カテゴリー別アーカイブ: 電気工学

電磁誘導現象の真相

ファラディーの法則(2020/10/24)。それは19世紀初めに唱えられたアンペア―の法則と共に電気現象の不思議を解き明かす基本法則である。電気回路現象の解釈の要となる概念が『電流』と『磁束』であろう。ファラディーの法則で、『磁束』がその主要概念となる。しかしよく考えると、コイルに磁束が鎖交すると何故コイルに起電力が発生するかの理由が分からない。金属導体のコイルと磁束の間の物理現象はどの様なものか。『磁束』とは一体どのような空間的物理量か。「科学技術概念の世界」を書きながら、さきにこの記事を投稿する。

磁束が自然世界にある訳ではない。人が電磁誘導現象の訳を解釈するために仮想的に決めた概念である。『電圧』とは何か?と同じように『磁束』の意味も分からないのである。磁石のN極側から空間に放射する線束として解釈して居よう。空間に線束とはいったい何だろうか。磁束や磁界と言う解釈概念は、本当はそのN極およびS極の周りをエネルギーが回転している空間現象なのだ。その様子を図の磁束φの先端に記した。N極側から見て、時計方向に回るエネルギー流なのだ。コイルの端子電圧Vはコイル1ターン毎の単位電圧vuの加算の電圧となる。丁度乾電池を積み重ねたと同じことになる。

コイルはコンデンサである。電線を二本平衡に張ればその間にはコンデンサが構成される。電線間の離隔距離と電線の形状・寸法でコンデンサ容量は変わる。コイルはその電線の間にはやはりコンデンサが構成されていると考えて良い筈だ。コイルの端子電圧の意味を少し深く考えれば、そのコイル電線間のコンデンサ容量と、そのギャップ間の貯蔵エネルギーとの関係を見直せば、新しい電圧の概念で統一的に捉えられると考えた。コイル巻き線間の間のエネルギー量をδ[J/1turn]とすれば、1turnコイルの電圧vuは図のように認識できる。丁度1turnの電圧を巻き数n倍すれば、コイル端子電圧Vとなる。

変圧器と『エネルギー』反射現象。

先に電気回路は直流も高周波も同じ電磁現象の基にあると述べた。変圧器は電気回路の中でも少し異なった、電力工学の捉え方が中心になって認識されているようだ。物理学の変圧器の解釈は励磁電流による磁束発生がその根本原理となっている。もう励磁電流などと言う解釈は過去の遺物概念と破棄しなければならない時にある。そこで更に先に進むには、変圧器も電線路に繋がれた一つの負荷でしかないと考えざるを得ない。其処では負荷と電線路特性との負荷整合の統一的解釈にまとめなければならない。変圧器での電源間とのエネルギー反射現象をどの様な認識で捉えるべきか。空芯であればすぐ短絡現象になる。鉄心がある事で、技術概念の『磁束飽和』に至らずに短絡せずに済む。それは鉄心へのエネルギー入射が時間的に長くかかり、鉄心でのエネルギー反射が巻き線空間を通して電源側に起きるからと考える。後に、追記で図によって示したい。ひとまず基本的な真相だけを述べた。

 

 

ロゴウスキー電極空間の磁界

はじめに(2020/06/09)。
電気工学の分野に「高電圧工学」がある。高電圧送電系統の安全設計に欠かせない基礎工学部門である。雷が送電線路に及ぼす影響を調べるに、高電圧放電現象を研究する標準電極がロゴウスキー電極である。直流の高電圧をその電極間に印加すれば、その空間は静電界と言う電場になる。電気理論では、その電極の間の空間には一定の静電界が両電極のプラス、マイナスの『電荷』によって発生すると成っている。決して磁界は存在しないことになっている。実は大学の卒業研究が高電圧のアーク放電に関するものであった。電力回路制御論と電気磁気学理論との理論的統一への道が高電圧工学のロゴウスキー電極間の空間のエネルギー流に導かれて、今日の物理学理論の根源を問うことになった。The electron did not exist in the world. (2020/05/15)。それは1987年春からの、中曽根臨時教育審議会(*)の不気味で、不可解な中での政治と教育の中立性に関わる事件とも言えよう。

静電界中の磁界。初めに結論を示そう。それが下図のロゴウスキー電極間の空間のエネルギー流である。自然界には『電荷』は存在しない。だから、高電圧工学の研究の基礎概念である『電荷』による電極空間の電界は実際はその空間を還流しているエネルギー流の場である。その空間にマグネットを設置して、いわゆる電界強度を強めれば、磁石のマグネットの向きが変化する。現在の科学理論の『パラダイム』では解釈できない現象である。以下の記事の結論を示した。

 

ロゴウスキー電極間の空間に、磁界が存在することを実験で確認した。今になれば、電界と磁界は単独の電磁場とはならないことを当たり前のことと認識している。だから静電場に磁界が在って当然との認識に在る。しかしそれは、現在の電気理論の教科書の解釈には無い。それが「科学パラダイム」と言う現在の科学理論の世界に問う緊急の課題でもあることになる。

