カテゴリー別アーカイブ: 電気工学

励磁電流とは?

励磁電流否定の記事 変圧器の技術と物理 を投稿して。

(2019/04/16)追記。何処でも磁気や磁束は励磁電流で論じられる。元々電線の中に電子など流れていないにも拘らず、磁束まで電流との関係で定義される。ファラディーの法則の式を見れば、磁束と電圧の関係しかない。電流に因って磁束が発生するという意味など、その式には無いのだ。自然科学が科学技術理論で固められ、物理学としての自然哲学が欠落している処に理論の矛盾が放置されて来たと考える。変圧器を例に、巻線の1ターンコイル電圧 eu [v] = v/n [v] (nは巻数)を基準にして考えることを提案した。磁束や励磁電流という技術概念についても、長い技術的評価手法となっている伝統的な磁化特性を取り上げ、その意味の電圧時間積分との関係での解釈を図に示す。コイルの電圧という意味はコイル巻線導体近傍の空間に分布したエネルギー量の技術評価概念なのである。複雑な概念量を統一して捉えることが自然科学論としての未来の姿でなければならない。それを可能にするのは『エネルギー』しかない。励磁電流という曖昧な技術量を見極めて、磁束とは何かを考えて欲しい。なお、磁化特性は鉄心材料によって、図の①や②のように異なる。変圧器などでは特性が良く①に近く、インダクタンスはL[H]無限大とも見られよう。インダクタンスはその電気器具のエネルギー貯蔵機能を評価する空間特性の評価概念である。(2019/05/08)上の図を訂正した。磁束φと磁束鎖交数ψ=nφで、コイル巻数nの関係を訂正した。

気掛かりで、励磁電流とは?とITで検索してみた。1970,000件も記事が有り、様々な解説記事が検索される。変圧器をはじめ発電機あるいは電動機などすべての磁束の発生原理として、アンペアの法則の磁界発生原理で解説されている。変圧器の技術と物理で、せめて磁束発生原因の励磁電流という間違いはやめるべきだと指摘した。50年も前(正確には生命の危機を脱した、昭和46年秋に研究補助を頂いて、ロイヤーインバータでの単相誘導電動機の周波数制御運転をして、産業教育振興中央会の「産業教育に関する特別研究成果 別冊」に載せて頂いた頃)に筆者は既に励磁電流を否定していた。変圧器突入電流という電源投入時の現象も投入位相で電圧零時であれば、設計磁束の2倍程の ∫vdt [Wb=(HJ)^1/2^] の磁束量になるからと『電圧時間積分』で解釈すべきである。

変圧器の技術と物理

はじめに
ファラディーの法則が変圧器と言う電気設備の動作原理としての基礎となっている。それは技術理論であると同時に物理学理論でもある。電圧、電流および磁束という概念によって目に見えない電気現象を解釈し理解できれば、それで変圧器に関しては立派に電気技術者となる。決して磁束がどのような矛盾を抱えているかなどを問うことがなくても。200年以上に亘る歴史を踏まえて、ファラディーの法則が変圧器の自然現象の全てを捉えた真理と思われてきた。正弦波交流電圧実効値V[v]と変圧器鉄心最大磁束値Φm[Wb]の間には V=4.44fnΦm (ただし、fは周波数、nはコイル巻数) なる関係が厳密に成り立ち、それだけを理解していれば十分である。ならば磁束という概念は磁界の世界を支配する自然の実在量であると考えても当然かもしれない。しかしながら、磁束はあくまでも変圧器の動作を解釈するために導入した技術的評価概念量でしかないのである。自然の世界に磁束は電荷と同じく存在しないのだ。ここでは鉄心中に何が起きているかを、世界に実在する『エネルギー』一つの物理量からの解釈を示す冒険の旅に出かけよう。それは常識外れの異次元の世界かもしれない。

変圧器の技術理論
磁束量が基礎となる。鉄心に巻いた二つのコイルで変圧器の基本構造が出来上がる。鉄心中に磁束φが発生し、その時の巻数nのコイルには電圧 v = n dφ/dt が誘導される。だから磁束φが変圧器動作原理の基本概念になっている。磁束φがあるから変圧器の動作理論が成り立つ。その図表現や構造も分かり易い。巻数n1と n2で巻数比a=n1/n2を使えば、1次、2次の電圧、電流の関係が簡単に決まる。①の回路図のように表現出来る。②に構造を示す。鉄心に2次コイルを巻き、その外側に1次コイルが巻かれる。電源側の1次コイルが2次コイルを巻き込む構造に構成される。鉄心中には電源電圧の時間積分値で磁束が発生し、印加電圧波形とその時間に因って磁束値が決まる。磁束が励磁電流で発生するという解釈は、変圧器の動作の基本原理を複雑化し、分かり難くする無駄な解釈である。ものの考え方を統合する習慣の機会さえ失う。ファラディーの法則は v=n dφ/dt [v]である。φ=(1/n)∫vdtと書き換えられるから、電圧の時間積分以外磁束を表現できない筈だ。励磁電流など意味が無いのだ。もし磁束を励磁電流で評価しようとすれば、同じ変圧器で、電源電圧波形を変えたとしたら、どのようにその磁束に対応する電流を表せるというのか。電圧がどのような波形であろうと、その磁束波形は電圧値と波形から決まっているのである。全く励磁電流など考える必要が無いのだ。鉄心の性能が良ければ励磁電流など流れなくて良いのだ。だから教科書の励磁電流に因って磁束が生じるという解釈が採られているとすれば、その教科書はファラディーの法則の式の意味を捉え切れていないからだと考えざるを得ない。おそらく教科書検定基準がそのような励磁電流を要求しているのだろう。教科書検定基準がそのように書くように強制していることなのかも知れない。変圧器動作原理は磁束によってその技術理論は構築されている。しかし、その磁束は現実にはこの世界に存在するものではないのだ。そのことは電気技術論でなく、変圧器の物理理論として解釈を構築しなければならない事になる。それが次の問題になる。

変圧器の物理現象
空間エネルギーの挙動をどう認識するかが変圧器の物理現象の要である。磁束の空間像を描けますか。電荷の空間像を描けますか。物理量は空間に実在している筈である。その科学的論理に矛盾がなければ、本当に納得して捉えているならば、素直にその姿を描ける筈である。数式でない日常用語で語れなければならない筈だ。変圧器は鉄心にコイルを巻き付けて、全く繋がっていない二つのコイルの間で『エネルギー』が伝送できる機能の電気設備である。空間に存在する『エネルギー』を先ず認識して頂くことがここから述べる旅の理屈に必要である。コンデンサに蓄えられたエネルギーの姿を。コイルの中のエネルギーの姿を。常識外れの夢の世界に、本当の意味を探す旅であるから。しかし不思議なことに、div B = 0 であることを知っていながら、即ち磁束密度ベクトルB=φ/ [Wb] の発散が0であるということを。その意味は日常用語で表現すれば、磁束を→での表現は使えないという意味なのだ。磁束の発生源が無いという意味を表現しているのだから磁束が増加する→(矢印)は使えない理屈の筈だ。これは磁場空間に対する現在の物理学理論の解釈である。何故その意味を統合して捉えないのかが不思議なのだ。この磁束概念の不明確な曖昧さがそのまま放置されていては、理科教育特に物理学の論理的な考え方を育てるという意味が観えないのだ。自然の真理と科学技術の関係を明らかにするのが理学の目的と理解する。理学では、『エネルギー』を根本に据えた議論が重要な点になる筈だ。図2として空心コイルと鉄心を示した。変圧器は二つのコイルであるが、一つのコイルと鉄心の関係を論議すればそれで変圧器の物理的な(現在の教科書の物理学的という事ではなく、本当の自然の)現象の意味は分かる筈である。空心コイルはインダクタンス値もそれほど大きくない。そのコイルの中にカットコアの鉄心を組み込むと、とたんに変圧器の機能要素となる。インダクタンス値がほぼ無限大になる。いわゆる技術的な意味での磁束飽和という状態(電源短絡状態)にならなければ、殆ど電流は流れない筈だ。それは変圧器の2次巻線側に負荷が無い無負荷状態での電源側の電圧、電流の関係の話である。いわゆる磁束飽和にならない範囲での正常動作時の、その時に鉄心がどんな物理的機能を発揮するのかがここでの論題になる。電源からコイルに掛るのは電圧である。その電圧の意味は前の記事電気物理(コイルの電圧)で述べた。その電気物理という言葉は現在の物理学教科書の技術論的な意味とは違う。ここで論じる内容は教科書の内容より深く踏み込んだものであることを理解して頂きたい。磁束概念に代わる新たな解釈を求めた論議である。その上で進める。コイルにエネルギーが入射し、端子間にエネルギーギャップがある限りは正常なコイル機能を発揮すると。空心では無理であったのが、鉄心が挿入された時そのエネルギー入射が時間的に長く継続できるということである。コイル間に分布する空間エネルギーが何らかの形で鉄心の中に入り続けると考えざるを得ない。図3.コイルのエネルギーでは、電線が巻かれた部分のある状態を表した。一つのコイルとも見做せる。電気回路は金属導体、空気あるいは誘電体および磁性体など空間を規定する材料によって、その構造が制限された空間規定の形態によって構成されたものである。そこに電圧というエネルギー空間規定源である電源が支配するエネルギー場を作る訳だ。電源の負側がエネルギー供給源となって、電線路全体のエネルギー分布を光速度の速さで規定し、支配する。電線をコイル状に巻けば、その電線のコイル空間にも電圧に支配されるエネルギーや負荷に流れるエネルギー流などの影響が表れる。交流電源の半周期ごとに変わるエネルギー分布となる。インダクタンスというコイル空間もその電源の電圧というエネルギー分布の支配に従う。図2のコイルに鉄心が挿入された回路空間も同じくそのエネルギー分布に対するエネルギーの受け入れ対応が継続する限り、電源電圧をコイル端子で保持できるのである。それは鉄心がそのコイル空間にあることによってエネルギーを吸収する機能が高まったからである。(∫vdt)^2^ [HJ] のように電圧時間積分の2乗のエネルギー量が関係しているのだ。変圧器巻線のインダクタンスは殆ど無限大とも見られる。そのインダクタンスでエネルギー量に関係する電圧時間積分の2乗を除すれば、変圧器の電圧保持エネルギー量が得られ、それはとても小さな値で賄えるのだと理解できよう。そのエネルギー量に関わる量を変圧器技術概念では磁束として捉えている訳である。

