カテゴリー別アーカイブ: 電気物理

エネルギーの LC 共振

『エネルギー』は自然世界の空間に実在する基本的物理量である。場所は真空空間、水中、気中、ガラスその他あらゆる伝播媒体の空間構造内。必ずしも質量を必要としない独立の物理量が『エネルギー』である。『エネルギー』の本質による局所化が『熱』とも見做し、『原子』ともなり、『質量』ともなる。その空間構造の科学論的概念が空間定数 L[H]、 C[F]となろう。

L と C の間で『エネルギー』の振動現象が起きる。それはどうも自然空間での『エネルギー』の振る舞いの基本的特徴のように思える。光と同じく、電気回路の『エネルギー』伝送特性もその空間の持つ L と C の機能によって決まるようだ。

自由空間を伝播する縦波の『エネルギー』が光である。空間の科学技術的解釈概念が誘電率[F/m]と透磁率[H/m]である事は、そこに自然空間に於けるエネルギー[J]と空間特性[H/m , F/m]との間に深い関係としての真髄が秘められている。(MKSA単位系の基準定義定数に真空透磁率 μo=4π×10⁻⁷[H/m]が導入されたとの記憶がある。) 参考記事:光の正体 (2018/01/25)。

エネルギーの LC 共振はその特徴的現象と言えよう。コイルの電圧とエネルギー (2021/09/07)で、コイル内のエネルギーの挙動について一定の解釈にまとめた。その事で分かり難いコイル内のエネルギー貯蔵現象の意味が少し分かった。端子電圧としてのコイル内のエネルギー貯蔵分と端子電圧に関わりないエネルギー貯蔵分 eaxの軸流分の二つの意味で捉えられた。

一方、コンデンサのエネルギー貯蔵は端子電圧としてその意味が分かり易い。また、『エネルギー』にはその特徴として、極性・方向性がはっきりしている。コンデンサ内での『エネルギーギャップ』としてのその分布の偏りに現れる。コンデンサ内のただ空間に蓄えられるだけではなく、その極版の片側に偏って貯蔵される。その『エネルギー』の分布の偏りが電圧極性の負側になる点である。それは電池のエネルギー源が電圧の負側(陰極)で在る事と通じる。

エネルギー共振。『エネルギー』には極性が有る。

端子電圧とエネルギーの関係を見ると、電圧の2乗でエネルギー評価がされる。従ってエネルギーは常に正の量として捉える。しかし、その『エネルギー』には極性がある。『エネルギー』のその存在形態は不均衡に偏って分布する。均等に分布することはない。そのような意味をどの様に捉えるべきかを考えた。電圧波形は正弦波で表現する。その電圧の正負に対して、エネルギーの極性を考えた。一般には必ず『エネルギー』の波形は全て「正」で表現するのが普通である。しかし、電圧波形に対して、そのエネルギーの分布極性を考慮して、正負に極性が変る意味を踏まえて波形を描いた。それが次の図である。

1サイクルを4つの区間で分けた。

区間①:電圧が「正」に立ち上がる区間。コイルの『エネルギー』el が最大値で、コンデンサの『エネルギー』 ec=0[J]である。端子電圧に従って、コイルの巻き線間分布の『エネルギー』が増加しながら、コイルからコンデンサに『エネルギー』が流れだす。この el 最大値の『エネルギー』はコイル巻き線間には無く、コイルの内側に沿った軸性のエネルギー流として内部の還流様態として蓄えられている。端子電圧ゼロに対応した『エネルギー』の貯蔵形態である。端子電圧が立ち上がるに従って、コイル巻き線間に『エネルギー』が分布する事に成る。その『エネルギー』の分布はコイル巻線間でも、コンデンサ電極間でも、負極側に分布した様態である。その意味を波形の『負』の極性で表現した。

区間①から②に切り替わる瞬間。電圧が正の最大値で、コイルの『エネルギー』が全てコンデンサに移り切った瞬間である。『エネルギー』が今までの流れの方向から反転して、逆にコンデンサから再びコイルに流れ始める境界点である。

区間②:端子電圧が正の最大値から減少して『ゼロ』になるまでの区間。

今度はコンデンサの最大貯蔵の『エネルギー』がコイルに転流し初めて、すべてが転流し終わるまでの区間。

区間②と③の切り替わり瞬時。この瞬間は、コイルの貯蔵『エネルギー』が最大であり乍ら、コイルの端子電圧は「ゼロ」である。その瞬間に、コイルの『エネルギー』分布は巻き線間から、全て巻線内空間の軸性回転流の『エネルギー』となる。その『エネルギー』がコイルからコンデンサの『正』の側に流れ出し始め、コンデンサの正極の電極側に転入する区間となる。その為コイルの巻き線間のエネルギー分布も正極側に分布して『エネルギー』が流出する事に成る。端子電圧が負になる時、コイルの巻き線間の『エネルギー』の分布も区間②とは逆になる。その意味で、極性が急反転することを記号「j」で示した。

区間③:電圧が負で、『エネルギー』が正極側に分布し、コイルからコンデンサに『エネルギー』が転流する区間。丁度区間①と逆の極性で同じくコンデンサに『エネルギー』が転流する区間である。

区間④:丁度区間②と同じくコンデンサからコイルに『エネルギー』が転流する区間である。電圧及び『エネルギー』の極性が②とは逆に反転した状態となる。区間④の終端で、丁度1サイクルの終わりとなり、最初の区間①の状態に戻る。

以上で一区切りとなる。4つの区間で1サイクルとなる。そこから共振現象の『エネルギー』の一周期 T を判断する。それはコイルの L[H] とコンデンサの C[F] の積が時間[s=(HF)^1/2^] である事を考慮して、次の意味で解釈する。脚注(*)。

T = 4 √(LC) [s]

と捉える。

今まで、ω=2πf=2π/T=1/√(LC) [rad/s] から、T=2π√(LC) [s]と解釈してきた。確かに角度π[rad.]は次元解析では無意味な量と見做していたが、やはり周期 Tの次元が角度と時間の積[rad. s]となり、周期の時間[s]とは違う。

一つの解釈。実際の共振回路設計で、周期 T=√(LC) では結果が適合しない。2π=6.28 なら実際に近い設計値となる。という意味であったのではないか?