『静電界は磁界を伴う』-この実験事実に基づく電磁界の本質-
その実験結果の写真は Friction heat and Compass (2020/03/22) でも説明した。

『静電界は・・』の結果の、そのむすびに、 4. 実験事実に基づいた電磁界への考察と課題 として良くまとめてある事を知った。現在は、そこで指摘した課題を忠実に確認して、全体像として科学理論の矛盾を解明してきたと一つの安堵に居る心地だ。その翻訳を印す。

以下の翻訳文の中に出てくる方程式とその番号(3)、(4)および(5)を示した。これらの式はマックスウエル電磁場方程式を光速度ベクトル c=cj によって表現したものである。エネルギーの伝播方向を座標のyj軸とした。なお、(3)式はポインティングベクトルであるが、この式は瞬時値としては余り意味が無い(1秒間の値と見える)ので、別に取り上げて論じたい。
(翻訳)
4. Consideration of electromagnetic fields based on experimental results and future challenges. It was experimentally confirmed that a magnetic field exists in a constant electric field (electrostatic field) as shown in equation (5).Therefore, it can be said that equations (4)and(5) are basic equations that express the essence of electromagnetic fields. The meaning of equation (4) also includes the concept that there is an electric field around the permanent magnet and the earth, and there is also a flow of electromagnetic energy. Next we discuss the relationship between “charge” and “energy” as an important point discovered from the experimental results. Figure 3.The fact that the directions of b and c are opposite, we must conclude from Equation(3) that the directions of electromagnetic energy flow are opposite in b and c. This means that “positive charges” radiate electromagnetic energy to the surrounding space, and “negative charges” have the property of absorbing energy from the surrounding space. Although the current electromagnetic field theory is constructed based on the concept of Coulomb force acting between electric charges, experimental facts demand the need to regard it is “field proximity force” from the concept of electromagnetic energy flow. I am keenly aware of necessity of revising the laws supporting the current electromagnetic field theory from the electromagnetic energy flow and it’s propagation trajectory.

新世界―科学の要― (2015/03/05) にロゴウスキー電極間の空間のエネルギー流を示した。その意味を冒頭に既に示した。結局その結論が上のむすびで述べた目標であった。

ロゴウスキー電極の負極性の電極間のエネルギー流は、Fig.Energy flow and proximity action force. の図のように流れると一つの結論に到達した。そこにはマグネットの磁極近傍が Axial energy flow の場であるとの解釈が必要だ。その事によってはじめて電磁場の電磁力がエネルギー流間の近接力によるとの解釈に至る。発表当時に予稿論文で述べたとおり、下部電極側は正の電荷として理論は捉えているから、そこからエネルギー流が外向きに流れ出る意味で同じことと言えよう。上部電極は周辺からエネルギーが流れ込む意味で、適切であった。

「課題」アーク放電に関して。図のような静電界中のエネルギー流で解釈する根拠はあくまでも感覚的なものに依るため、論理的な論拠は無い。場合に依れば異なるエネルギー流であるかもしれない。図の解釈では、「アーク放電」の発生原因を説明する論拠の見えないことが欠点である。負電極面から流れ込むエネルギー流が電極空間で竜巻状に回転しながら正電極側から外に流れ出るのかも知れない。そこに軸流によるアーク放電路の発生が見えるかも知れない。なお、負電極近傍空間がエネルギー密度の高い不平等電磁場空間(エネルギーギャップ)が電圧の意味である。

今でも驚嘆に感じることは、イギリスのバートランド・ラッセル博士の『物理概念はエネルギーに集約されるだろう』と言う自然世界への感覚である。博士に拍手。

(2020/11/04)追記。ロゴウスキー電極空間の磁界についての写真データ(32枚ほど)。1988年(昭和63年)の秋の事。電気学会、電磁界理論研究会研修資料として、発表してある。EMT-88-145. (1988.10. ?)

(2020/11/05)追記。新世界への扉‐コンデンサの磁界‐ (2011/02/20)。

(*)戦後75年を前にして。思う事様々に。

電気エネルギーの測定法(電流と電力)

はじめに(2020/4/28)
『オームの法則』によって電気回路現象を誰もが容易に理解できる。『オームの法則』は1826年ドイツの物理学者 ゲオルク・オームによって独自に発見、公表された。(実は1781年ヘンリー・キャベンディッシュが発見したが死後数十年後まで知られずにいた、とある。)その優れた技術法則であるが故に『電流』、『電圧』さらに電力の物理的意味を深く考察する必要もなく今日に至った。ちょうど200年少し前の19世紀の初めに『電流』と言う概念が磁気によって電気導体から離れた、空間にその姿を示すという新しい発見が『アンペアの法則』として捉えられた。その『電流』の単位アンペア[A]が電気現象解析の根本技術概念となって、すべての電気量の基本単位系 [MKSA] の基となっている。しかし、ブログの初期の記事に電流は流れず (2010/12/22) を、さらに去年電子は流れず (2019/6/6) を投稿した。それは『電流』と言う技術概念が自然認識の曖昧さを許す科学理論の根幹をなしている現代的社会問題として捉えた論説でもある。科学理論がその特殊な専門家集団の中で、特に分かり難い理数的表現に特化した形式で醸し出されて、一般の市民の科学認識に如何に曖昧な理解の混乱と弊害を及ぼしてきたかを唱えざるを得なかった。世界には決して『電荷』など実在しないのだ。世界の本源に『エネルギー』が存在していることを分かって欲しいからである。