図4.鉄心と軸性エネルギー流  図にはコイルの切断面の図とその平面図を描いた。鉄心を取り巻くコイル導体の間の空間はエネルギー流に満たされている。そのエネルギーが鉄心の中に流れ込むと考えざるを得ない。ここからの鉄心内のエネルギー貯蔵機能についての解釈は科学論と言える検証できる世界の話からかけ離れた別世界の話になる。鉄心の中のエネルギーの流れる様子など観測出来る訳が無い。導線の銅Cuと鉄心の鉄Feの同じ金属でありながらのその特性の差が何故生まれるかの物理的原理も分からない。しかし、マグネットに観られる力の意味を心のエネルギー感覚(磁気の軸性エネルギー流感覚)に照らし合わせたとき、そこにはエネルギーの回転流即ち軸性エネルギー流しか共感出来ないので、その軸性エネルギー流を鉄心のエネルギー貯蔵機能の原因として考えた。全く証明も出来ないお話で、科学論とは成らないかもしれない?それは原子の共有結合論否定の話と同じことであるが。この軸性エネルギー流は鉄心内の磁極即ちNとSという意味も消えてしまうことになりそうだ。その意味は隣同士の磁区間でのエネルギー流は流れが逆転するかと想像されるから。それはマグネットを近付けると、そのギャップ空間の砂鉄模様がマグネット周辺部に移動して、マグネット中心部は磁気空間という状況が無くなることを確認しているからである。同一マグネットを多数接合したとき接合部の砂鉄模様がどのようになるかの実験をしてみたい。科研の申請をするまでもなく出来る基礎研究だ。教室で授業をするには、本当に多くの分からない原理がある筈だが、教科書通りにその教育手法を伝達するだけでは、子供達も楽しくないだろう。

1ターンコイル電圧eu[v]  ファラディーの法則も物理現象として見れば、それは遠隔作用の法則である。変圧器巻線コイルに誘起する電圧の原因の磁束は鉄心中にあるから、鉄心から離れたコイルに作用するという遠隔作用である。アンペアの法則も電線電流と空間磁気の関係だから遠隔作用の法則である。変圧器の1次と2次巻線の間で伝送される電気エネルギーも磁束による解釈であれば、遠隔作用の法則である。しかし、空間にエネルギーが実在するとの概念を基本に据えれば、変圧器のエネルギー伝送も近接作用で捉えられる。コイル巻線の周りには同じようなエネルギー分布空間が存在し、そのコイル1ターン当たりのエネルギー分布量が1ターンコイル電圧eu[v]になるとする。巻線の1次、2次に関係なく、1ターンコイル電圧が同じであれば、その電線路の算術和として各巻線の端子には巻数に応じた電圧が現れる。n1×eu=v1 n2×eu=v2として。これは空間エネルギー分布による近接作用の考え方である。以前実験した変圧器の奇想天外診断の話の続きとしての結論でもある。

(遠隔作用と近接作用について) 物理法則では力が遠隔作用力である場合が多い。代表例が万有引力の法則である。それは質量の間に直接接触する物がなく離れた質点間に生じるという力である。それに対して近接作用力とは、具体的な例を挙げれば、水の流れで二つの流れが合流する時その流れの接触する水同士が力を及ぼし合い、どのような流れになるかを考えればそれが一つの例となろう。エネルギー流を考えれば、それは近接作用になる。風も空気の近接作用となろう。太陽系も全体はエネルギーの回転流として統一されて考えられるべきとは思うが。そのような解釈は質量に関わらない空間エネルギーの実在性を余り認識していない物理学理論には無いかもしれない。

むすび
空間エネルギーは実在しているが、その物理量を測定できない。そこに物理学理論の実験的検証を前提とした理論構築に限界があるのではないかと思う。電気技術理論の中の矛盾をどのように読み解くかに掛り、それは哲学ともなろう。ここで特に指摘したかった点は、変圧器の磁束が少なくとも励磁電流で発生するという考え方だけはやめて欲しい点である。この点は昔のことであるが、長岡工業高等専門学校で助教授の申請に研究・教育業績として3点の論点を書いた。その一つが、ロイヤーインバータによる研究成果としての点で、変圧器磁束が励磁電流で発生するという解釈は間違っていると指摘した。それは教科書検定基準を否定したことになったのかもしれない。

誘導エネルギーに観る技術と物理

はじめに
電気回路現象を理解するにはその回路内でのエネルギーの振る舞いを感覚的に捉えることが大切である。この記事もロイヤーのインバターの記事の準備として書いている。誘導電動機の運転などでは、その誘導性のエネルギー処理の問題を理解して置かなければならない。インバーターは直流電源を交流電圧波形に変換する技術であり、変圧器と誘導負荷のエネルギーの物理的意味を、電気技術概念の更に深い処の意味で捉えて置きたいと思った。基本的な方形波電圧波形と純誘導負荷のエネルギーの特質を捉えて置く必要があるからである。

単相インバーターと基本動作
最も簡単な基本回路を取り上げ、その負荷が純誘導負荷、リアクトルだけの場合についてまとめておく。物理量のエネルギーをどのように認識しているかが理科教育特に物理学において極めて重要に思える。誘導エネルギーと言う用語は一般的ではないが、コイルに蓄えられるエネルギーの技術的表現である。空心コイルでなく、鉄心に巻いたコイルのエネルギー量が大きく、その電気回路動作に強い影響を及ぼす。鉄心も含めて、コイルの中の空間に蓄えられる貯蔵エネルギーをここでは誘導エネルギーと言う。正弦波交流電圧より直流電圧の一定値を切り替えた方形波電圧波形の方が、そのエネルギーの意味を感覚的に捉え易いだろうと思う。技術的な電流や電圧の意味とエネルギーの関係について、方形波交流電圧源によって考える中身が明確になるだろう。筆者自身の経験で、初めて電気の回路動作を知ったのが方形波電圧源に関わったからである。正弦波電圧では意識しないものが観えて来るからである。

方形波電圧と誘導負荷電流 上の図のように、トランジスタとダイオードを逆向きに繋いだ一対で一つのスイッチを構成する。それを4個使って、負荷Lを電源につなげばトランジスタのオン、オフで方形波電圧が得られる。この方形波電圧で初めて、コイルの電流はどのようになるかを知ることが出来る。コイルの電圧voはLと電流ioの時間微分の積で得られることは知っていても、電流ioが電圧の時間積分となることは意識していない。コイルの電圧時間積分は磁束になる。磁束[Wb]をL[H]で割れば電流[A]になる。このような計算は科学技術理論であり、物理理論(現在の物理学は科学技術理論である)ではない。

科学技術理論と物理論あるいは自然論 科学技術論は電圧、電流などの計測量に基づいて理論を組立てたものである。当然現代物理学理論もその同じ概念に基づいて組み立てられているから自然論とは異なる。自然は人間が創り上げた自然観察手法ほど複雑な原則には無い。磁束も電荷も無い。原子構造もすべての素粒子と考えるものもたった一つの『エネルギー』の世界像である。磁束、インダクタンスおよび電流の単位間で、磁束[Wb]=インダクタンス[H]×電流[A] が何故成り立つのか?自然感覚としてその意味を捉え切れるか。せめて、磁束[(HJ)^1/2^]=インダクタンス[H]×電流[(J/H)^1/2^] なら、次元解析も容易であろう。如何に世界は『エネルギー』が根源を成しているか。エネルギーを論じない物理学は自然を論じているとは言えない。まだ、科学技術論からの要請で取り入れられた空間概念の空間容量ファラッド[F]と誘導容量ヘンリー[H]の時空論の曖昧性は残されたままのように思う。それは哲学的な思考によって解決されるべきものと思う。電流も電圧もそれらがエネルギーと関係付けて捉えられるには、それぞれ2乗によって初めて観えて来る筈だ。もう一つ触れておこう。トランジスタのnpn積層構造でも、ダイオードで表記すれば、ベース端子に対してエミッタもコレクタもダイオードの背向した構造体の筈である。コレクタ側からベースへ電流が流れないダイオードの構造の筈である。何故か不思議にもダイオードの逆向きの電流を制御していることになる。これも実際の製造現場では、単純なnpn積層構造ではない事が分かっているのだろう。考えても単純な頭では理解できない。これも何とも言えない不思議な科学技術論である。トランジスタにはエミッタに電流の方向が示されているが、量子力学論では電流ではなく、逆向きの電子の流れで論じられる。何故電子がコレクタ側に流れるかの明快な解釈は見えない。何しろダイオードの逆向きであるから。それも質量でもなく電荷でもないエネルギーの流れとして捉えなければ真の物理学にはならない筈だ。この辺に対する過去の悩み論を記した記事謎(p n結合は何故エネルギーギャップ空間か)がある。標題に技術と物理としたので少し脇道に逸れてみた。

誘導エネルギーの回生 誘導負荷エネルギーはその処理を的確にしないと、スイッチング素子が破損する。貯蔵されたエネルギーは回路から突然切り離そうとすれば、無限大のエネルギー放射源となり、回路内で炸裂する。だからと言ってそのエネルギー量が多いとは限らない。量は少なくても、そのエネルギーの流れを瞬時に止めることはできない。無理に止めようとすれば火花を放ってエネルギーを放射する。そのエネルギー感覚が電気回路解釈における筆者の感覚の基になっている。コンデンサのエネルギーにはそのような凶暴性を持った回路への危険はない。コンデンサの貯蔵エネルギーは簡単に回路から切り離せる。半導体回路のその誘導エネルギー処理の優れた機能に感心させられた。

