方針とされてきた。それはそれで良かった。『電荷』と言う概念を考え出して作り上げた意味はその為に有効であった。ところが、その科学技術用の理論を深く突き詰めると、とても曖昧で、論理性に絶えない矛盾が潜んでいることに気付く筈だ。科学技術教育ならそれでも良かった。しかし、自然現象を説き明かす物理学理論となれば、その矛盾を抱えて頬被(ホウカブリ)したままやり過ごす事はできない筈だ。ではそれはどんな矛盾で、何故理論が論理的で無いと言うかを説明しなければならないかも知れない。聡明な皆さんは既にお分かりの筈であろうが。その曖昧さを取り除くには、『電荷』が理論に絶えない概念であることを理解しなければならない。 f=q[v×B]+qE [N] の式で解釈するローレンツ力の力が掛る対象は電荷q[C]である。その式は質量が無い式だ。荷電粒子にこっそり質量が有ると条件付けられてはいるが、それは運動論を展開するには質量がなければ無理だからである。しかしあくまでも力の掛る対象は原理の式には『電荷』しかない。『電荷』には慣性がないから力が掛る対象にはなり得ないのである。しかし現実は、この式で解釈する通りの荷電粒子と認識する『電荷』のビームが制御される。この論理的不都合を解決する解釈法が一つあるのだ。それが『軸性エネルギー流』だ。電磁場空間内の空間電磁エネルギーの分布を理解する道である。『静電界は磁界を伴う』と言う奇妙な表現内容に鍵がある。電界と言う電場空間は、むしろ磁場空間なのである。磁場空間は磁束がある訳ではなく、軸性エネルギー流の場である。言ってみれば、『電子』も軸性エネルギー流子なのである。エネルギー流空間に電子と言う軸性エネルギー流子が通過すれば、エネルギー流同士の間の近接作用力が働くことになる。過去に載せた関連記事の図を挙げて置く。電子スピンとは?-その空間像-(2011/02/09)

 

 

 

 

 

 

 

素粒子-その実相-(2012/07/31)

 

 

 

 

 

エネルギー流と結合(2018/10/10)

 

 

むすび

問題の解決は『電荷』とは何かに答えることである。それはまた『電子』とは何かに答える事でもある。そこに未来の道が観えて来る筈だ。空間に実在するということは、その空間像を描くことでしか解決できない。抽象的な数式には姿が観えない。軸性エネルギー流は磁場と言う空間の物理的姿を示した空間像である。身近にあるマグネットのNSの磁極近傍の空間に在るエネルギーの流れの様子を示したものが軸性エネルギー流であり、それは磁極の表面空間を流れている回転エネルギー流である。その空間に実在するエネルギーを見ることはできない。それを計測することも、観測することも出来ない。その観えないものを『電子』などと捉えて、科学理論を構築して来たのである。『電荷』概念の矛盾に気づくなら、空間のエネルギーが(心にあるいは感覚的に)観えて来る筈だ。そのエネルギーに関する空間論は観測できないから科学論に成り得ないかもしれないが、そこに至らない限りは自然に心を添えないと言うことであろう。『エネルギー』を認識すれば、自然世界の本質が観えて来る筈だ。以上でクーロン力の矛盾についての論説は終わる。次の記事で、アンペアーの法則の回路電流における電子流の矛盾について述べたい。

励磁電流とは?

励磁電流否定の記事 変圧器の技術と物理 を投稿して。

(2019/04/16)追記。何処でも磁気や磁束は励磁電流で論じられる。元々電線の中に電子など流れていないにも拘らず、磁束まで電流との関係で定義される。ファラディーの法則の式を見れば、磁束と電圧の関係しかない。電流に因って磁束が発生するという意味など、その式には無いのだ。自然科学が科学技術理論で固められ、物理学としての自然哲学が欠落している処に理論の矛盾が放置されて来たと考える。変圧器を例に、巻線の1ターンコイル電圧 eu [v] = v/n [v] (nは巻数)を基準にして考えることを提案した。磁束や励磁電流という技術概念についても、長い技術的評価手法となっている伝統的な磁化特性を取り上げ、その意味の電圧時間積分との関係での解釈を図に示す。コイルの電圧という意味はコイル巻線導体近傍の空間に分布したエネルギー量の技術評価概念なのである。複雑な概念量を統一して捉えることが自然科学論としての未来の姿でなければならない。それを可能にするのは『エネルギー』しかない。励磁電流という曖昧な技術量を見極めて、磁束とは何かを考えて欲しい。なお、磁化特性は鉄心材料によって、図の①や②のように異なる。変圧器などでは特性が良く①に近く、インダクタンスはL[H]無限大とも見られよう。インダクタンスはその電気器具のエネルギー貯蔵機能を評価する空間特性の評価概念である。(2019/05/08)上の図を訂正した。磁束φと磁束鎖交数ψ=nφで、コイル巻数nの関係を訂正した。

気掛かりで、励磁電流とは?とITで検索してみた。1970,000件も記事が有り、様々な解説記事が検索される。変圧器をはじめ発電機あるいは電動機などすべての磁束の発生原理として、アンペアの法則の磁界発生原理で解説されている。変圧器の技術と物理で、せめて磁束発生原因の励磁電流という間違いはやめるべきだと指摘した。50年も前(正確には生命の危機を脱した、昭和46年秋に研究補助を頂いて、ロイヤーインバータでの単相誘導電動機の周波数制御運転をして、産業教育振興中央会の「産業教育に関する特別研究成果 別冊」に載せて頂いた頃)に筆者は既に励磁電流を否定していた。変圧器突入電流という電源投入時の現象も投入位相で電圧零時であれば、設計磁束の2倍程の ∫vdt [Wb=(HJ)^1/2^] の磁束量になるからと『電圧時間積分』で解釈すべきである。