電流とその測定
電気回路の電線路に電流計を繋げば、その電線の中に如何にも『電流』が流れているが如くに針の振れで示すから、決して誰も『電流』を疑わない。電線導体の中を流れる『電流』を自然現象の真理と考えて疑わない。そこには超電導現象という新たな発見もある。電線導体内を流れる『電荷』があるとして、それが自然の真理と捉えられてきた。電流計で計測しているものは何かを知らなければ、『電流』の意味は分からない。

Ampere meter  電流計の内部は右図のようにその基本計測量は可動コイルと言うコイル内に貯蔵された『エネルギー』の量である。そのコイルに流せる『電流』の最大値は大よそ100[mA]程度という事である。測定電流 I[A] のほとんどはコイルと並列に小さな値のシャント抵抗 r [Ω]に流す。だから電流計で測っているものはその抵抗に掛かる僅かな『電圧』分に相当する『エネルギー』分布を並列のコイルに取り入れて、そのコイル貯蔵『エネルギー』の量を磁気的な力によって測定しているのだ。決して『電荷』が電線の中に流れている『電流』と言う概念の「自然に実在する物理量」がある訳ではなく、コイルの電線周りに貯蔵された空間に実在する(光と同じ)『エネルギー』の回転流を計っているのだ。電気回路の電線はその電線で囲まれた空間を電気と言う『エネルギー』が光速度で流れて負荷に『エネルギー』を供給する役割の、その導きの道路の機能なのだ。だから『電流』の逆向きに『電子』が電線導体内を流れる等と言う解釈もハッキリ言わせてもらえば、それは『嘘』の科学論なのだ。光が何処(何もない空間)を通るかを考えれば、光と同じ速度で伝播する電気の『エネルギー』はやはり電線の中など通れる訳が無いと分かる筈だ。そこに大きな科学理論の混乱が現在の哲学的課題としてすべての地球の人に課せられているのだ。電流計で測っているものが何かを知るには、科学技術の中の姿をきちんと理解すること以外に自然の姿を知る方法は無いのだ。その事は高等数学の式では理解できない、例えば『電荷』の存否を数学の式では説明できないことも知らなければならない。

電流計則の式。電流計が何を計量しているかを式でも考えておこう。電流計の内部合成抵抗 rA からコイル電流 IA は(1)式となる。ただし、負荷電流が I[A] である。その電流計のコイル貯蔵『エネルギー』 WA は(2)式となる。ただし2分の1の係数は省略する。さて、この貯蔵『エネルギー』 WA[J] は負荷電力 P[W] と次の関係にある。

この(4)式から、結局コイルの『エネルギー』WA は電流計の内部定数 KA によって、次の(5)式のように負荷を計測していると見做せる。

(5)式の WA は負荷電力 P[W] と負荷抵抗 R[Ω]の比を計量していると見做せることを示している。次元はKA[H]よりP/R [(J/s)/(H/F)^1/2^]=[J/H]である。

電力の測定

電力測定 P=VI(W)       電気回路の『エネルギー』の測定法。その第一歩が電力測定であろう。それは電気の『エネルギー』を如何にも電気商品のごとくに商品として販売するに欠かせない技術である。しかし、『電圧』と『電流』の積では商品としての『エネルギー』量の計量には成らない。しかし乍らまず第一歩として、『電圧』と『電流』の積が何故負荷の電力値 P[W] となるかを図のコイルの貯蔵『エネルギー』 WA[J] とWV[J] からその意味を算定してみよう。電力測定法で、何故『電圧』と『電流』の積が「電力」になるかの分かり易い解説が見えない。科学技術の優れた英知の結晶を、噛み砕いて理解することの大切さを忘れないで欲しい。

コイルの貯蔵『エネルギー』 Wv を電圧 V として計測している。この意味について、先に電気エネルギーの測定法(電圧)に示した。その電圧値は負荷との関係で、『電流』の測定値の意味(4)式から、次の(9)式の意味を計測していることになる。

電流計の並列内部抵抗値 rA に対して負荷抵抗値 R は大きいから、端子電圧に対する電流計の電圧降下は無視できよう。従って、

負荷電力 P[W] は『電圧』 V と『電流』 I の積となる訳の意味である。以上のすべての解析は『オームの法則』一つによって解釈できた訳である。如何に『オームの法則』が簡便で、優れているかには驚嘆せざるを得ない。結局技術概念の『電流』と『電圧』と言う二つの測量技術が電線路空間を光速度で伝播する空間の『エネルギー』を捉えた手法である事に、如何に現代科学技術社会がその恩恵に預かっているかを知らなければならない。その法則の深い意義を知らなければならない。しかし同時に、電線導体の中には『電荷』など流れていない意味も計測技術を通して知らなければならない。