リアクトルエネルギーの貯蔵と回生 ここでも技術論である。本来の電圧は電位が高い方がエネルギーの分布が少ないのである。負側がエネルギー源である。然し技術論では如何にも電圧の高い電位がエネルギー供給側のように解釈される。だから電流が流れて、負荷にエネルギーを供給すると理解する。本当は逆なのであるが、如何に科学技術論で頭が飼いならされたかは、電流と電圧の意識が手っ取り早い理解に結びつくかを思い知らされる。実に電圧、電流の技術概念が使いなれると便利であることか。しかしその物理的根本原理を明らかにしようとすれば、並大抵のことで解き明かせるものではない。だから電流が電線導体の中を電子が逆向きに流れる現象だなどと、実しやかなウソで誤魔化す事になる。質量の無い電子は定義されていない。電線の中を質量を移動させるにはどのような力が必要かは知っている筈だ。運動力学論で質量は電界では動かない。だから電荷と電界の関係で力を想定する。一般導線の中に電界をどのように想定できるか厳密に論理を展開出来るか考えてみれば分かろうと思う。無理なのである。それでも巷の電気解説論では堂々と電子が電線内を移動すると解説されている。しかし、だからと言って電流、電圧と言う概念を不要と言って切り捨てる訳にはいかないのだ。これ程実用的な便利な技術概念も無いから。その物理的実像を明確に捉えることは本当の自然の深い真髄を理解する上で大切な事でもある。それはトランジスタの内部あるいは近傍空間をどのようにエネルギーが流れるかを極めることに繋がる話である。技術論と自然の眞髄はどこかで明確に論理的に繋がる筈であるから。エネルギーの回生については何も述べずに来てしまった。一定周期でのスイッチングで、定常状態になった場合の負荷電流ioは三角形状に変化する。その各状態でコイル内にエネルギーが貯蔵される区間と放射(それが電源にエネルギーを回生)する区間とに分かれる。エネルギーの流れと電流値とは同じくはないが、コイルのエネルギーを電流で捉えるのが分かり易いという実に慣れという常識習慣の恐ろしさも感じながらの論理に従って理解する。本当のことは、エネルギーは電流の2乗で捉えられる筈だ。

半導体スイッチ回路をダイオードとスイッチSで書き換えてみた。二つのスイッチSを同時にx 側かy 側に投入すれば、電圧は方形波となる。スイッチの切り替えごとに打点のダイオードが電流の帰還回路を形成し、エネルギーの電源回生動作となる。なおコイルのエネルギーは電流の2乗だから放物線状に変化する。

むすび 電圧、電流と言う技術概念が如何に便利であるかは慣れるに従って益々離れがたい価値を意識する。しかし、自然にはそんな概念は無く人が創りだした技術概念でしかないのだ。実に不思議なことである。こんな事を書くことが社会的な混乱を来たす元になるようで実に気が重い事でもある。社会的組織の中では許されない論議になるかも知れないことから、孤独の世界を歩くことに成ったとも考えられる。過去の電気技術の仲間や工業高校時代の仲間とも全くの繋がりのない世界での思考の論考である。5,6年前に住所録も消えて無くなっていた。日本物理学会での発表も所属欄が書けない無様で今は止めた。学術に関する処に参画するには所属欄の記載がなければ、参画資格が無いようだ。時どき昔のことの闇の声が聞こえる。竹下内閣の『約束』が有ると。地方創生資金配分の関係かとも思うが、何の『約束』かは知らない。

今回の記事で、単相インバーター回路を取上げたが、電流が電気エネルギーの流れを示していると電気技術者ならそう理解する。しかし直流電源のエネルギー放射・伝送は実は負側のマイナス側から送られるのだ。だからトランジスタのスイッチングによるエネルギー伝送機能も負荷に印加する電圧のマイナス側がエネルギー高密度空間の基になっているのだ。大学の電気工学・電子工学の教育上の『参照基準』はその辺に照準を合わせるべきと所属の無い身ながら恥ずかしさを忍んで提言する。残念ながら教科書が間違いあるいは矛盾に気付かない内容を広めているのだ。理論がもっと実学・技術の学びの上に基づくべきだ。何々の法則が矛盾に耐えない筈だ。

政府機関なのかどうかは知らないが、裏で何か決めているようで、実に気味の悪い精神的ストレスの毎日である。正に人権侵害の連続だ。人の繋がりのない断絶した過去の上の浦島退屈論ではあるが。

 

電気物理(電圧時間積分とエネルギー)

はじめに
物理学の中で電気現象を取り扱う科目は電気磁気学になろう。その電気磁気学の中味を確認すると、電気工学の内容と殆ど変りはない。電圧と電流がその電気回路現象の解釈の基本概念となっている。微視的な現象を論じる量子力学などは原子・分子構造やバンド理論の抽象的な理論が主体となって、少し電気磁気学と言う分野からはかけ離れてもいる。しかし、電界・磁界と言う電磁場とその中の電子の振る舞いと言う意味で見れば、電気科学技術の基本理論がそのまま基礎概念として電気物理の基本になっているように思える。専門用語には、簡単に理解できないものが多くある。π電子等と言われると、電子の『電荷』の実像さえ理解できない処に、πとは何じゃ?と狐に抓まれた気分になる。磁界と言えば『磁束』で解釈される。磁場空間に磁束が通っていると言う科学の常識概念も、教育の場ではアンペアの法則に因る電流概念との関係で理論構築されている。電流原器の定義からもアンペアの法則が電気現象の物理的真理であるかの如く威厳をもって説かれる。一方ファラディーの法則も電磁誘導現象の解釈の基本を成している。電圧と磁束と時間の関係で電気現象の理解に欠かせない法則となっている。一般に電線路周辺空間にも磁場があり、その空間にも磁束が関係していると看做すであろう。磁束はアンペアの法則の電流によって発生すると解釈すべきか、あるいはファラディーの法則に因る『電圧時間積分』で発生すると解釈するべきなのか悩ましい意味を含んでいる。『磁束』と言う空間に実在するとは理解仕兼ねる概念が、科学技術の解釈に有用なものとして長く理科教育によって基礎共通科学常識となっている。『電荷』と同じく『磁束』と言う物理概念が如何なる空間的実在性を持っているかを明確に示す事が電気物理の命題であると考える。具体像として認識できない抽象性ではこれからの科学の社会的理解が得られないと危惧せざるを得ない。電気物理はそれらの基礎概念を明確にする事から取り組まなければならない筈だ。今回は拙い電気回路現象の知り得る範囲から、電圧時間積分と言う電気工学の考え方で、『磁束』と言う意味を取上げて電気コイル周りのエネルギーを考えてみたい。電気技術ではリアクトルと言い、理論ではコイルと言う電気エネルギーの空間貯蔵回路要素の話になる。電圧時間積分と言う技術用語を初めて知ったのが、ロイヤーインバーターの不思議な電気回路現象であった。それ以降磁束はアンペアと言う電流では捉えるべきでないと確信してしまった。もう50年も前のことである。現在はその延長として『電流は流れず』と言うところに居る。とても金属導体中を流れる『負の電荷』の逆流等と言う物理概念が電流だなどと言ってすまし込んでいる訳にはいかないのだ。この記事を書く意味は、理学と言う理論に偏り過ぎた意味を科学技術と言う現実的な応用の中に隠れた真実を見直す事によって理解して欲しいとの願いからであった。教育の中に間違った真理らしき内容が多く含まれている現実を修正しなければならないと思った。ロイヤーインバーターで洗濯機用の単相誘導電動機を運転した頃の『電圧時間積分』の意味を磁束との関係で取上げようと準備しながら、その前にコイルの基本的意味を別に解説したいと考えてのことである。理学と技術の意味を考える例題として有用と思ったから。

コイルと電圧時間積分

 電気回路にコイルが含まれると、そのコイルはエネルギーを貯蔵する働きでその機能を特徴付けて解釈される。このような電気現象のエネルギーに因る捉え方が電気物理として特に考慮して欲しい点だ。コイルの中の空間にエネルギーが実在すると言う感覚的認識が必要なのだ。二分の一にインダクタンスと電流の2乗の積の式で覚える数学的な電気知識でなく、コイルの電気導体で囲まれた空間内にある『エネルギー』の空間物理量を認識して欲しい。コイルに掛る電圧とは何か?その電圧がエネルギーとどのような関係にあるかをこの記事を書きながら、考えてみたい。ただ電圧と電流で回路を解析するだけでは、それは電気技術論でしかなく、電気物理と言う自然現象の奥深さを知る自然観には程遠いと言う意味を理解して欲しい。電圧も電流も電気技術解釈用の技術概念でしかないと言うことを。然し、その電圧、電流と言う科学技術概念が如何に実用性で優れたものであるかを知る為にも、電気回路現象の真の姿を理解して初めて可能になることを知らなければならない。電線路で囲まれた空間に磁界とか、電界とか理論付をする意味を考えれば、その空間に何かがあるからそのように捉えるのだと言う意味位は察知出来よう。電線路導体で囲まれた空間に『エネルギー』が存在し、また流れているからなのである。その『エネルギー』は光速度と言う途轍もない速度で空間のエネルギー分布の欠損が生じれば補う。実験的にそのエネルギーの流れを計測など出来る筈もない。その『エネルギー』を科学技術概念の電圧と電流と言う計測量で捉えて、実用的理論に構築した意味が如何に偉大であるかを知らなければならない。しかし電線の金属導体内を電子や電荷が流れている訳ではない事は自然現象の真理として理解することと科学技術概念の意味とは異なることも知らなければならない。電圧時間積分についてコイルの端子電圧vとした時、積分 ∫vdt [Wb] は磁束の意味になる。ファラディーの法則の積分形である。このコイルに印加される電圧の時間の長さが何故磁束になるのか。コイルに掛る電圧とはどんな物理的意味を持っているのか。それらの疑問を解くには、すべてエネルギーとの関係で明らかにしなければならない問題だ。しかし、磁束もその次元は[(HJ)^1/2^](単位換算表を下に示す。)、電圧の次元も[(J/F)^1/2^]とエネルギーの単位ジュール[J]とは異なる。電気技術単位もエネルギーのある観方の解釈概念で有れば、最終的にはエネルギーとの関係を明らかにして、理解する必要があろう。その事をコイルのエネルギー貯蔵機能と言う点に的を絞って考えたい。ここで、別に電気物理(コイルの電圧)として先に纏めて置くことにした。追記。前に記した記事:LとCと空間エネルギー (2017/08/02) も参考になろう。

考察回路2例 電源は直流電圧とする。抵抗とインダクタンスの並列回路、回路(1)と直列回路、回路(2)の二つの回路例を取上げて、そのコイルLの動作機能を考えてみよう。電源電圧を直流としたのは交流電圧よりも電圧値が一定であることから、電気現象の意味を理解し易いだろうとの事で選んだ。コイルに直流電圧を掛けることは一般的には考えられない事例であろう。回路例(1)ではもろにコイルに直流電圧を掛けることになるから結果的には危険な電源短絡事故となる。一応保護ヒューズを電源に入れて配慮した。