2π と 4 の差が実際の設計基準としてどちらがより妥当か。それは実験的に検証できよう。この解釈を実験で確認もせずに示すことの非科学論で恥かしい限りだ。実験室でもあれば、確認してから唱えたいの願い!!どうかご容赦願います。

注(*):  2p-D-11   物理的概念とその次元 日本物理学会、第53回年会、p.13. (1998-4-2).

先ず日本物理学会(長岡技術科学大学、電気系の先生の御厚意で入会させて頂いた)での最初の発表で、物理概念の基礎理論の矛盾解剖論を展開するための自然単位系 [JHFM]の発表。そこで基本概念に『エネルギー』[J]を据えて、時間の次元を [(HF)^1/2^] のインダクタンス L[H] と静電容量 C[F] の関係で捉える意味を提唱した。時間は勿論 [s]であるが、自然空間を伝播する『エネルギー』に着目すれば、真空伝播空間の誘電率 εo[F/m] および 透磁率 μo[H/m]を空間伝播現象の基準に据える必要がある。当然の事として時間の次元は [(HF)^1/2^]となる。この時間の定義はこの発表の重要な基幹を成すものである。1991年1月の研究内容「光の相対速度と空間 (2020/06/08)  関連」との関係で、時間の次元の解釈は重要な意味を持つ。

共振現象とエネルギー空間

自然は時空の花。

空間に展開される『エネルギー』の実相だ。

共振現象を問う (2014/10/06)で考えた。当時より少し認識が深まった。電気回路は全て導体で囲まれた空間の構造内での『エネルギー』の伝播現象である。回路静電容量と回路インダクタンスと言う二つの電気技術評価要素で、その中の自然現象が捉えられる。その科学技術を完成した技術文化に乾杯。

『電圧』と『電流』と言う回路解釈概念が如何に優れた智慧の賜物かをよく理解しなければならない。具体的にその量が測定器で測れると言う不思議さもある。電流は流れずと言い乍らである。そんな素敵な概念を間違った解釈で論じることは許されない。『電子』の逆流だ等と言う間違いが堂々と科学論の中に罷り通っているのだ。『電子』など、自然界のどこにも無いのに。原子の周りを回っている『電子』など有り得ないのだ。

電線導体の中を『電子』が流れる等と言う理屈・理論はきっと何時か子供たちに笑われる時が来る。

共振回路について

基の記事も一つの過程としてみたい。その回路をもう一度取り上げて、回路要素の意味と『エネルギー』の振る舞いを考える。

『(2021/09/07)追記。周期 T と回路定数 L 、 C の間の関係。コイルの端子電圧について、コイルの電圧とエネルギー (2021/09/07)で結論を得た。その結論の結果として、下記の記事は訂正しなければならない。回路の伝送現象も L   C の間の『エネルギー』の転送現象で進行する事に成る。

右の正弦波電圧波形の周期Tも、T=4√(LC)となる筈だ。以上訂正、修正とさせて頂く。この理由は次の記事で述べたい。』

電気回路における『エネルギー』の有り様は、その分布に偏りをもって現れる。この図ではまだその事に気付かない時の物だ。この図のコンデンサの電圧v[V]と貯蔵エネルギー qc[J] の波形で、周期 T[s]は L[H]と C[F] によって決まる。

この波形は未だ『エネルギー』が貯蔵されたとき、その分布は電極の負側が高密度分布になると言う認識には成っていなかった。今は、その分布の偏りが『エネルギー』の空間特性であるとの認識にある。その分布差をエネルギーギャップと呼ぶことにした。さて、この L とC の組み合わせ回路には特別の共振現象が見られる。少しその現象の意味を深く探ってみよう。

共振現象の意味。

先ず初めの段階として、適当にL とC を離して配線でつないでみた。共振の意味を考える為に。今コンデンサは充電されている(エネルギーが貯蔵されている)ものとする。しかし、コイルはスイッチSでコンデンサとは並列には繋がっていない。コンデンサの電圧は図の通りの極性とする。スイッチが off の時、電線路のエネルギー分布はどの様になっているだろうか。

コンデンサの貯蔵エネルギーqc[J]は電極の負側に高密度で分布し、

qc=C vc ² [J] となる。

スイッチSの端子にも『エネルギー』qs= Cs v²[J]がコイル端子側スイッチ端子に分布する。そのスイッチ端子間電圧値もエネルギーギャップもスイッチ間の静電容量 Cs[F] (及び回路全体の空間構造の影響)によって決まる。

電線路の負側配線及びLのコイル巻き線にも『エネルギー』が分布する。その分布量は電線路空間の静電容量の空間分布構造によって決まる。配線部の回路要素 Lo やCoの分布状況等によってそのエネルギー分布は決まる。

上に述べた事は、所謂科学論とは見做されないかも知れない。科学的実験データでの検証を示し得ないから。空間に分布する『エネルギー』を検証できないから。科学論としての説得の力はない。これが科学哲学と言う部類なのかもしれない。『エネルギー』への感覚的心に共感する矛盾排除の論理でしかないかも知れないから。だから誰にもその解釈は、その人が如何に電気回路の特性を評価するかに掛かっている事でもある。『電荷』や『電子』概念で解釈する人はその意味で矛盾なく認識すればよいだけであろう。