『エネルギー』の測定法。
電力量計として現在『エネルギー』の取引メーターとして使われているものが積算電力計[kWh]メーターである。どこの家庭にも玄関の外に取り付けられている計量器である。使用電気『エネルギー』量に応じて、アラゴの円盤の回転量で計測する優れた計量法である。電気技術の優れた結晶がこの積算電力計であろう。アルミの回転円盤に使用電気『エネルギー』の量に相当する電磁力を働かせて、円盤の回転回数として『エネルギー』の量を計量する『エネルギー』計量法の電気技術利用の優れた計量器具である。『エネルギー』は人がそれを物理量として決して目に捉えることの出来ない自然の姿であり乍ら、それを見事に計量している。科学技術に乾杯。科学技術のその深い意味を捉えることが、その奥に隠れている自然の姿を理解するに欠かせない筈だ。空間に展開する物理量の『エネルギー』の姿を理解することが自然を知るに欠かせないのだ。『質量』とは何か?『電荷』とは何か?『エネルギー』を知らずには、自然の深い真相を知ることのできない自然科学の道である。マックスウエル電磁場方程式が何を表現した式であるか?スマホの電波も電気『エネルギー』の空間への放射と消費である。直流電気回路も電線路の空間を電気『エネルギー』が伝播する現象である。その直流回路の電気『エネルギー』も線路空間を『光速度』で伝播する『エネルギー』の伝播現象である。図のように電源の負側の導線に沿った空間を負荷まで『エネルギー』がほぼ光速度で伝播するのである。電線内を『電子』などが光速度で流れることなど決してできる訳がない。しかも『電子』には『エネルギー』を伝送する機能・能力など、その物理的定義として付与されてはいない。『電子』のエネルギーは原子周回運動の運動エネルギー論で、質量に依存した概念しか仮想的な付与でしか定義されていない筈だ。その運動エネルギーを負荷に届ける、『電子』の往路と帰路の『エネルギー』の増減論は聞かない。『電子論』には『エネルギー』伝送の論理性が全くないのだ。だから『電子』が電気回路で役立つ論理性などどこにも無いのだ。

おわりに
『エネルギー』の姿の一端でも空間に展開する姿を御理解して頂けるかと述べた。自然の本源が『エネルギー』であることを唱えた。

(関連記事)何度も同じような事を述べた。筆者が論じる科学論は所謂科学常識からかけ離れて、しかも高度な数学的記述でないことから「文学論」だと言われもしたが。しかしITネット空間の解説にはこれが科学論かと思える論理矛盾の内容が満ち溢れている現状は間違っているからである。「電子と電気エネルギー」などと検索すると、少し古い記事で「電圧と電子と電気エネルギーの関係は? 」に当たり前と思える質問がある。それに対する回答者の余りにも陳腐で、何も考えていない姿が観え、悲しい。科学常識のひどさが『電子』に現れている。現代物理学理論に『エネルギー』の空間像の認識が無い点が最大の現代的教育の課題となっている。マックスウエル電磁場方程式の解釈に『エネルギー』の認識が欠けている事が原因かもしれない。

技術概念「電流」とその測定 (2018/9/24) 。電子は流れず (2019/6/6) 。電流は流れず (2010/12/22) 。エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18) 。また、「電流は流れず」の確信に至った訳を少し述べた、電圧・電流とエネルギーと時空 (2019/8/11) 。

摩擦熱とコンパス (2020/3/22) に『静電界は磁界を伴う』の実験写真を示した。電界と磁界は『エネルギー』から見れば、同じことを知ってほしい。

The magnetic force and energy flow   

『電流』が磁気を発生すると言う。『電流』の流れる回路にコンパスを近付けると、確かにコンパスは力を受けて決まった方向を向く。しかし、『電流』は電線内の『電荷』の流れる時間微分と定義されている。それがアンペア[A]である。同じことが『電子』が電線内を流れると解釈しても、同じように電線近傍の空間に磁気の力が及ぶという。現代物理学理論の論理性として、電線内から離れた線路空間に磁気力を及ぼす原因としての力の真相は何なのかを明確に解説しなければならない筈だ。電線内部の『電荷』の移動が、電線内全体に同一の『電子』密度で分布しながら移動すると、磁気を帯びたコンパスに力を及ぼすことになる訳は何か。『電子』が流れるという論理には、電線導体の負側だけでなく、正側も同じく『電子』が充満して流れる事をも含んでいることになる。『電荷』の分布による『電圧』の原因解釈も、正側電線内のプラス『電荷』と『電子』の負『電荷』との兼ね合いで、どの様にその論理性を解釈できるのか?もう一つ重大な論理矛盾がある。それは力の物理学的解釈では質量に働く以外『慣性』の無い対象に「力」の概念は成り立たない筈だ。力の概念と電気物理 (2019/5/21) 。「クーロン力」の概念適用は根本的に論理に反した『力』の概念矛盾である。さて、『電子』がどの様な力をコンパスの動きに作用力を及ぼすと物理学理論では解釈するのか?筆者がマグネットの近傍空間に観えない『エネルギー』の流れとして確信したその方向は、十数年前にこの図の Energy flow の方向に依って決定した。