空間の電気量 物理学では時空論と言う言葉が使われる。物理現象は空間の中に展開される電磁現象とも言えよう。光は空間世界の王者でもある。それは空間に描く時間とエネルギーの営みでもある。そんな意味で、光が描く空間長と時間の関係は『エネルギー』と言う実在物理量に因って理解できる筈だ。1990年(平成2年)の秋頃に、完成した自然単位系がある。措置と言う強制牢獄への穴に落ちる少し前のこと。自然現象を理解するに科学技術概念だけではなかなか複雑過ぎて難しい。空間とエネルギーだけで電気用語の意味をまとめた表を載せる。すべての電気量がエネルギーのジュール[J]との関係で算定できる。電気量の次元を換算するに使うに便利である。余り物理学では、空間の意味にファラッド[F]やヘンリー[H]を意識していないようであるが、時間の次元も[s=(HF)^1/2^]で関係付られる。光の速度を決めるのもこの空間の物理的関係に因る。この空間の誘電率、透磁率の物理的意味合いを明確にする課題がまだ残されている。それはどうしても哲学の領域にもなるかと思う。科学と哲学の課題でもある。空間で『エネルギー』がどのように共振現象で伝播するかの解答が。何方かの挑戦を期待したい。

回路(1)の電気現象 スイッチによって二つの場合を考える。

(a) S1:on 、S2:off の抵抗負荷。電源スイッチ S をオンする。回路解釈は直ちに一定電流i=E/R[A]になると理解する。技術論としてはそれで十分である。然し物理現象としては、負荷抵抗に供給されるエネルギーは電線内を通って供給される訳ではなく、電線路で囲まれた空間を通して供給されることを知らなければならない。厳密には突然スイッチの周りのエネルギーギャップの空間が閉じられるのだから、複雑な空間の動揺を伴った後オームの法則通りの平常状態に落ち着くのだ。電気技術で負荷電力P=E^2^/R [W]と計算される。ワット[W]=[J/s]である。電圧の単位は[V]で抵抗の単位は[Ω]である。[V]と[Ω]で、どのように単位換算されて電力が[J/s=W]となるのか。その物理的意味をどのように解釈するのか。このことに関連して、やはり別に電気抵抗体の物理として考えをまとめた。

(b)S1:off 、S2:onでSオンする。実際はスイッチSオンすると同時に、電源短絡事故となろう。コイルのインダクタンスがL[H]であれば、電流はi= E/L∫dt [A]で直線的に増加する筈だが、そこには空間的な別の意味が関わっている筈だ。コイル空間が真空であったとすれば、エネルギーの空間貯蔵に空気中と異なる意味が含まれるかも知れないと言う疑問はある。コイル内の空間にエネルギーが貯蔵されると言う意味は、その空間のエネルギー貯蔵限界があると言う点を知らなければならない。ただ空気中の磁束量の限界と言う空間破壊の解釈は聞かない。電界の空間破壊は高電界30kV/cmと良く聞くが。それも磁場と電場と言う違いはあるが、空間のエネルギー貯蔵限界に因る物理現象の意味である。コイル電流i[A]に因って、コイル内に磁束[Wb]が生じると言うのがアンペアの法則に基づく解釈である。次元を考えれば、電流[A=C/s]からどのような物理現象として、磁束[Wb]が発生すると言うのだろうか。電荷には磁束を発生する物理量的な次元の意味が在るのかを問わなければならない。電気技術論として1800年頃に発見された知見が現在の物理学概念として本当に有用なのか。電荷と磁束の間の空間に起きる次元変換の物理的見解が必要と思う。そこには『電荷』の物理的空間像が示されなければ、答は得られないと思う。なお、電圧時間積分は電流i=(∫Edt)/L の中に含まれている。磁束φ=Li と同じ式ではある。

回路(2)の電気現象 R-Lの直列回路で、やはりLの機能を考えてみよう。既に、電気物理(コイルの電圧)としてまとめたので大よその意味は分かろう。コイルのスイッチS’:off で電圧を掛ければ、指数関数的に電流i がE/Rの値まで増加し、コイル電圧はエネルギー貯蔵した状態で零となる。

『問』 その状態でスイッチ S’ をオンとしてコイル端子を閉じるとする。その後の電流はオンしたスイッチ部を通るか、コイルL内を通るか。

『答』 尋ねたいのは、コイル端子を閉じたときコイルの貯蔵エネルギーは電流 i に因るのか、それとは別にコイル内の空間に貯蔵されたものと考えるのか、どちらで理解するかを答えて欲しいのだ。電流 i が電源に繋がった導線部 S’ を流れずに、わざわざコイル内を流れるとは考え難かろう。然しコイル内にはエネルギーが貯蔵されていると解釈しなければならない。そのコイルのエネルギーは電流に因るのか、コイル内の空間に貯蔵されたものと考えるのかを問うのである。ただ時間と共にそのコイルエネルギーも空間に放射あるいは抵抗で熱化されて無くなる。

回路の電流 回路(1)と回路(2)の電流値の様子を考えてみよう。

電流値 電圧が 100V 、抵抗値10Ω、 インダクタンス10[mH]として図に示した。回路(1)の(b)の場合で、コイルに電圧を印加した時、電源投入後何[ms]で電源短絡となるかは分からない。? 記号で示した。その状態をコイル内の磁束が飽和した為と技術的には考える。物理的には、コイル内の貯蔵エネルギーの受け入れが出来ない限度を超えたからである。また、回路(2)では、スイッチS’ を投入した瞬時にコイル端子は回路から切り離された状態になり、抵抗のみの回路となる。その時コイルのエネルギーはそのまま分離されてコイル内に留まり、時間と共に消えることになる。

むすび 記事の内容を見ると、電気物理と言いながら数式が全く無いことに気付いた。電気現象はその技術概念電圧と電流が解析の要となっている。然し、その電圧とは?電流とは?と殆ど疑問に思われてはいないようであった。30年前に『電荷』概念の空間像を描けないと疑問に思って、何か世間の囃したての中に揉まれながら、人生意気に感じて頑張っている内に、とうとう浦島退屈論の仕儀となってしまった。やっと御蔭さまで、電圧と電流の物理的空間像が描ける境地に辿り着いたようだ。電圧の2乗が次元[J/F]、 電流の2乗が次元[J/H]でその空間の空間エネルギーを捉えたものであると。電気回路の空間構造のコンデンサ機能の[F] とコイル機能の[H]とでその空間のエネルギー貯蔵量を捉えることが出来ると安堵の境地。やっと技術概念の物理的意味が理解できた。電圧-その意味と正体ー (2016/05/15)ではまだ疑問との格闘にあったようだ。然しその記事の文末に導体近傍のエネルギー分布を確信した記事が記してある。その実験的検証が在ったことで、ここまで来れたと感謝する。

電気抵抗体の物理

はじめに
改めて電気抵抗の何を書くのかと思われそうだ。しかも物理とはどんな意味が抵抗にあるのかと。前にコイルの電圧の事を記した。電気回路要素にはコンデンサとインダクタンスと抵抗しかない。しかし、抵抗だけMKSA単位系の中で特別の単位[Ω]が使われる。この単位の意味がどんな物理的特性を表現したものと理解しているのだろうか。自然単位系として、JHFM単位系を提唱した。エネルギージュール[J]を基本としてヘンリー[H]、ファラッド[F]の空間構造単位と長さ[M]だけで全ての物理量を捉える考え方である。その中では抵抗[Ω]は[(H/F)^1/2^]と言う次元となる。何故、抵抗がインダクタンスとコンデンサの単位と関係があるのか。ここにこそ抵抗体の物理的意味合いが隠されているのだ。物理と言う一般的な意味は、科学的に物の理屈を明らかにすると言うように捉えられていよう。ならば、科学論として実験的に検証可能でなければとそれは物理の中には入れてもらえないようにも思う。そうなれば、空間に実在するエネルギーなどを論じることは出来なくなる。正しく、物理学で捉え切れていない空間のエネルギーが本当に科学論の根幹に据えなければならない基本概念の筈である。空間のエネルギーを計ることは可能かどうかとても難しい問題と思う。ここで、電気回路の中でオームの法則として一番基になる抵抗の意味を空間の構造体として捉える考え方を述べたい。

電線路の特性
電線路は電気エネルギーを供給する設備である。最低二本の電線を張れば可能である。その細い2本の電線を張ったその空間には電気特性としてのコンデンサの意味とインダクタンスの意味が含まれている。幾ら細くても2本の導線の間にはコンデンサの機能がある。電流が流れれば(流れないと言いながら済みません)、1ターンのコイルを成すとも見られるから、その空間はインダクタンスの機能を持ってもいる。

電線路エネルギーと特性インピーダンス

電線路に電圧を掛ければ、無負荷でも線路空間にはエネルギーが蓄えられる。それは線路のコンデンサとしての機能で解釈され、その充電エネルギーと看做して良い。図の①のように線路の静電容量をC[F]として理解できる。

次に負荷がかかれば、②にように線路に電流が流れると、電線路はインダクタンスの機能を発揮する。負荷に伝送するエネルギーに因って、電線路に生じるエネルギーである。図では伝送エネルギーと表現したが、★印を付けて少し意味合いが違い、線路内に加わった貯蔵エネルギーと考えた方が良かろうという意味で捉えた。エネルギー伝送量の変化が生じると、その変化を抑制する電気的慣性の意味と捉えた方が良い。

この電線路の静電容量Cとか誘導インダクタンスLとかの捉え方は、送電線路の送電特性を解釈する基本的考え方になっている技術概念である。一般には単位長さ1キロメートル当たりの定数[mH/km] 、[μF/km]として線路特性を評価する。その線路の特性インピーダンスZ= √(L/C)^1/2^ [Ω]を使う。それは身近な2本線の電線路でも同じ事であり、図のようになる。

抵抗の空間特性 抵抗はエネルギーを消費する機能要素と普通は捉えるだろう。しかし抵抗でエネルギーが消失する訳では決してない。ただエネルギーの変換が成されるだけである。電気エネルギーを熱や光エネルギーに変換するのが抵抗体である。抵抗体でもエネルギー保存則は成り立っているのだ。だから抵抗とはエネルギーの変換機能であり、抵抗体の分子・原子構造体が成す空間格子構造の物理的意味を持っている要素であると解釈すべきであろう。電線路の意味に似ているのである。L とCの空間構造の成す構造体と言う捉え方が物理的解釈である。 この捉え方をする訳の説明になるかと思う設問を提起したい。