上の回路の配線部が長ければ、共振現象に大きく影響する。スイッチ投入以後、エネルギーがどの様な流れ方をするかで共振特性が変る。『エネルギー』は配線の回路要素によって伝送速度も変化する。共振回路としては配線(Lo,Co)は極力無くする意味がそこに在る。ただ回路のLとCだけで共振現象が決まる訳では無く、回路全体の空間構造に因ることを先ず理解すべきだ。そこに『エネルギー』の空間での実在性が認識されるべき根拠が在るのかとも思う。

②の回路の共振は基本の共振現象(LC)が(CとLo)、(LoとCo)更に(CoとL)の関係が加わる事に成る。LoとCoの排除で理想的な共振現象になる。それはタンク回路とも呼ばれるL C が密接な一体構造空間を成すような理想空間となる。その回路の共振周波数 f[1/s] が電気工学では、

f=(1/2π)(LC)^-1/2^

と角度の2πが入る。

ω^2^LC=1 の ω=2πf [rad/s] の f から算定したからである。

しかし、周波数 f [1/s] に角度が入る事は論理的に正しくない。

f=1/√(LC) =1/T [s^-1^]

と解釈する。

「まとめ」 新たに浮かぶ疑問に挑戦すると、結論に到達せずに課題にぶつかる。今回の共振回路問題も少し新しい認識を得たようだ。以前からの思い・疑問が解けそうだ。インダクタンスもコンデンサも空間構造としてみれば同じ基本的物理的意味を持っているとの結論になる。それは空間の『エネルギー』の認識から到達する解釈だ。またそれを次の記事の共振現象問題として、今度こそ纏めにしたい。

今、下書きの記事が多数残っている。次々と、未解決の問題を手掛ける度に、結論に纏まらない。冒頭の記事、共振現象を問う(2014/10/06) の周期 Te についてはそのまま、(6)式とする。また、電気回路の角周波数ωの意味は? (2016/02/04) の疑問も未だ未解決の問題だ。

共振現象問題が下書き記事の解消になればと願って、一旦まとめとする。

ロゴウスキー電極空間の磁界(戻し)

ロゴウスキー電極空間の磁界(2020/6/18) の記事が消えた。その分を回復する意味でここに記す。

消えた記事。

静電界中の磁界。初めに結論を示そう。それが下図のロゴウスキー電極空間のエネルギー流である。自然界には『電荷』は存在しない。だから、高電圧工学の研究の基礎概念である『電荷』による電極空間の電界は実際はその空間を還流しているエネルギー流の場である。その空間にマグネットを設置して、いわゆる電界強度を強めれば、マグネットの向きが変化する。現在の科学理論の『パラダイム』では解釈できない現象である。以下の記事の結論を示した。

ロゴウスキー電極間の空間に、磁界が存することを実験で確認した。

『静電界は磁界を伴う』-この実験事実に基づく電磁界の本質-
その実験結果の写真は Friction heat and Compass (2020/03/22)でも説明した。

『静電界は・・』の結果の、そのむすびに、4.実験結果に基づいた電磁界への考察と課題 として良くまとめてある事を知った。現在は、そこで指摘した課題を忠実に確認して、全体像として科学理論の矛盾を解明してきたと一つの安堵に居る心地だ。その翻訳を印す。

以下の翻訳文の中に出てくる方程式とその番号(3)、(4)および(5)を示した。これらの式はマックスウエル電磁場方程式を光速度ベクトル c=cによって表現したものである。エネルギーの伝播方向を座標の yj 軸とした。なお、(3)式はポインティングベクトルであるが、この式は瞬時値としては余り意味が無い(1秒間の値と見える)ので、別に取り上げて論じたい。

(翻訳)

 4.Considaration of electromagnetic fields based on experimental results and future challenges. It was experimentally confirmed that a magnetic field exists in a constant electric field (electrostatic field)as shown in equation (5). Therefore ,it can be said that equation (4)and (5) are basic equations that express the essence of electromagnetic fields. The meaning of equation (4) also includes the concept that there is an electric field around the permanent meaning and the earth, and there is also a flow of electromagnetic energy. Next we discuss the relationship between “charge” and “energy” as an important point discovered from the experimental results. Figure 3. The fact that the directions of b and c are opposite, we must conclude from Equation(3) that the directions of electromagnetic energy flow are opposite in b and c. This means that “positive charges” radiate electromagnetic energy to the surrounding space, and “negative charges” have the property of absorbing energy from the surrounding space. Although the current electromagnetic field theory is constructed based on the concept of Coulomb force acting between electric charges, experimental facts demand the need to regard it is “field proximity force” from the concept of electromagnetic energy flow. I am keenly from the electromagnetic energy and it’s propagation trajectory.

    新世界―科学の要―  (2015/03/05) にロゴスキー電極間の空間のエネルギー流を示した。その意味を冒頭に既に示した。結局その結論が上のむすびで述べた目標であった。

ロゴウスキー電極の負極の電極間のエネルギ流は、Fig.Energy flow and proximity action force.の図のように流れると一つの結論に達した。そこにはマグネットの磁極近傍が Axial energy flow の場であるとの解釈が必要だ。その事によってはじめて電磁場の電磁力がエネルギー流間の近接力に因るとの解釈に至る。発表当時に予稿論文で述べた通り、下部電極側(正極側)は正の電荷として理論は捉えているから、そこからエネルギー流が外向きに流れ出る意味で同じことと言えよう。上部電極は周辺からエネルギーが流れ込む意味で、適切であった。

 

 

 