電気エネルギーの測定法(電圧)

はじめに(2020/4/19) 電気回路技術は驚くべき文化に完成された。その基本には「オームの法則」がある。『電圧』と『電流』という二つの技術概念に依って誰もが理解し易い回路技術として、現代社会の基盤技術となった。しかし、その『電圧』や『電流』と言う計測量の意味を考えれば、そこにはとても深い哲学的問題が隠されているのだ。その意味を知ることは深く電気回路技術の中にある自然現象の活用の科学技術力とそこへの叡智の結晶が結実している意味を知ることにつながる筈だ。電気回路には、基本的に自然の本源である『エネルギー』を如何に活用するかの手法を獲得した技術の結晶が隠されているのだ。その測定法を通して電気技術が如何に自然との関係を活用しているかを深く理解できる筈だ。その事は『電流』とは、『電子』とは何かが理解できることにつながるだろう。科学技術が飛躍的に発展し、日常生活に深くその影響が及び、人がその恩恵に浸りながらも、誤った物理学理論によって曖昧な科学理論常識に染まる傾向が強まってしまった。地に足を付けた地道な自然観であるべきところ、誤った理論によって人の意識を曖昧な思考の方向に導いてきた。その代表が『電子』の概念である。『電子』の空間像が示されずに、その『負』の実在性が論じられずにここまで来てしまった。その意味を解きほぐす道はあくまでも具体的な技術の意味を通して理解するより道はない。『電子』が如何に曖昧な概念であるかを電気回路の測定の意味を通して考えてみたい。半導体で論じられる量子力学について論じるほどの力を筆者は持たないが、少なくとも電気回路における電線内を流れると解説される『電子』は全く役に立たない仮想概念である事だけは強調しておきたい。

『電圧』は『エネルギー』の計測、技術評価量。

電圧とは、その回路の電線で囲まれた空間に『エネルギー』をどの程度貯蔵した状態かを知る、あるいは評価する技術的基準量である。電圧計は何を計っているかを知らなければ、『電圧』の物理的意味を知ることはできない。水を高い所から流す力の仕組みと同じ意味が『電圧』であるというような、怪しい論説が多くある。その解説ではやはり水のような何か流すものが必要になり、結局『電流』とか逆向きに流れる『電子』が必要になって来る。電線の中には何も流れていないことを理解しなければならなし、電線路空間が有ればその空間を通して幾らでも自由に電気の『エネルギー』は伝送できる。しかもその即応性は光速度で対応できるのだ。電気(と言う『エネルギー』)は光と同じように真空や空気の空間がその最も特性を発揮できる場である。ここで言う『空間』とは、電気については真空以外にも、コンデンサの金属板に挟まれた空間あるいはその誘電体空間、コイルの巻き線で囲まれた空間や鉄心あるいは抵抗体内の結晶構造体内の空間、更に電線路の電線間の空間あるいは絶縁電線の絶縁体などの空間などを指す。例えば、ガラス戸やレンズは光も電波もその『エネルギー』が伝播する空間と見做せよう。しかし、電線の金属体は基本的に『エネルギー』の反射体と見做すべきだ。だから金属の電線内には電気の担い手と科学常識になっている概念の物理量(『電流』や『電子』)は流れない事を理解しなければならない。

コンデンサとコイルの貯蔵エネルギー。

VOLT and ENERGY 直流電圧 V の回路にスイッチ S を通してコンデンサC[F] とコイル L[H] の回路を繋ぐ。

図のスイッチSを投入してからどのように『エネルギー』が貯蔵されるかを、少し数式で考えてみよう。その電気現象は所謂過渡現象を経て、『エネルギー』が貯蔵されることになる。過渡現象は数式では一般に指数関数(*)で表現される。ー(*)指数関数での数学的問題は幾ら時間がたっても定常状態にならないという論理性の現実的矛盾を抱えているー。

(1) 貯蔵エネルギーと電圧の関係。係数の2分の1は省く。

最終的に、貯蔵エネルギーは(1)式のようになる。その貯蔵エネルギーは結局電圧によって決まる値である。だからその電線間の電圧Vは貯蔵エネルギーの量から(2)式の意味であると解ろう。『エネルギー』の単位、次元はジュール [J] であるから、電圧の単位、次元は(2)式から [(J/F)^1/2^] であると解ろう。電圧の単位はコイルもコンデンサも同じ静電容量の単位ファラッド [F] に関係した物理的意味を持っているものと理解できよう。それは当然のことで、電線路は最低二本の電線で組み立てられる。その電線の間には静電容量がある。その静電容量の空間に貯蔵された状態で電気の『エネルギー』が分布して電気の送配電系統が成り立っているのだ。この電圧の次元あるいは単位の意味を理解することが電線路の物理的意味の理解に欠かせない事なんだ。(2)式のコイルの場合について、その次元について付記しておく。(r/√L)はr[(H/F)^1/2]により、[(1/F)^1/2] となるから。