『問』 エジソンが発明した白熱電球がある。その電球もヒラメントは抵抗体である。抵抗は温度が上がると抵抗値が大きくなる。その訳を説明してください。

『答』 (ヒント)教科書では電子が抵抗の中を通過する(電流が流れる)ことになっている。電子が通るとどうして抵抗体が熱くなるのかの物理的解釈を示して欲しい。それが出来ない時本当の訳を考えると思う。数式では解答できない問題だと思う。物理学とは本来日常の言葉で理解することが基本だと思う。教科書の解釈の論理性を問う事でもある。(関連記事) 『オームの法則』-物理学解剖論ー (2013/04/16) 白熱電球のエネルギー変換原理は? (2018/02/12)。答えとしては、電荷とか電流と言う物理的描像が空間的に不明確な概念での解釈では無理であろうと思う。エネルギーの変換現象であるから、抵抗構造体の中にエネルギーの高密度集積がなければ、抵抗体からのエネルギー放射として温度計測の測定体にエネルギーの入射は起きないだろう。温度上昇はその物体にエネルギーが貯蔵されたから起きる現象である。物体の何処にエネルギーが貯蔵されるかと言えば、その分子結合の格子空間内に蓄えられるとしか考えられない。思い出した不思議がある。周期律表と抵抗率 (2016/06/16) の意味である。何故隣同士の原子でこれ程抵抗率が違うのか。原子構造が周回電子で解釈される意味で、どのようにその差が起きるかの疑問を説明できるだろうか。電子周回論には原子構造解釈に有益な論理性が観えないと思わざるを得ない。抵抗体のL、Cの空間構造に因るエネルギー変換特性の捉え方に関係付けても、電荷に因る電子周回論に納得出来ない思いだ。これは一般的科学研究の論文発表における査読検証の世界で通用する科学論にはならないだろう。然し、科学理論の根底にある矛盾として、『電荷』否定の一つの実験結果『静電界は磁界を伴う』がすべて意味を包含していると考える。その意味を踏まえれば、日常用語で語る考えも十分科学論として意味があると思う。空間エネルギーの測定が出来なくても、クーロンの法則で『電荷』量の測定が出来ない意味と同じ事と思う。より基礎概念が基本量に統一されて解釈できることが、市民の科学論の理解に資する筈であろう。

抵抗体とLC構造 

抵抗に電圧vが掛って、電流iが流れたとする。その抵抗体は確かに電気エネルギーを消費する。然し消費したからと言って、そのエネルギーが抵抗体の中で行方不明になる訳ではない。電気コンロで有れば、そのヒーターがエネルギーを蓄積して、温度上昇をする。温度上昇は抵抗体の中にエネルギーが蓄積されて、その抵抗体に入射するエネルギー量と放射するエネルギー量が平衡した状態で定常状態の抵抗機能の電気現象になる。抵抗体の物性により、比熱とか様々な科学評価認識量でその抵抗機能が異なる。然し基本的には、抵抗はその内部機能がLとCによって構成された構造体と解釈できる。図に示したように、電圧v は抵抗体周辺の空間エネルギーの分布の様相にその物理的本質を持ち、その空間積分を表したものと解釈する。陰極線が電圧の負側から流れるのは古く放電管の実験で示されている。その陰極線と言うのがエネルギー流なのである。だから抵抗体の電圧負側から抵抗体の表面に均等にエネルギーが入射すると考えれば、図のような分布になるだろうとの予想を表現した。熱と光のエネルギーが放射され、エネルギーの入射、放射が平衡する。木炭などは結晶体とは言わないだろうが、電気的にはその構造の空間にエネルギーが貯蔵され赤く加熱される。電気抵抗は結晶格子構造を成し、その構成要素がそれぞれ単位要素としてLC構造体を成していると考えた。

むすび

電気回路要素の抵抗は電気を学ぶ最初に学習し、 誰もが基本として理解している筈である。然しその物理的意味を突き詰めると、LC構造体として理解することに辿り着いた。単位[Ω]が持つ意味は結局[(H/F)^1/2^]と言う空間構造の電気特性を持った科学技術概念であった。今振り返って、科学技術と理論物理学の間の関係が、その基礎の中味を掘り下げて観て、そこに関わる人の意識の問題に深く関わっていると思う。そこに市民に開かれた科学論の未来が託されていると思う。今とても感謝することがある。このブログに因って、書きながら自分の科学感覚を整理し、『エネルギー』に統一した認識に到達できたことである。過去の電気回路とスイッチの機能 (2016/06/01) から周期律表と抵抗率(2016/06/09) 電気抵抗のエネルギー論 (2016/06/15) などと書きながら、やっとここに辿りつけたと思う。浦島退屈論のようで情けない思いもあるが?

 

電気物理(コイルの電圧)

はじめに
考えるということはどう言うことかと思った。分からないこと、疑問に思うことは突然頭の中に浮かび上がる。しかも、その内容は至極当たり前で、、今まで特別気にも留めないものである。しかし、不図気付くと何故か答に窮してしまう。それが標題の『コイルの電圧』の意味である。電気物理(電圧時間積分とエネルギー)を書きながら、コイルの電圧の意味だけ確認して置かなければと気付いたのでここに纏めたい。

統合するということ
電線路は空間を通してエネルギーを供給する設備であると前から述べ理解していた。電流と言う負の電荷の電子など電線を流れていないと理解していた。そこにコイルの機能を物理的にどう理解すべきかと考えたときに、磁束を電圧時間積分として納得していたにも拘らず、磁束飽和とコイルエネルギー貯蔵の関係を統合して理解していない事に気付いた。解った心算でいただけで、本当は分かっていなかったのだと。ここで、この難問にどう始末を付けるかと気分が暗闇に落ち込む。様々な電気現象の中からパズルの組み立てのような、何か忘れている駒札が無いかと探る。考えることは忘れものを拾って結びつける作業のようだ。その仕方は決して理屈で考えるというものと違い、自分の感覚に馴染むものを探し出すような精神的作務のようである。何か特別にどう研究するという事ではない。ただ「ボー」と思い悩むだけのようだ。今回の経験はそんな感じの答えへの道であった。

納得したこと コイルの電圧とはどんな意味を持っているのだろうか?と一瞬思い直した。『電圧時間積分』と言う意味を大切なことと理解していながら、電圧が線路の空間エネルギー分布の解釈技術概念であるという事との繋がりで意識していなかった。磁束が物理的実体でないことを唱えながら、磁束飽和現象と言う意味とエネルギー貯蔵の意味との統合に失調していたことに気付いた。

電圧とエネルギーギャップ コイルの回路解釈は電流iと電圧でvで解釈する。コイルのインダクタンスL[H]とすれば、コイルの貯蔵エネルギーはW=(1/2)Li^2^[J]と流れるコイル電流の瞬時値[A]の2乗で評価する。この数式による解釈が電気磁気学、物理学の世界の常識である。この式で理解するということは、そのエネルギーはどこにどのように分布していると考えるのだろうか。一方コイルはその特徴を磁束で解釈する。磁束とエネルギーの関係をどのように理解しているのだろうか。磁束が直接エネルギーと同じとは理解していない筈だ。結論は上の図のように、電圧の極性の負側の導線近傍にエネルギーの高密度分布が存在し、そこからコイル導線近傍にエネルギーが入って行く。コイルの導線同士の間の空間にエネルギーが分布し、そのコイル全体にエネルギー分布が行き渡った時、コイル内のエネルギー分布が平衡し、エネルギーの貯蔵余裕が無くなった時コイル端子間のエネルギーギャップが零となる。その状態がコイル端子電圧零の状態である。電圧から見れば、コイルにはエネルギーが貯蔵されているにも拘らず、コイル端子がスイッチで短絡された状態になる。これがコイルの端子電圧の物理的意味である。電気回路におけるスイッチの物理的意味が、そのスイッチの端子間のエネルギーギャップの有る、無しの意味と同じようなことである。実際はこのようなエネルギーギャップの意味をスイッチ端子間の『電荷』分布で解釈している訳である。その『電荷』は自然界に実在するものではないのだ。

技術概念『電流』とその測定

はじめに

電気技術は現代社会の基盤を成している。電気理論や回路技術さらにIT情報網は完成された必須の科学技術となっている。しかし《電流とは何か?》と検索してみると、そこに表れる解説は全く訳の分からない説明となっている。殆ど電子の逆流を言うとある。この科学技術社会で、学校教育はじめ科学常識と看做されている内容がどこからこのように決まった解釈手法に迷い込んでしまったのだろうか。『電流』は科学技術概念であり、実に素晴らしい電気計測量なのである。電流は電流計で計る計測量である。それでは電流とは何かを理解するためには、電流計で計るものが何であるかを知らなければならない。今まで『電流は流れず』などと言ってきた責任もあるから、もう一度その意味を解説したい。

可動コイル型電流計

電気回路は電源が電池のような直流が分かりやすいであろう。その回路に流れる電流のアンペア[A]の値を計る測定器の代表が可動コイル型電流計である。それは何を計っているか。

図1.可動コイル型電流計 計器を①可動コイル部構造と②内部回路で表した。回路に流れる電流I[A]をどのように計っているかが計器の動作原理となろう。電流と言うのは電流計で計ったアンペア[A]の値である。電流計は電子の流れ(逆流)など計れる訳が無いのである。電流I[A]と言うものは物理量(自然界の実在量)ではなく、あくまでも電気技術の計測手法として確立した科学技術量なのである。単位アンペア[A]も電荷クーロン[C]の時間微分あるいは単位時間の通過電荷量で定義され[A=C/s]となっている。この電荷の時間微分値等も電流計では測れない。そこで電流計が何を計っているかを知る必要があろう。