定在波の発生原理

定在波とは(2020/09/22)。ここで解説する意味には『電圧』と『電流』で定在波を論じる。しかしその『電圧』と『電流』の意味には深い意味が有るので、一般的な電気回路の『電圧』『電流』とは少し異なる意味かも知れない。それは測定法に関わるので、その点も含めてご理解いただきたい。この定在波測定回路については後の記事に示したい。

電気現象はその基本が『エネルギー』一つの振る舞いである。しかし商用周波と高周波あるいは直流とそれぞれ回路解析法は異なる手法が適用される。高周波回路は電線路長に対して電気信号の波長が短いために、その電気現象は特異なものに観えることになる。それが定在波と言う波についてであろう。定在波は電線路終端短絡の場合に顕著に、そこからの反射波と伝送波の間に起こる現象として強く現れる。負荷終端の場合は、様々な影響が定在波分布に現れる。専門的な解説が多く示されている。しかし、とても内容が複雑で筆者には難しい。それも波動と言う波形が何を表現したものかが分からない。ここでは伝送波も反射波も全て『エネルギー』の分布密度波として捉える解釈について論じたい。

インピーダンス整合。

負荷インピーダンスが電線路の特性インピーダンスと整合して居れば反射波はない。すべて負荷に伝送エネルギーが吸収されて反射するエネルギーは生じない。それがインピーダンスマッチングと言う状態なのだろう。

電線路電圧の概念。

電気現象は『電荷』を否定して初めてその真相が見えてくる。高周波であろうと直流であろうと、電源は電線路の空間を通して、『エネルギー』を負荷に供給する回路技術である。二本の電線a と b の間に高周波電圧を掛けるとする。その電圧を掛けるという物理的意味をどのように解釈するかと言う難しい話になる。まさか電線に正の電荷と負の電荷を交互に電源から送出するなどとは考え難いだろう。①には、『エネルギー』の波の伝播で示した。電線路に電圧測定装置、オッシロスコープ等を繋げば②の様な電圧波形が得られるから、電圧と言う物理量が自然世界に存在すると誰もが考え易い。しかしその電圧と言う物理量は、人が科学技術に依って獲得した測定技術の賜物であって、簡単に電線路に電圧が在ると理解するには、それはとても深い物理的意味を知らなければ分かり難い概念なのである。

定在波とエネルギー流。

終端短絡の定在波とは。電線路の位置によって、電圧や電流と言う概念の分布を測定すると、測定値が正弦波状の分布になる。その分布波形を定在波と言う。終端短絡の時、『エネルギー』は電源から伝送され、終端ですべての『エネルギー』が反射する。その往復の『エネルギー』の波動が重なり合い、その密度分布の大きさが電線路の位置によって決まった脈動をする。図の電圧の定在波をVで示し、電流の分布をIで示した。電圧定在波Vは常に零の位置がある。『エネルギー』は電線路を光速度で流れるから、電線路の位置によって流れが違う訳はない。それなのになぜ測定値が異なる正弦波分布になるかと言う疑問が沸く。そこに『定在波』と言う意味が隠されているのだ。

今、図のように電線路の長さが電源電圧波長の2倍の長さとし、その終端を短絡する。電線路を短絡するなどという事は普通は短絡事故と考える。しかし、高周波電圧波形の場合は、『エネルギー』密度がそれほど高くなる前に極性が反転して、高密度にならないため、短絡しても事故とならずに済む。極性の切り替えが早く高密度エネルギーにならずに済むためである。短絡終端に到達したエネルギー波はすべて反射して電源側に戻る。その反射伝送は到来『エネルギー』波の反対側の電線近傍を、即ち反対側電線を戻る。

電線路電圧の意味の追加説明。この事は別の記事にして示したい。短絡終端は当然電圧は零である。電圧零という意味は二本の電線路の両方が同じエネルギー分布であれば、それ電線路間の電圧は零である。電圧とはエネルギー分布ギャップを評価するものである。それは乾電池電圧の『エネルギー』の意味と同じものである。二本の電線間にエネルギーの分布差が無ければ、如何にエネルギーが大きかろうと電圧は零である。エネルギーギャップ零は電圧零である。

この記事は

金澤:分布定数線路実習に対する一考察。新潟県工業教育紀要 第3号、(昭和42年)。に載せた定在波分布波形の意味が良く分からずに、改めた考えてみた。実験での測定データなどは他にあまり見当たらない。その意味でとても貴重な資料と考える。正直に当時を振り返れば、よくこんな実験をして、報告記事にしたと驚いている。その訳は今でもそのデータの意味が良く理解できないのだ。その意味を少し掘り下げて理解してみたい。その第一報として定在波と『エネルギー』の関係だけを論じた。一般の解説には『エネルギー』の観点はほとんど示されていないように思う。

 

電池とエネルギー

電池は『エネルギー』を貯え、便利にその『エネルギー』を使うための科学技術の貴重な成果の製品だ。決して存在しない『電子』などを貯えるものではない。『エネルギー』とはどの様な特性を持った物理的実体か?と考える。見えなくて測れないものだから、その『エネルギー』の動特性を探ることも出来ない。どうすれば、『エネルギー』の空間特性を理解できるかが電池の物理的現象を知る要点であろう。

電池とエネルギーの関係。

電池の内部で『エネルギー』がどの様に貯蔵され、それがどのような条件で電池内部から解放されて電気回路空間に放出されるか。その現象を『電子』なしに『エネルギー』の物理的特性として解釈する必要が有る。電池から送出された『エネルギー』は決して電源に戻る必要はない。負荷に供給されて、それで電池の役割は完了する。『電子』のような概念では、再び電源に戻る無意味な解釈が繰り広げられる。無意味とは何故に負荷を『電子』が通過する必要が有るのか。負荷に『エネルギー』を『電子』がどの様な物理現象として届けることになるのか。何故に『電子』が保有した『エネルギー』を負荷に届けて、その『エネルギー』分だけ欠乏した状態の、異なる『電子』が電源に戻る必要が有るのか。『エネルギー保存則』の意味を忘れないで欲しい。『電子』が負荷を通過しただけで、負荷で『エネルギー』を発生できる訳はない筈だ。無から『エネルギー』は生まれないのだ。電池における電子の役割を問う (2018/05/24) で矛盾の解説に使ったのが下図である。