(2) 要素の端子電圧と回路時定数。

コンデンサの端子電圧vcとコイルの端子電圧vlは(3)式のように評価される。コンデンサの電圧は最終的には電線路電圧値 V に等しくなるが、それまでは指数関数の変化になる。コイルの電圧vlは最終的に零となる。コイルに『エネルギー』が貯蔵されるとコイルの端子電圧は恰も回路から切り離されて、線路側には接続されていないと同じ状態になる。コイルには内部空間に『エネルギー』だけが貯蔵されたことになる。厳密にはコイルの抵抗分があるからその分の電圧は残る筈ではあるが。

指数関数の累乗の次元は『無次元』でなければならない。時間 t[s] に対して時定数が rC[(HF)^1/2^]  =L/r[(HF)^1/2^] =[s] となっているから理に適っていることになる。

(*)この指数関数式は無限の時間でも論理的に零には成らない矛盾を抱えているが、その辺は数学的に曖昧でも良いとなるのだろうか。文末に指数関数の図を示す。

(3)貯蔵エネルギー計測法。

コンデンサとコイルの貯蔵エネルギーの時間変化は(4)、(5)式となる。両方とも同じ式で表される。ここでさて、線路の電圧をどのように計測するかとなる。コンデンサ内の様子を外部から伺い知ることはなかなか出来ない。コンデンサの電界と言う状態を知る方法が無いから。それに対して、コイルの中の状態は運良く、磁気と言う誠に都合の良い自然界の贈り物がある。それはコンパスや磁石と言う身近な電磁気現象の具現像として自然世界の顔を示してくれている。アンペアの法則やファラディーの法則あるいはレンツの法則等あらゆる電気現象を外部から観測する手段として活用されているのが「磁気現象」である。何か空間の秘めた「力」を磁気が持っている。当然のこととしてコイルの秘めた空間の力を『測定法』に活用することになる。自然世界の現象を探る科学技術の始まりである。19世紀に『電圧計』「電流計」が開発された。もちろん『電圧』はボルタの電池や熱現象を利用した電池などからその安定した『電圧』を開発利用してきた訳であろう。まだ当初は『電荷』概念は明確ではなかっただろうと考えたい。

(4)『電荷』と『電子』と『電圧』の間に横たわる現代物理学理論に基づく論理性の不可解。

電気回路論で、電線路の『電圧』をどのように解釈するだろうか。プラス端子とマイナス端子の間の空間に生じる『電圧』の原因を何に求めるか?プラス側には『正の電荷』、マイナス側には『負の電荷』が分布してと解説が始まるだろう。そこに思考停止の現代物理学理論が在るのではないか?『正の電荷』と言うその正体をどのように認識するのだろうか。簡単に『正の電荷』がプラス側の電線に雀が止まるように集まるのだろうか。どんな理論によって『正の電荷』だけが一方の電線に集まるのか。みんなが電気現象の基本法則と崇める「クーロンの法則」では、同じ『電荷』は反発し合うと大原則を学習して居るにも拘らず、無意識に所が変れば同一電荷同士が集合体となって結び付く。金属電線の中に『プラスの電荷』とはその正体はまさか『陽子』とならないだろうから『電子』の抜け殻の『+金属イオン』だろうか。図に示したように『+金属イオン』は銅線なら銅イオンしかない。『+金属イオン』を置き去りにして、その『電子』はいつの間に隠れて逃げ去ったことになるのだろうか不思議だ。科学理論は論理性がその身上の筈だ。一方反対のマイナス側の電線にはマイナス電荷の象徴の『電子』が集合すると解説されるだろう?図のように『電子』の密集状態が出来るとなろう。それでプラスとマイナスの電線路空間図が完成して、『電圧』の科学的理解ができるとなり、万々歳となって終わるのか?そこへ『電圧計』を繋ぐとどうなるかを考えれば、思考停止で終われないだろう。そこに不可解と言う意味が追加される。まず、乾電池に電線を繋いで配線すれば、それだけで電線間に電圧が掛かる。プラスの電線の銅金属からどのようにして『電子』を引き剥がすのだろうか?プラス側の銅線には電線内に電界などできない筈だ。電界もないのに銅金属から『電子』を引き剥がす論理的根拠が欲しい。その辺の高度な専門性は大学院などの物理学科の博士課程などで高等教育を受けた専門家やその指導者が答えるべき内容であろう。余りにも専門性のない素人の疑問では答えるに沽券(コケン)に関わる話となろうか。乾電池から『エネルギー』をランプに送る。その時『電子』が電池のマイナス側から流れ出し、ランプを通って電池のプラス側に戻る。どれ程の『電子』が集団高密度で『電子』の密集分布電線の中へと流れて行くのだろうか。流れ出す時点で、『負電荷』量が増加しても、線路『電圧』に影響を及ぼさないで済むのだろうか。さらに、ランプで『電子』はどのようにフィラメントの抵抗体で光を放射する物理学理論を展開して、電池のプラス側に戻り、『電子』の面目即ち電池から『エネルギー』を伝送する役割を果たすのだろうか。『電子』がただ電池の負極から流れ出て、電池のプラス側に流れ込むだけの『電子』の役目で、電磁気学という学問の科学理論の論理性が唱えられるというのだろうか。とてもその論理性が見えない科学理論に思えるのだが、皆さんはそれで安心できるのか?