電流計は電圧計でエネルギー計測器

基本的には電流を検出するのは抵抗の電圧降下である。②の計器内部のシャント抵抗rs(回路に影響しない精密な低抵抗)に流れる電流Isの電圧降下rs Is [v] を検出しているのである。その電圧をコイルLとそれを囲んだ磁石NSの部分で、電流I'[A]という電流の大きさをコイルの回転角として読み取っているのである。電流計の心臓部とも言える部分が①可動コイル部構造である。磁石とコイルの位置関係がコイル電流I'[A]の値で変わる。磁石とコイル電流の間に働く力の関係はフレミングの法則として説明される。それが教科書の説明であり、それで電気技術者として知識は十分であろう。しかし、物理現象として踏み込んで理解しようとすればそれでは不十分ではなかろうか。直流回路のコイルの意味である。コイルの電気特性はインダクタンスL[H]で捉える。直流回路の場合、コイルが回路内に繋がっていても、電気的に変動が無ければコイルは無いと同じことである。電気的変動が無ければ、コイルの存在は無いのである。それは何故か?コイルとはどのような特性の機能要素かといえば、エネルギーの貯蔵機能がその特徴である。一度コイルにエネルギーが貯蔵されてしまえば、電気回路に変動が無い限り、電気現象はコイルの無い等価回路で書き表される。コイル(エネルギー貯蔵タンク)を短絡して、コイルに負荷電流(コイル電流が内部で還流していると考えても良い)が流れないとしても回路現象としては問題が無い。ただし、コイルの損失が無い理想的な場合ではある。この(磁場と電流間に因る力と異なる)解釈はフレミングの法則の表現する意味とは異なる。磁界を磁束で解釈する科学常識と異なるから。そこで電流計の指針を回転させている力は何かとなる。コイルの周りには、エネルギーが貯蔵されているのであるが、電流が貯蔵されている訳ではない。コイルのエネルギーは電気理論では W=(1/2)LI’^2^[J] とコイル電流で解釈する。それではそのエネルギーとはどのようなものと考えるのか。コイル内の空間にエネルギーが在ると考えるか、そう考えないのか。その解釈が極めて重要なのである。どうも物理学理論では、空間にエネルギーが存在すると解釈していないのではないかと思う。質量に関係しないエネルギーの実在というエネルギー概念が欠落しているように思える。光のエネルギー空間分布と同じ意味の電気現象の解釈が無いようだ。コイルに働く力はエネルギーにあり、その二つのエネルギー流間に因る力でコイルは回転するのである。

①可動コイル部の空間エネルギー

NSの磁石とその中のコイルの磁気について、電気理論では磁束で解釈する。磁束という概念も磁気現象解釈の為の技術概念でしかないのだ。それも空間のエネルギー流の技術的解釈法でしかないのだ。実際は磁極もコイルもその周りにエネルギーが流れているのだ。コイルのエネルギー流が磁石のエネルギー流との間で力を受け、回転するのである。この解釈はフレミングの法則で解釈される現象をエネルギー流間の近接作用力として捉える考え方である。科学論は実験的検証がその論説に欠かせない。だから空間のエネルギー流を観測する方法が無い限り、科学的とは認められないかも知れないが。見えないものを観ることは出来ない意味に成るか。ただ科学的根拠は30年前の『静電界は磁界を伴う』の実験結果のみである。

エネルギー近接作用力

図2.エネルギー近接作用力 コイル電流というものに対して、コイル貯蔵エネルギーは電流と逆向きにコイル内近傍を還流しているのである。回路状態が変化しなければコイル貯蔵エネルギー流は一定のまま流れ続ける訳である。従って、コイルに電流が流れ込む理由は無く、コイルは理論的には回路から切り離されたと考えて良い。元々電線内を電流が流れる訳ではないのである。電線近傍をエネルギーが流れているだけなのであるから。磁石の磁界も図のように磁極表面をエネルギーが還流している磁気現象なのである。今までコンパスの磁気の意味をエネルギー流で解説して来た。磁気はその結合力で特別の強さの意味を持っている。その力の源を磁束という直線的な捉え方では意味が理解できない。力は回転現象に秘められていると解釈する。原子結合力も磁気的エネルギー流にあると思う。参考: 電荷棄却の電子スピン像と原子模型 日本物理学会講演概要集 第64巻2号1分冊、p.18. (2009) にも論じた。

負荷電力と計測

1820年頃、ようやく電気現象の謎が解き明かされるようになった。エルステッドが電流の磁気現象を発見、アンペアが法則を唱えた。と説明される。その当時『電流』などの意味が分かってはいなかった筈だ。言葉で電流の磁気現象と言われると、如何にも電流が分かっていたように錯覚する。電流を計る方法はどのようになされたのか。電流計が完成したのは相当後の1889年頃で、ウエストン型電流計などであろう。それまでにエジソンが1879年に白熱電球を発明し、まず電灯の文明開化が始った。電気エネルギーの供給が産業・商売に成る機運が生まれた。電球の製造・販売や電力供給が産業に成った。さてどう負荷供給電力を、商売の対価を得るために、計るかとなる。測定技術・測定法および測定器が必要になる。何をどう計るかが研究対象に成った筈だ。1881年パリ電気会議で、電気単位 V (ボルト)、A(アンペア)、 Ω(オーム)、 C(クーロン)および F(ファラッド)が決まった。その基準の電気量がどのように決まったかは知らないが、この頃から電流の単位アンペア[A]の計量が研究されたのであろう。

図3.負荷のエネルギー測定技術 直流回路の負荷の消費電力を計るとなれば電圧計と電流計で計る。電気回路の初歩の理論だ。しかし、19世紀中頃を思えば、この測定法を編み出すにどれ程の智慧を絞ったか。ここに西洋技術革新の先進的な努力が隠されていると思う。負荷電力はP[W]で、1秒間の消費エネルギージュール[J]の値を意味している。そんな物理量をどう測定すれば良いか?ストップウオッチで計る訳ではない。電流と電圧で計れるのだ。その測定法を不思議と思わないですか。科学技術の智慧の結晶なのだ。電気を販売するとすれば、エネルギー量となろう。供給したエネルギーの算定はどのようにすればよいか。エネルギーを直接測る方法は難しいだろう。エネルギーが計れないのに、電圧と電流を計って負荷電力p[J/s]を計る方法を完成した。現在は電力量計(ワットアワーメータ)E[kWh]で各家庭への電気エネルギー量ジュール[J]を計っている。

電流計・電圧形で計るもの

電流・電圧の意味 電流も電圧も負荷の電力と抵抗値を計算した値なのである。誠に不思議なり。だから電圧と電流の積が電力p[W]になる。図3.②等価回路とエネルギー流で、電圧・電流計の計測部のコイルは直流回路では変動が無ければ、電源からのエネルギー流には切り離された状態にある。そのコイルに貯蔵されたエネルギー量はコイルの直列抵抗をrとすれば、

電流計ではW=(1/2)L(rs/(rs+r))^2^P/R [J]

電圧計ではW=(1/2)L(1/r)^2^PR [J]

となる。計器内の回路定数と負荷特性の関係を表示している訳である。

むすび

以上身近な言葉である電流について述べた。ITなどを検索すると、電流の意味について、中学生向けの解説記事にも電荷、電子が電線内を流れているとある。それが科学常識となっている。専門家が論説する科学リテラシーの問題になる科学的理解とは何を目標にすべきか。自然科学の内容が自然を観察し、その観察する機会に因って子供達のそれぞれの感性に任せるべきものが本筋ではないか。科学技術の為の競争を目的にした教育は理科教育と一線を画した科学技術教育なのだ。理科教育という余りにも偏った、決まり切った授業展開法に縛られ過ぎている処に重大な欠陥が在るように思う。電気現象一つを取上げても、本当に電線内を電子(電荷と質量混合体)が流れていると誰が観測できるのか。何故エネルギー流でないと証明できるのか。

電池における電子の役割を問う

はじめに 半導体のpn junction (pn接合部)のエネルギーギャップの意味を考えてみた。電池の意味との関連を考えた。電池の原理を問う (2014/11/27) があった。

電池電圧とエネルギー 電池はエネルギーの貯蔵庫であり、エネルギーの供給源である。人の思考における常識が如何に自己に立ちふさがる障壁となるか。すべてが『エレクトロニクス』の支配する世界に居る。その語源でもある『エレクトロン(電子)』の存在の意義を問うことになる。人は高いことを低いより有利と考えがちであろう。電圧が高ければ高い程、それは影響力が強いと考えるだろう。電圧が高いという表現は良くないのであるが、技術用語としては電位が高いとなろう。科学技術用語の持つ常識に『電圧』が有り、プラス極とマイナス極でその電圧の高い方と低い方を区別している。電池はエネルギーの供給源であることは誰もが知っていよう。しかし、誰もがその『エネルギー』とは何かを知っているかと問えば、さて答えられるであろうか。答えられなくても、決して気にしなくてもよい。『電子』に因って解説している人は殆ど『エネルギー』の意味を考えていない人が殆どであるから。ましてや化学方程式に因って解説する場合は、殆どその方程式の変換過程の中でその空間に実在する『エネルギー』を意識することは無い筈である。乾電池も蓄電池も+端子から電流が流れて、負荷にエネルギーを供給すると考える。しかし電流と言うものが電池のエネルギーを負荷に運ぶことなど出来っこない。電気理論では、電池のマイナス端子から電子が導線の中を流れて、負荷を通り電池の+端子に戻ると解釈している。電子の逆流が電流であると電気理論の常識が世界の共通認識になっている。それではその電子が電池からエネルギーを負荷に運ぶか?と解説者に問えば、答えないであろう。『電子』あるいは『電荷』に『エネルギー』をどのような意味で結び付けて解釈しているかが明確ではなかろう。2年程前に電圧ーその意味と正体ー (2016/05/15) に纏めてあった。

電池のエネルギー供給端子は-極である 直流の電気回路はプラスとマイナスの2本の導線でエネルギー供給回路が構成される。電池からのエネルギーは-極から送り出される。プラス側の導線は殆どマイナス側のエネルギー供給を支える脇役と考えて良い。負荷にエネルギー供給時、プラス側導線を通して電池へエネルギーは戻らない。電池のプラス端子はエネルギー供給に直接関わらない。電池の負側端子からエネルギーは放出され、負側導線近傍空間を通して主に負荷までエネルギーが伝送される。勿論導線の金属内などエネルギーは通らない。電池は-極がエネルギー放出源である。そのエネルギー(電気や熱あるいは光)を陰極線や電子と考えてきたのである。