Fig.1. の図の意味。普通の電池記号と異なる図で表現した。単純に電池の意味を表現すれば、陰極の電極金属で『エネルギー』源のエネルギー貯蔵物質を包み込み、そこから『エネルギー』の無い陰極側に放出され、負側電線路を通して負荷に供給される絵図で捉える。電池の陽極電極および充填物質は所謂電位としては同一にある。充填剤に貯蔵された『エネルギー』はその内部では『エネルギー』として存在している訳ではない。しかし陰極金属体との間には『エネルギーギャップ』が存在する。陰極のエネルギーレベルが充填剤より低い。その接触ギャップで、自動的に充填剤の内部から空間構造変換として『エネルギー』が陰極側に放出される。それは同時に電線路が繋がれているば、その回路空間に対してもそのギャップを埋めるために『エネルギー』が放出される。だから電池内部に見える形で『エネルギー』が貯まっている訳ではない。充填剤の分子的な構造変化として含まれているだけで、結局は質量開放として『エネルギー』の放射になるだけである。

電池の物理現象と科学論。電池の『エネルギー』を観測することも計測することも出来ない。ましてや『電子』の数量を計ることなどもっと困難である。仮想概念で、実在しない物は計れないから。それでは、電池内の『エネルギー』は在るかと言われればそれも無いと言わざるを得ない。『エネルギー』は忍者じゃないが、分子構造の中の質量となって貯えられているとなれば、それは空間分布の『エネルギー』として存在する物にはならないから無いとなる。質量と『エネルギー』に変換し合う物理量は科学論で測り様が無い物だ。自然世界は余りにも純粋過ぎて、物質論の理論の計測手法に馴染まない物かも知れない。分子構造から解放される『エネルギー』が科学論で解明されることを祈る。

関連記事。独楽の心 (2019/01/05) 。熱の物理 (2019/02/07) 。

電気回路要素の     『エネルギー』処理機能

電気回路は芸術だ。
電気回路要素は『エネルギー』の演技舞台。
直流回路は電源とコイルとコンデンサと抵抗の組み合わせだ。電源は『電子』など貯めていない。それは『エネルギー』を供給するための『エネルギー』の貯蔵ダムだ。『エネルギー』を緑色で示した。電池の負(?)側の銅線に沿って『エネルギー』はその近傍空間を流れ出る。定常状態では、『エネルギー』は抵抗体にだけ流れ込む。コンデンサもコイルも『エネルギー』を貯蔵して、電源との『エネルギー』のやり取りはない。回路要素の機能を纏めてみた。

コイル。
コイルLは『エネルギー』の忍者宿。コイルは既に電源回路とは切り離されたような状態にある。だからその端子電圧は零である。コイル内に貯蔵された『エネルギー』は回路側からは見えない。端子電圧がゼロという意味は回路から切り離された『エネルギー』の隠れ蓑の貯蔵宿だから。あたかも忍者によって『エネルギー』が隠されたようだ。

コンデンサ。
コンデンサはその電線間の電圧分だけの『エネルギー』を貯蔵している。電線路空間もコンデンサもその『エネルギー』分布を支配する空間構造定数回路と見做せる。だからコンデンサ機能の静電容量が電源『エネルギー』分布を導く道標役の道祖神だ。

抵抗。 
抵抗は『エネルギー』の空間手品師。抵抗は『エネルギー』の処理には高度の技能を発揮して、まるで手品師のようだ。図1.抵抗は『エネルギー』変換要素。抵抗は『エネルギー』の空間構造による処理の手品師だ。抵抗は図の右上に示した単位・次元の関係 [(H/F)^1/2^] で捉えられる。抵抗は結局その内部空間構造がコイルとコンデンサの組み合わせと見做せる。回路要素の中で、この抵抗の物理的機能が最も手ごわいものであった。抵抗は単純で、単に『エネルギー』の消耗体と見做される。電源から供給される『エネルギー』はこの抵抗体の中で回路から消えてしまうから。しかし、本当は『エネルギー』が消耗される訳ではなかろう。実際は図のように、抵抗体の中で『エネルギー』が変換されて、電源の中で観えなかった『エネルギー』が熱や光に変換された姿になって空間に放射される。それは『エネルギー』変換現象を経た『エネルギー保存則』の自然の原理の表れである。抵抗の単位はオーム [Ω] である。そのオームの単位、次元では抵抗体の物理的機能は見えない。何を意味しているかは分からない。電圧と電流の比を示す単位でしかないから。元々『電圧』も『電流』もその現象の隠された真相には『エネルギー』があるので、ボルトとアンペアではその物理的意味は捉えきれない筈だ。長く、抵抗の次元が [(H/F)^1/2^] である意味と、その抵抗体の中での『エネルギー』が見え難かった。    

結局、図2.抵抗要素構造のような空間構造機能を持った要素素子の合成体と解釈した。抵抗体に入射する『エネルギー』が先ずコンデンサ要素に蓄えられる。その『エネルギー』が要素のコイル構造を通して、コイル終端が解放したアンテナからの空間に放射される。その抵抗体内からは二度と電源側には戻れない。抵抗要素の特性インピーダンス Zr がその次元は [(H/F)^1/2^] となる。抵抗体内の空間に蓄えられた『エネルギー』は熱の『エネルギー』となる。その『エネルギー』が高密度で貯蔵されると、光として自由空間の特性インピーダンス空間に放射される。一通りそのような物理的機能要素として“抵抗”を捉えた。