(5)コイルの貯蔵エネルギーの磁気特性の活用法と『電圧』計測。(2)式によってコイルのエネルギーW[J]とすれば、図のように線路電圧によってコイルのエネルギーから電圧を測定できよう。そのコイルのエネルギーをどのように計測に活用するかとなる。

簡略計測法。最も単純にエネルギー量W[J] が有るか無いかは図のようにコンパスの振れで分かる。しかし、これでは計測には成らない。

可動コイル型計器が直流回路には使われる。貯蔵エネルギー保有のコイルを磁石の間に配置すると、コイルはW[J]の平方に依った回転角度を示す。測定器の概要は図のようになる。

むすび

電線路の直流電圧を計る『電圧計』がどのように、何を計っているかを示した。この測定法で、直流電圧を電線路の『電荷』分布で解釈する論法の矛盾を論じた心算だ。このコイル内に『空間エネルギー』がコイルの巻き線に沿って軸性の回転流として貯蔵されている。その回転方向は丁度『電子』が流れるという電子論のその向きであり、『電流』の逆向きである。この電圧計の測定量の意味を知った上でも、もし『電荷』分布が電線路電圧を決めると解釈するなら、それが現代物理学理論の『パラダイム』という事であろう。更に一言付け加えておく。コイルの貯蔵エネルギー W を抵抗r による『電流』で計算して式を導出した。しかし実際の物理現象は電線の負側を『エネルギー』がコイルの端子電圧の時間積分に関係した過程を経て、コイルに入射するのである。しかし、その状況を『エネルギー』の様態として観測することはできない。『エネルギー』が実在するにも拘らず、その『エネルギー』の姿を眼前の空間に見る事が出来ないという、自然世界の掟によって支配されているとしか考えようがない。科学理論は実験的にその値を検証可能でなければならない人の決めた矢張り掟と言うべきものに縛られている。そこに現代物理学理論が認識不可能な空間の『エネルギー』である物の意味に在るのだろう。どんな方法でも電線路の空間に在る『エネルギー』の分布を観測することは残念ながら出来ない。それほど空間に在る『エネルギー』は神秘的な物理量である。

指数関数

電圧と電流の正体 (2013/5/16)

電磁界と空間エネルギー

はじめに(2020/03/24)。(2020/11/07)追記。この記事の半年後、『電圧と電流』すべてが逆だった (2020/08/24)に漸く電気回路における『エネルギー』の意味を捉えたと言えた。
電気磁気学はあらゆる電気現象を理解する基礎物理学となっている。しかし、物理学理論では空間に『エネルギー』が質量から独立して存在すると認識していないように思える。電気回路のコイルの中には『エネルギー』が貯えられるというが、その『エネルギー』はどこに在ると物理学では認識するのか。物理学理論では『エネルギー』は何から出来ていると考えるのか。素粒子と『エネルギー』のどちらが世界構成の大本と解釈するのか。

電界と磁界
空間に電界が在るという。空間に磁界が在るという。電界や磁界は電気磁気学での空間に仮想した概念の電気物理学用語の代表である。空間に仮想した概念 (*)であるが、電界や磁界は『エネルギー』との関係を持たないのか?その電界や磁界が空間に在るという意味は何を原因として、どのような空間像を表現したものか。空間がコイル(透磁率μo)とコンデンサ(誘電率εo)から成り立つという解釈を『誰が』最初に唱えたのか、きっと仙人かも知れない。仮想した概念(*)という意味が御理解いただけないかと心配だ。その単位に含まれる、空間距離の[m]は現実に在り、それは実在概念だ。しかし電圧 [V] あるいは電流 [A] は確かに測定器で測れるから、仮想した概念とは誰も認められないのじゃないかとも思える。電圧あるいは電流を計るとは測定器の中で何を計っているのだろうか。その測定する実体はコイル内の空間に在る『エネルギー』じゃないですか?とお尋ねしたい。電圧とか電界あるいは磁界と言う概念の物理量は『何』を原因として発生するのか?その意味を以下で考えてみたい。電圧[V]=[(J/F)^1/2^] 、電流[A]=[(J/H)^1/2^] が空間構造特性値L [H]やC [F] と『エネルギー』 [J] との関係にある。