エネルギーを運べない電子(科学的願望との乖離) 原子核の周りを回転する電子で世界の構成源を捉える原子像が世界標準である。電子が回転すると解釈する科学的根拠はどこにあるのだろうか。『電荷』否定が結局とんでもない現実にぶつかってしまった。科学理論の根源さえ信用出来ない自己を観る。そんな意味を卑近な日常生活の電池の意味に探し求めて見ようと考えた。簡便な科学的解釈を示すに『電子概念』がとても便利であろう。電池のマイナス極から電子が外部回路を通りプラス極に戻ればすべてが説明出来たことに成る。その不思議な論理が科学論理の正当性を世界標準として認められるのだから。 『エネルギー』を置き忘れていませんか? 電池はエネルギーの供給源です。電子論であれば、電子がそのエネルギーをどのように負荷に届けるかの問に答えてこそ科学論と言えるのではないか。そこに電子の実像が問われることに成るのです。電子の特性:質量me=9.1083 ×10^-28^ [g]、 電荷e=1.60206 ×10^-19^ [C] と質量と電荷の混合素粒子。この桁数の算定基準の厳密らしさと混合空間像の認識不可能の不思議に包まれている電子。電子が背負い籠に『エネルギー』を入れて負荷まで届けるのですか。帰りは『エネルギー』分だけ身軽に成ってプラス極に帰るのですか。 『エネルギー保存則』とはどんな意味なんですか。 『エネルギー』が観えますか?そこで、エネルギーに対して電子に求めると無理に仮定した時の科学的願望を絵図にしたみた。

電子の責務と珍道中 電池はエネルギーの貯蔵庫である。そのエネルギーを負荷で利用する訳だ。どのようにそのエネルギーを電池から負荷に届けるかを科学論として完成しなければならない。高度の量子力学は電子に重い責務を課しているように思える。太陽光発電で電子にどんな物理的機能を果たして欲しいと望んでいるのだろうか。電子がエネルギーを担うべき責務を無造作に要求しているようである。電子の身に成ってその心情を汲んで少し考えてみた。電池も太陽発電パネルも電源としては同じものである。ただ太陽発電パネルは負荷の前にエネルギー貯蔵庫に繋がっている。負荷の影響は直接受けない。さて電池のエネルギー貯蔵庫からどのように負荷に必要なエネルギーを供給するかを考えるべきだろう。検索で電池の原理を尋ねると電池のマイナス極から化学方程式の反応によって、電子が外部導線を通って陽極に廻り込み、その電池内で電荷を遣り取りして解説が終わっている。電子は何の為に負荷を通ったのか。 『子供の使いじゃあるまいし、ただ通り過ぎるだけじゃ理屈も通らぬ!!』 何故電子が通り過ぎるだけで電池からエネルギーが負荷に届けられると考えるのだろうか?電子は何故マイナス端子から導線を通ってプラス端子に行くことが出来るのだろうか?電子の移動はどんな理論で可能だったか?電界と電荷の関係は無視されても理屈が通るのか。上の図は電子に御足労願う訳だから、その科学認識に寄り添って何とか電子の責務とエネルギー運搬の道筋を考えて描いた図である。電子の(行き道)は、重い責務に喘ぎながら。負荷にエネルギーを届けた(帰り道)は、身軽に成って鼻唄まじり。そんな電子に期待された仕事の責務が想像できる。電子も行きと帰りで異なる姿に。しかし、量子力学には背負い籠でエネルギーを運ぶ意味はない。むしろ質量に頼った運動エネルギーの増加で電子がエネルギーを身に纏う意味に似ている。その場合は電子の帰り道は速度の遅い電子の姿を描くことに成るのか。当然理屈の通らぬ無理な道理ではあるが。もう一つ、化学方程式で『電荷』の辻褄を合せようとしても『負荷御殿の主から必要なエネルギー量が発注される』のである。エネルギーの発注に合わせたエネルギーの発送をしなければ電源・送配電線路・負荷間の辻褄が合わなくなる。勝手に化学方程式に従って、電子を送り出す訳にはいかないのである。負荷の要求をどのように電池側で処理するかが極めて重要な瞬時電力の話に成るのだ。電子に自動的にそんな責務まで負わせては酷と言うものだろう。

電子にエネルギー伝送責務は無理な注文である 電子は不要である。電池からのエネルギー(熱エネルギー即ち電気エネルギー)そのものが負荷の要求に応じて電線路空間内を伝送されるのである。電子不要の科学論。

半導体とバンド理論を尋ねて

追記(2018/05/16) 反省を込めて追記。既に前に同じような記事を投稿していた。半導体とバンド理論の解剖 (2014/01/25) である。さらに太陽電池の解剖 (2014/02/06)にも有る。辿れば、その前年のトランジスタの熱勘定 (2013/01/30)から始まっていたようだ。そこで、電気エネルギーと熱エネルギーが同じものであると考えていたようだ。現在は、『電荷』概念では自然現象の本質を理解することは無理であるとの認識にある。このトランジスタの熱勘定で論じた意味が極めて大切なことを示唆していたと思う。荒っぽくて、反感を買うようの記事が多くて誠にお恥ずかしい。2013年には「量子力学」とは何か?電子科学論の無責任など。

半導体の電子とは? 電力技術における電子の意味を尋ねて30年以上過ぎた。結論は『電荷』も自然界には実在しないと確信するに至った。それならば当然電子も『電荷』などとは関係ないことになる。電気回路の金属導体中を電子が通り、電流になると解釈されている。ただし、筆者は電流は流れず等と言ってきた。だから以下の記事も科学論として認知されるようなものではないかも知れないが、市民や電気の初学者が疑問に思うことに対する『問答』としての価値は十分にあるものと思う。言わば統合的な理屈の自然科学論として見て欲しい。専門的な領域を超えた論理として。さて、現代物理学理論の根幹を成すものに量子力学がある。その代表的な適用が半導体である。半導体の電子のエネルギーレベルとその動作領域の抽象的認識概念が理論構築の原点になっているように思う。フェルミ準位がその要のエネルギー基準値として存在することになっているように思える。そのフェルミ準位は半導体の物性特性に因って、そのエネルギーレベル(電子のエネルギー量)が何ジュール[J]、あるいは何[eV]と決まった値があるのだろうか。

エネルギーバンドとフェルミ準位 電気工学、電気物理と同じ電気エネルギーを取り扱うのに、その専門分野ごとに理論的解釈法や概念がまったく異なる。ただ、原子構造については原子核とその周りを回る電子から構成されているという解釈は自然科学論の基本原則として世界の共通認識になっている。原子構造が科学論の原点にある。『電荷』否定はその科学論から除外されてしまう。永年電力技術で感覚的に身に付けたエネルギーの実在性が染み付いた論理構成の習慣が『電荷』概念の曖昧性に拒否感を抱くようになってしまった。電気物理での半導体の電気現象解釈理論はバンド理論で、正しく原子構造論の電子のエネルギー論を論じているように思う。それは『電荷』概念に基づいて理論構築されている。半導体結晶は基本的にダイヤモンド結合の構造と解釈されている。電子による共有結合が基本になっているように思う。原子核の周りをどのような速度で電子が周回運動をしているかは分からないが、それぞれの電子が回転し互いの隣り合う原子同士の間では、核の周りは複雑な電子回転に伴う『負電荷』の空間場になっているように思われる。単純な電気理論から考えると、負の『電荷』の空間場で、隣り合う原子同士の間でダイヤモンド結晶になる訳が理解できないのだ。電子が回転しながら隣の原子同士が結合する姿が現実世界の空間概念で描けないから理解できない始末にいる。そんな理解能力の無い者が現代物理学理論のバンド理論の意味を考えるなど誠に恥ずかしい極みではある。しかし、初めてバンド理論を学ぶ若い方々も同じような疑問を抱くのではないかと思うので、少し考えを述べてみたい。電気材料を導体、半導体および絶縁体と三つに分けてバンド理論の基礎が説かれる。全てに価電子帯と伝導帯がある。半導体と絶縁体にはその帯の間に禁制帯と言うバンドギャップが存在する。それらのバンドの『帯』と言う幅で表現される意味は電子の持つエネルギーの量の大きさに関係したように見受けられる。電子が回転運動していることに因る運動エネルギーの量の大きさを意味しているのかと思う。電子には質量があるから、その御蔭で運動エネルギーの解釈だ可能である。水素原子は原子構造が単純だから、電子のエネルギー量は基礎物理学では良く算定されて議論されているが、シリコン原子の電子になれば、その運動エネルギーは算定は可能なのだろうか。どの程度の回転速度になるのだろうか。その算定が出来て初めて、新しい半導体の技術開発にバンド理論の意義が生きて来る訳と考える。決して理論が理論の為の理論であってはならない筈だ。『電荷』の実在性はその理論構成に具体的に生かされてこそと思う。リン(P)やヒ素(As)の不純物が添加されると実際の電子のエネルギー量はどの程度のジュール[J]になるのだろうか。

太陽光発電理論と電子 量子力学の理論として大まかに理解している事は、原子や分子にエネルギーを与えると、原子の外殻周回電子がそのエネルギーを受け取って、電子の質量の運動エネルギーの増加を来たし、遠心力と釣り合う様な電子軌道の膨らみを来たすと理解している。光などのエネルギーが電子の運動エネルギーとして吸収される訳をどのように理解すれば良いかも分からないので困惑している。更に何らかの原因で逆に電子の軌道が下のレベルに落ちると光としてエネルギー放射を来たすらしい。勝手な解釈と言われれば、致し方ないが電子の運動エネルギーと光との変換過程が理解できない。量子力学の基本理論を理解している訳ではないが、太陽光発電での半導体は太陽の光を吸収して、電気エネルギーに変換する発電機能設備である。発電パネル内で、電子が光エネルギーを吸収してエネルギーの高い状態で伝導帯に入る。その伝導帯では電子が自由電子となり、原子の束縛から解放されると解釈して良いのだろうと思う。伝導帯の電子はどの程度のエネルギー増加になっているのかを知りたい。発電パネルから次は電気回路を通して負荷に電子はエネルギーを運ぶのかと理論のつながりを考えるのだが、電気回路内の電子による電流概念となると、どうも電子はエネルギーを担う役割は想定されないことになっているようだ。一体半導体内で光エネルギーを受け取ったかと理解するが、回路理論になるとそのエネルギーを担う電子と言う概念は無いようであるため、どこか論理的な繋がりが無いようで理解に苦しんでしまう。もう一度述べる。量子力学における半導体のバンド理論では原子の周回電子のエネルギーの増減を論理構成の基本に据えている。伝導帯の電子は増分エネルギーを電子質量の運動エネルギーとして余分に担ってエネルギー供給機能を果たす役割が期待されているようだ。そこでの電子は速度の増加としての特別の電子になるのであろうか。次に半導体理論によって理論付された電子に関係して、その太陽発電パネルをエネルギー源として捉える電気回路理論では、折角のバンド理論で担ったエネルギーの増加分を電流の根拠である電子には求めていないのである。当然のことであるが、電気回路論では電子に質量に関わる概念は意味を持たないから、電子における『電荷』と電界との間の電気磁気学理論に基づく論理しか考察対象には成らない。だから原子構造論における電子エネルギーに関する運動エネルギーは全く無意味に成る。総合的に全体を見渡した時、半導体パネルで受け取った太陽光エネルギーは電気回路のエネルギー伝送にどのような機能で関わり、負荷に太陽光エネルギーを供給することになると考えるのだろうか。『エネルギー』を基本に考えると、太陽光線も電気回路を伝送する電気エネルギーも負荷に供給されるものも、みんな同じ『エネルギー』でしかないのである。電子の『電荷』は理論的に『エネルギー』を持ち得ないのである。