『エネルギー』は『電子』や『電荷』では捉えきれない筈だ。電池から『電子』が流れると解釈するなら、『エネルギー』の供給を『電子』の機能で解説しなければならない。

帆掛船(2019年報告)

新しい子年を迎えて、今年が平和で、幸せな1年であったと次の年に渡れることを願います(2020/01/09)。

昨年も多くの自己問答を繰り返して、科学論の基礎概念として最後に残るものが『エネルギー』であるとの確信をさらに強くした。新たな不思議の発見のためにも、己を見つめるためにも昨年の記事をまとめておかなければならない。記事の標題の前に投稿の(月 /日 )を付けた。(2020/01/06) エネルギー像(物理学基礎論)と(2019/12/02) 燃料はエネルギーに非ず が参考になるかも知れません。

1.物理学的・化学的エネルギー

(1/5) 独楽の心 (2/7) 熱の物理 (4/22) 物理学理論と磁束 (4/29)  mc^2^から物理学を問う (5/21) 力の概念と電気物理 (6/14) エネルギーとは何か (6/29) エネルギー変換物語(炭火とエジソン電球) (9/14) 空間定数とエネルギー伝播現象 (11/13) 電池(エネルギー)の不思議 (11/17) 電気抵抗と物理特性 (11/19) 電池と電圧(エネルギーの基礎研究) (11/19) 電池と電圧(エネルギーの実験) (11/25) イオン化傾向とは? (12/20) 水の電気分解

2.電子・電荷とエネルギー

(5/26) 不可解な電荷 (6/6) 電子は流れず (7/6) 電子とエネルギーと質量 (7/28) 科学論と電荷 (10/23) 電荷と電圧の哲学 (11/20) サヨウナラ『電荷』 (11/27) 電荷方程式

3.光とエネルギー

(5/3) 光量子空間像(D線) (5/8) 光速度一定とは (11/2) 光と空間 (11/11) 軸性光量子像

4.電気回路とエネルギー

(3/3) 電気磁気学の要-Axial Energy Flow-  (3/17) 電気物理(コイル電圧) (3/21) 電気抵抗体の物理 (3/26) 電気物理(電圧時間積分とエネルギー) (4/3) 誘導エネルギーに観る技術と物理 (4/12) 変圧器の技術と物理 (7/16) 「高電圧」のエネルギー像 (8/11) 電圧・電流とエネルギーと時空 (8/23) 光エネルギーと速度と時空 (8/29) 分布定数回路と実験 (9/16) 電力p[J/s]の意味と解析法(1)意味 (10/1) これが電気回路の実相だ  (10/2) 電気回路のエネルギー問答 (10/6) 特性インピーダンスとエネルギー伝送特性 (10/31) 大学と基礎教育

5.電気工学と技術

(4/14) 励磁電流とは? (5/29) リサジュ―図形と技術 (9/22) 電流1[A]の物理的空間(インダクタンス算定式) (9/26) 静電容量算定式と理論 (10/14) 分布定数回路空間の世界

6.詩と科学と社会と文化

(2/3)負の科学技術と未来 (3/1)記事表示形式の違う訳は? (4/19) 月に立つは夢か (5/13)自然と科学理論の架け橋はいづこに  (5/18) 自然と科学理論の架け橋はいずこに (6/25) 津波前の急激な引き波―専門家に問う― (7/20) (8/2) 不思議とは (9/5) 『エネルギー』それが世界の根源 (9/7) 電流1[A]の論理性-考える理科教育への科学者の社会的責任- (10/28) Find more information here (11/24) 共謀罪は法の押しつけ (12/2) 燃料はエネルギーに非ず (12/25) 質量とMassの間に 

7.自然・日本の風景

(1/16) 地学ガイド 新潟の自然に感応して (4/25) 2019年の春  (5/10) 初夏の花 (5/18)蜘蛛の巣 (6/21) ダンゴ虫が何を? (7/4) 雨粒と波紋 (7/6) 生きる雨蛙 (8/3) 深山クワガタ (8/18)逃げ水現象の解剖 (8/28)実生の水楢 (9/4)岩ヒバ (10/20) 桔梗 季節に戻る (11/15) 秋の色 (12/3)霰の中に咲くサツキ

これが電気回路の実相だ

はじめに 電気技術概念、その代表が電圧と電流だ。その本当の意味はすべてエネルギーの姿を利用しやすい観測量として評価するものであった。エネルギーが電線導体の中を流れることはない。すべて電線で囲まれた空間を流れるのだ。基本的にはほとんど光と同じ光速度、毎秒30万キロメートルの考えられない速度で伝送されている。電気回路理論では電線路をエネルギーが流れるという解釈は一般的に採られない。それはエネルギーが空間内に実在している物理量という意識がないからであろう。エネルギーその物を計ることもできないし、目で見ることもできないから意識化が困難な事にその原因があるのだろう。太陽の光を浴びて、暑くてもそのエネルギー量を計れない。光を見ても、そのエネルギーが流れていることを感覚的に捉えにくい。決して光は振動などしていないことを実験的に検証できない。光の科学測定は振動数の姿でしか測定値として捉えられないから。光の空間を伝播するエネルギー分布波など測定・観測できないから。電気回路を伝送するエネルギーも光と同じ空間分布波である。

特性インピーダンスと伝播定数。 電気回路は電線と回路要素のインダクタンス、コンデンサそして抵抗の3つでほとんど構成されているとみてよかろう。モーターもそれらの要素に等価的に分解して解釈できる。それらの要素がエネルギー(このエネルギーという意味を空間分布波として認識しなければ意味が通じない)に対して、それぞれ異なる機能を発揮するから、電気回路現象を理解するには技術的学習が必要になる。その技術習得に欠かせないのが、電圧や電流あるいは電力の概念である。しかし、電気回路の実相はもっと単純なのである。電気回路のインピーダンスや虚数軸のベクトル手法などによる専門的知識によって、単純な電気現象の実相が見えなくなるようでもある。ベクトル解析などと抽象的な解釈法を専門的共通理解の手段として学習すると、とても便利に理解しやすくなり、専門家集団内の共通コミュニケーションに欠かせないものとなる。そこには物理学理論としての電圧・電流概念が確固たる強固な物理的基盤として支えてもいる背景もあるから。しかし、電気現象も光や電波と同じエネルギーの空間伝播(デンパ)現象でしかないという本質を先ず捉えることが必要なのだ。そこに大事な電気回路現象の理解の要として、特性インピーダンスと伝播定数がある。街には配電線が電柱で支えられて配線されている。電気エネルギーを供給するためである。高電圧6600ボルトのピン碍子配線、変圧器を介した低電圧200・100ボルトの絶縁ケーブル配線がある。それは空間を伝送されるスマホの信号エネルギーと同じ電線導体の間の空間を伝送される電気エネルギーの伝送設備なのである。専門的技術理論が分からなくても、単に電線路空間を構成して、その空間を通してエネルギーを光速度で送っているだけなのである。その基本の単純な自然現象の利用技術が電気工学や電力技術として熟練を要する専門的な理論となっているのである。誰しもが基本となる自然現象の単純な意味を先ず理解してほしい。電線導体の中を電子が流れている等という、如何にも専門家らしい言説に惑わされないでほしい。決して電線導体の中を電子など通れないのだ。この世界に、負の電荷を持った電子など存在しないのだ。教科書が真実などと言うことではないことも知らなければならないのだ。自然は深くて単純なのだと。

電線路の実相

電気回路の真実を知りたい方のために少し解説したい。技術と自然の架け橋の要点を。

空間の電気特性 目の前の空間が持つ科学技術的解釈に誘電率と透磁率という概念がある。空間がインダクタンスとコンデンサから成り立っているという解釈である。携帯電話を使えば、電線が無くても通信ができる。空間が電波信号(これがエネルギーの空間分布波なのだ)の伝送路だからだ。図に透磁率μo[H/m]と誘電率εo[F/m]の値と空間の持つ特性インピーダンスZo[Ω]および電気信号の伝送速度の逆数で伝播(デンパ)定数γ[s/m]を示した。光速度coもその定数から決まる。透磁率が4πという立体空間角度に関係した値で定義されて、うまく統合されている訳は誠に不思議に思える。余りにも良くできているから不思議だ。それは空間の長さ1メートルあたりにインダクタンス[H/m]がある。同じくコンデンサのキャパシタンス[F/m]がある。空間にコイルやコンデンサがある訳はないのに、そのように解釈して初めてエネルギー伝播(デンパ)現象の姿を納得して理解できる。その捉え方の妙味が、とても便利であるから不思議なのである。何か禅問答のようだ。

右に裸電線を張った電気回路の意味と特性を示した。数式には自然対数のln(2D/d)を使って示した。常用対数log(2D/d)に変換するには係数2.3026を掛ける。一般的には絶縁電線が使われるが、基本的な特性は裸電線の空間構造によって決まると考える。絶縁電線は電気エネルギーの流れる伝播(デンパ)空間が電線表面の絶縁体部を流れるため、エネルギーの流れる速度が比誘電率の値で遅くなる。1メートルの長さをエネルギーが伝播(デンパ)する時間が伝播(デンパ)特性で、比誘電率εsのため√εs倍だけ長くなる。裸電線の場合は、空間の光の速度と同じことになる。線路の特性インピーダンスの機能はその値が同じであれば、エネルギーの流れが電源電圧のエネルギー分布に従って反射などの阻害要因がなく伝送されることを示す。その現象は特に超高周波回路に現れる。分布定数回路と実験に例がある。

むすび

空間の光エネルギーの伝播現象を科学技術概念、空間定数(透磁率、誘電率)と結びつけて、その捉え方を電気回路の伝播現象と統一的にまとめた。30数年前に、拠り所の電流概念を棄却して闇の世界の中をさまよいながら、プランク定数の次元と実在概念 日本物理学会講演概要集 第56巻第1分冊2号、p.338. (2001) の光エネルギー分布波の捉え方から、空間エネルギー分布の解釈にたどり着いた。光とは何か?-光量子像‐にまとめた。今50数年前の、分布定数実習に対する一考察 (新潟県工業教育紀要第3号、1962)の分布定数回路の実験結果が貴重な資料となり、この記事の基にもなった。新潟県教育委員会に正式採用もされていなかった中で、アルバイトのような身分の分際で研究するなど誠に御迷惑をお掛けしたと恥じている。と卑下してみても、新潟県はこの研究報告を生かす責任があろう。 

 