過去の関連・関係記事 今迄に取上げた考察記事は半導体、電荷およびエネルギー論については次のようなものがある。

『瞬時電力』の物理的意味

はじめに 電気技術概念に『瞬時電力』がある。電気エネルギーが現代生活を支える基盤となっている。しかしエネルギー消費量が増加すれば、海水温度の上昇を来たし、地球温暖化による自然災害の増加と言うリスクも伴う状況を来たして居る。先日も新潟地方を襲った暴風雨によって電柱4本がなぎ倒され、突然の停電の被害が発生した。海水温度の上昇が空気中の水蒸気含有率を挙げ、寒気とのせめぎ合いによる上層部の急激な水蒸気体積収縮により低気圧を作り出す。日本の木造住宅の安全性が脅かされる事態を迎えている。竜巻と低気圧暴風雨が伝統的な生活様式の安全性を脅かす事態になっている。食糧生産のハウスも対応できない事態を来たしている。『エネルギー』の物理的意味が正しく認識されていないようで気掛かりである。3月5日西日本では雷の異常発生が観測された。雷の原因は水蒸気の熱エネルギーである。『電荷』などでは決してない。#末尾注#に雷について関連記事。初期の記事、電流は流れず (2010/12/22) にも論じた事である。水と温度の関係は『エネルギー』の何たるかを問う問題でもある。電気技術には『瞬時電力』の他新しい『瞬時虚電力』などと言う用語もある。電気技術の『瞬時電力』の意味を少し深めて置きたいと思った。

瞬時電力とは? 電気現象を論じるに『瞬時電力』と言う用語が使われる。一般にはあまり馴染みがないであろう。電気製品の消費電力も余り気にはしないだろうから。600Wとか500Wと言う数値はその電気製品の1秒間の消費エネルギーが600J(ジュール)、500J(ジュール)であることを示している。その消費したエネルギー量に対して電気料金を払っている。少し電気回路を考える技術者なら電圧と電流の実効値の積との関係で平均の消費電力量で十分理解できる事である。今更改めて、『瞬時電力』でもなかろうと思うかもしれない。しかし無効電力などとの関係を考える時になると、時間的なある瞬時の値がどんな意味を持つのかが分かっているのかと自分に問うてみた。簡単な回路で考えた。

図1.瞬時電力とは何か? 100V、50Hzの電源に10Ωの負荷抵抗。難しい理論は分からないが、基礎的なオームの法則の範囲なら深くも考えられる。電圧v(t)、電流i(t)および瞬時電力p(t)はグラフに描いてその瞬時値を認識出来る。不図気になったのは瞬時電力p(t)の座標の[kW]である。この負荷の電力は電流実効値10AであるからP=1[kW]である。この1000[W]と言う電力は1[s]間の間に負荷に供給されるエネルギーが1000[J]であると言う意味である。瞬時と言う時には時間の長さは含まれていない筈だ。ある時刻の意味である。1[μs]でも瞬時と言う時刻ではない。ワット[W]と言う単位はエネルギーの時間微分の意味である。50Hzの交流電源電圧は1[s]間に100回の回数で負荷にエネルギーを供給しているのだ。その1回分が10[ms]の間に供給される丁度10[J]である。その100回分が1[s]間の1[kJ]になる訳である。

図2.p(t)=dwp(t)/dt  瞬時電力p(t)とは、ある時刻における供給エネルギー値wp(t)の時間微分値を表すものと見られよう。瞬時電力と言う供給エネルギーの電気技術概念もその表現内容を確認しようとすると、なかなか複雑である。それは電圧でも電流でもやはり時間微分の概念が含まれているのだろうから、同じく物理的には微妙な意味を含んでいるようだ。電気回路の基本認識として、『エネルギー』の供給設備であると言う事を理解して欲しい。燃料の『熱エネルギー』を発電設備で「電気エネルギー」に変換し、送配電線路を通して需要家に『エネルギー』を供給しているのである。電気エネルギーを動力に使ったり、熱源として利用したり電灯の光として利用するのである。その『エネルギー』とは何かを認識することが重要である。何処にも『質量』を必要とはしていない。質量でエネルギーを論じる必要は無いのである。確かにモーターの負荷は回転の慣性に動力を働かせるから、質量との関係で論じられる。しかし電気エネルギーには質量は含まれていないのである。電気回路の電流概念には『電荷』と『質量』を含んだ『電子』が主役を演じて論じられる。電気回路で、電源の『エネルギー』を『電子』がどのように負荷まで運ぶと考え得るのだろうか。『エネルギー』の実在性を認識する事が科学論の基本であるべきだ。瞬時電力p(t)は正弦波電源電圧で有れば、数式では電圧と電流の瞬時値から、その積として三角関数の式で表現できる。その電圧と電流の瞬時値は変圧器(Tr.)と変流器(CT)で検出し、その積をオペアンプなどで算定して瞬時電力p(t)の瞬時波形を描くことが出来る。その得られた波形の瞬時電力の単位と数値で、2[kW]のピーク値とは一体どのような意味を持っているのかと考えると、その表現する概念の内容が良く分からないのである。技術概念とは?と誠に不思議な感覚に陥るのである。完璧と思われる技術概念と理論が電気技術者としての長年の常識的世界観が故の物であったのかと、自分の認識に戸惑いさえ感じてしまうのである。

易しいことに含まれる深い意味 電気理論は長い伝統に育まれて、完璧な電気技術論として定着している。それは、電圧と電流の技術概念で十分電気回路現象が理解できるものになっている。極めて易しいオームの法則として完成されている。しかし、その完璧と思える理論でさえも、自然世界の眞相と看做すにはどこか不自然な違和感を感じざるを得ない。そんな感覚的理論の不整合性を突き詰めて来た。物理学理論の『電荷』と『質量』そして『エネルギー』の間に横たわる膨大な絡み合いを解きほぐす作業であったのかも知れない。世界を描くはそんな思いの結論であったのかもしれない。

図3.瞬時電力p(t)とエネルギー伝送 導線内を電子が流れ、電気エネルギーを負荷に供給すると言う解説が普通の電気回路解釈である。今でも教科書はそのように解説されている。電気技術概念の『電流』と『電圧』は誠に素敵な概念である。そんな便利な概念を創り上げてきた電気技術を称賛しなければならない。その御蔭で現在まで電気が社会生活の重要な『エネルギー』供給源として利用出来ている訳である。太陽からは電線路も無しに地球上に『エネルギー』が供給されて、地球の生命が育まれている。お日様が照れば暖かい。太陽の『エネルギー』を受け取っているのである。電線路の銅線の中を『電子』が流れて、電気エネルギーを供給している等と言う解釈では矛盾に耐えないと思うのだが皆さんは如何に考えるかと問いたい。最近は配電線路も絶縁電線を撚って配線しているので、相当配電線路静電容量も大きいかもしれない。その配電線路単位長さ当たりの静電容量をC[F/m]として、電圧分のエネルギー分布量wv(t)[J/m]を表現してみた。電線路には電圧が印加されただけで、線路空間に電気エネルギーが溜まると解釈する。そのエネルギー量を評価する電気技術概念が『電圧』である。電気の眞相(1)-電気エネルギーとは何か― (2014/10/13) に関連している事でもあろう。過去に電気の眞相(2)および(3)で―電圧とは何か―、-電圧と負荷―(2015年)を論じた#末尾注#。電線路電圧の2乗に比例してエネルギー量が溜まる。どのような空間分布になるかは分からない。絶縁材料部でエネルギー密度は高くなるだろう。深い意味でのエネルギー流について。図3で、ポインティングベクトルS(r,t) を使って線路空間のエネルギー流の解釈を描いた。しかしそれも考えてみれば、時間的には瞬時の表現には成っていない。電力の単位ワット[W=J/s]は時間的な瞬時と言う意味での物理概念を表現しては居ないのである。今までの考察では、線路電圧がその線路空間のエネルギー貯蔵量を評価する技術概念であると言う結論に達した。しかしそのエネルギー貯蔵量に対して、負荷に供給される伝送エネルギー量がその内のどの程度の比率であると考えれば良いかまでは示されていない。その負荷供給のエネルギー量を評価する技術概念が『電流』瞬時値i(t)になる筈である。i(t) とp(t) およびwv(t)の間の関係で捉える必要があろう。その辺の関係は次の記事、瞬時電流の物理的意味で別に述べたい。(2018/11/25)追記。瞬時電流や瞬時電力と言う物理的意味が今まで筆者の理解し切れないでいた事さえ改めて考え込んでしまう。その意味を、技術概念『電流』とその測定および瞬時電磁界と概念に纏めることが出来たかと思う。導体中を流れる電子と言う解釈が虚構の科学概念であったと言わなければならない事態をとても残念な結果と思う。物理学の根幹から立て直さなければならないから。

光の正体が電気現象の基礎事項 電気現象は線路空間のエネルギーの挙動として理解する必要があろう。電子が『エネルギー』を背負って負荷まで運ぶ理屈は成り立たない筈だ。どうしても物理的な自然現象として捉えるには、光のエネルギー伝送の意味を基礎に考えなければならない。電子では、エネルギーの光速度伝送を説明できなかろう。『電荷』概念では物理現象としての電気回路解説は無理である。『現代物理学理論』の高度な数学理論での解釈は何も理解できないが、身近な電気回路の『オームの法則』の自然現象としての物理的意味を掘り下げて解釈することの大切さは理解できる。目指すは市民が理解できる科学論であるかも知れない。

#末尾注#

雷の正体 (2012/11/13) ドアノブの火花-熱電変換- (2014/02/09) 雷は熱爆発 (2014/05/03)

電気の眞相(2)-電圧とは何か― 電気の眞相(3)-電圧と負荷―