分布定数回路と実験

はじめに

遥か昔の報告記事がある。1964年(昭和39年、新潟地震6月と日本でのオリンピック10月があった年)から、工業高等学校での初めての担当科目が電子工学であった。電子工学を担当するように告げられていたので、大学を卒業するまでに、電子工学の基礎Ⅰ,Ⅱ W.G.ダウ 著 森田清他訳 (共立出版)を購入し、勉強して何とか間に合わせた。当時を思い出すと、真空管の空間電荷効果2分の3乗則について話したことを覚えている。まだ半導体の話は教科書ではそれほど扱われていなかったと思う。特に分かりにくい内容と思ったのが分布定数回路の現象であった。教えるにも自分がよく分からない。それで、回路を組んで分布定数回路実験を生徒実習に取り入れた。その内容を、「分布定数線路実習に対する一考察」として、新潟県工業教育紀要、第3号、昭和42年(1967)に投稿した。初めて書いた記事である。内容は実験データなどあまり他にはない資料で、貴重と思うので、ここに掲載させてもらう。今、直流回路のエネルギー伝送特性 を書いている中で、分布定数の話を載せる関係から、良い参考資料と思った。(2021/07/02)追記。この「分布定数線路実習に対する一考察」記事についてお世話になった。図は何方かに、わざわざ奇麗に書き換えて頂いた。初めて記事を書いたので、論文の書き方も知らず、御迷惑をお掛けし、お手数の労をお掛けした事に感謝申し上げたい。

この発振回路は、双3極管2B29を使った回路である。筆者の作れる回路でなく、ある事業所の払い下げ通信機を手に入れ、その心臓部である発振回路を使わせて頂いた。

 

 

 

 

発振回路の陽極部に、実験用分布定数回路を結合する部分を作った。図4.のように実習室の端から端まで平行分布定数線路を張った。

この分布定数の構造は屋内配線用の軟導線1.6mmΦを線間間隔52.2mmとして、特性インピーダンス500Ωとした。

 

 

 

定在波の電圧、電流測定装置を第5図及び第6図として示してある。新版 無線工学 Ⅰ(伝送編) 宇田新太郎著 (丸善) を全面的に参考にさせていただいた。測定原理はp.85.に示されてある。しかし具体的な実験に取り入れた回路方式についてはどの様な理解のもとで決めたかは今は覚えがない。

 

定在波測定内容と実験結果。色々の測定結果のデータが示してある。実際の実験結果であるから、その意味では貴重な資料となろう。

 

 

 

 

【Ⅶ】検討 実験結果に対する検討結果が記してある。専門的には幼稚なものかも知れないが、結構真剣に取り組んでいたと感心する。

 

 

 

 

 

検討の続き。

 

 

 

 

 

以上の6ページ。

むすび

実験では、発振周波数が160MHz程度であった。その中でとても興味ある経験をした。この分布定数線路に直管蛍光灯40Wを挿入した。蛍光灯の発光原理は水銀ガスの励起波長数千Åの筈である。160MHzで蛍光灯が発光するとは信じられない。「量子力学」とは何か?と疑問が浮かんだ。

昔、1980年割愛人事と言われて、長岡技術科学大学に転勤するつもりでいたが、その春4月辞令をいただいた時には辞令の「前職欄」が空欄であった。その意味が分かった時には、正規の職業に採用された事がなかった事なのか。大学には研究実績と研究能力がなければならず、筆者のような者はまだ未熟と解釈して我慢してきた。今も、新潟県から転勤した履歴はないか?どう解釈しても、1939年12月01日生まれた翌年舞鶴鎮守府への戸籍転籍とその後の戦後の1949年4月戸籍戦後隠蔽処理(原戸籍抹消糊付け改竄)が根本原因であろう?だから、私は偽物か などの事件となるか。

励磁電流とは?

(2020/06/13) 追記。“Electrons”の紋所と科学理論 (2020/04/07) と The electron did not exist in the world. (2020/05/15) 。

励磁電流否定の記事 変圧器の技術と物理 を投稿して。

(2019/04/16)追記。何処でも磁気や磁束は励磁電流で論じられる。元々電線の中に電子など流れていないにも拘らず、磁束まで電流との関係で定義される。ファラディーの法則の式を見れば、磁束と電圧の関係しかない。電流に因って磁束が発生するという意味など、その式には無いのだ。自然科学が科学技術理論で固められ、物理学としての自然哲学が欠落している処に理論の矛盾が放置されて来たと考える。

磁荷特性と電圧時間積分。

変圧器を例に、巻線の1ターンコイル電圧 eu [v] = v/n [v] (nは巻数)を基準にして考えることを提案した。磁束や励磁電流という技術概念についても、長い技術的評価手法となっている伝統的な磁化特性を取り上げ、その意味の電圧時間積分との関係での解釈を図に示す。コイルの電圧という意味はコイル巻線導体近傍の空間に分布したエネルギー量の技術評価概念なのである。複雑な概念量を統一して捉えることが自然科学論としての未来の姿でなければならない。それを可能にするのは『エネルギー』しかない。励磁電流という曖昧な技術量を見極めて、磁束とは何かを考えて欲しい。なお、磁化特性は鉄心材料によって、図の①や②のように異なる。変圧器などでは特性が良く①に近く、インダクタンスはL[H]無限大とも見られよう。インダクタンスはその電気器具のエネルギー貯蔵機能を評価する空間特性の評価概念である。(2019/05/08)上の図を訂正した。磁束φと磁束鎖交数ψ=nφで、コイル巻数nの関係を訂正した。

気掛かりで、励磁電流とは?とITで検索してみた。1970,000件も記事が有り、様々な解説記事が検索される。変圧器をはじめ発電機あるいは電動機などすべての磁束の発生原理として、アンペアの法則の磁界発生原理で解説されている。変圧器の技術と物理で、せめて磁束発生原因の励磁電流という間違いはやめるべきだと指摘した。50年も前(正確には生命の危機を脱した、昭和46年秋に研究補助を頂いて、ロイヤーインバータでの単相誘導電動機の周波数制御運転をして、産業教育振興中央会の「産業教育に関する特別研究成果 別冊」に載せて頂いた頃)に筆者は既に励磁電流を否定していた。変圧器突入電流という電源投入時の現象も投入位相で電圧零時であれば、設計磁束の2倍程の ∫vdt [Wb=(HJ)^1/2^] の磁束量になるからと『電圧時間積分』で解釈すべきである。