乾電池で豆電球を点灯する。これも専門用語を使えば電磁界の回路となる。スマホで発信する電子回路の複雑さとは違って、電気回路で言えば、小学校の理科の話にも成る、易しい内容である。しかし、筆者が『電流は流れず』と唱えた基本の考察対象に取り上げた回路でもある。易しいことは難しい事でもある。基礎とか基本という事の中には、とても複雑な意味が隠されている。その事に気付くかどうかは、それぞれ各人のそれ迄の生活環境、受けた教育環境即ちどのような高等教育で専門的な事を修得してきたか、また社会人になって仕事としてどの様な専門的業務に携わってきたか等にも因ろう。その点からいえば、筆者は大学の工学部で、電気工学を4年間学んだだけの所謂「工学士」でしかない。そんな筆者が述べる内容が余りにも学術機関に所属して研究をされている方々の研究業績に比べて稚拙で、乖離度が大きく全く研究と言う基準には遠く及ばない内容であろうとも思う。しかし、それも宿命と思いながら、ここまで日常の生活感覚に科学理論や物理学理論を照らし合わせながら、その論理的矛盾を追求してきた。この電気回路は高度の科学研究の対象とはならないが、どこから考えても、おそらく誰にでも考えることの出来そうな、取り付きやすい回路であろう。そんな易しい電気回路でありながら今現在の電気理論で解釈しようとすれば、余りにも矛盾が大きくて、将来の子供達への教育内容としては耐えられないと断ぜざるを得ないのだ。そんな思いから、これからこの回路を通して問い掛けようとする内容はとても気難しいことかも知れない。特に電気理論に関する教育に携わっておられる方々、あるいは電気回路に関する教科書をお書きになられておられる方々にとってはとても反感を覚えるような内容であるかも知れない。そんな何も得るものが無くても書かずにいられない切羽詰まった状況であることをご理解頂きたい。ただ一言付け加えておきたい。それは電気理論として取り扱われる技術理論が悪いという訳ではないのだ。技術法則は電気現象の技術的取り扱いにはとても簡便で、優れた歴史的文化である。その技術的解釈理論が長い科学の伝統を作りながら、今日の科学技術社会を発展させてきたのだ。そんな社会的文化でもある、技術概念を簡単に捨てる訳にはいかないのも当然である。電気技術者として過去に少しは関わった筆者もその辺の意味を十分理解した上での訴えなのである。何が良くない点かが分かり難いとも思う。それは科学技術理論と自然世界の『真相』とは異なるという事を理解してほしいという点である。誠に言い難いことで恐縮なのだが、自然の『真相』は易しくて、きわめて純粋であるという事に尽きるのだ。だから、自然科学理論として社会を導いてきた、その技術法則を自然界の物理的「真理」と捉える考え方、その如何にも権威的な教育の姿勢が間違っているという事である。筆者が我慢できない解説、それは電気回路の電線内を『電子』が『電流』の逆向きに流れるという非論理的な伝統科学論に支配されている事である。『電子』が通ると解釈すると、その回路の『エネルギー』伝送機能と電磁現象の光速度流が見えない科学論になるから。今も手元にある、「科学革命の構造」トーマス・クーン著、中山茂訳 (みすず書房)が。その『パラダイム』に関わる科学理論と自然現象について論じたいと思う。難しい学術論の形式的内容にはならないから、誰でも考えられる内容で論じられると思う。それはどこの家にもある生活用品の懐中電灯の話でしかないから。しかも数式を極力使わないで、日常用語で述べたいと思う。

空間エネルギーと『エネルギー保存則』

『パラダイム』と言う用語の定義で、トーマス・クーン氏も一度撤回せざるを得ない程激しい攻撃にさらされたとも言われている。その用語の持つ意味本来の意味と更に通常科学などの用語の新しい捉え方など合わせて、その論説の優れた先見性も中々受け入れられ難かったからかと思う。『パラダイム』の意味も新たな捉え方で筆者には適切な用語と理解したい。そう訳者あとがきをみて思った。また、英和辞典にも、模範、典型の標準的意味と別に、パラダイム:⦅思想・科学などを規定する方法論・体系⦆として適語が示されている。

空間エネルギー

この言葉・用語が受け入れられ難いのだろう。その理由は、『電流』あるいは『電子』『電荷』など電気理論の根幹である概念と対立する物理概念・量であるから。検索すれば何か精神論と関係付けられた意味が載っている。そのような意味も考えれば必ずしも否定しかねる面もある。人が言葉も文字もなかった、人類生誕の時代も社会的意思の疎通が成された訳であれば、それぞれの思いは精神的な意味のつながりで可能であったとしか思えないから。生きとし生けるすべてがその心のつながりの中に居るのかも知れない。しかしここでは、この『空間エネルギー』と言う筆者が唱える用語の意味は全く物理現象として身の周りの自然界に溢れている物理量を指すのである。その代表が光である。また配電線路が有れば、それは電気エネルギーである『空間エネルギー』の流れの設備であると見える。『空間エネルギー』は質量から独立した『エネルギー』が空間に存在するという事を述べるものである。それは物理量として自然の世界、空間に実在するものを対象に観ているのである。しかし、それは測定することも出来ず、見ることも出来ないものであるところに、認識し難さの大きな壁があるのかも知れない。光の1波長のエネルギー分布を観測する事など夢の世界の話であるから。『空間エネルギー』が理解されにくい最大の原因は『電流』、『電荷』あるいは『磁束』などの基本物理量・概念をすべて飲みつくしてしまう概念・意味を持っているからであろう。だから考えてみれば、空恐ろしいことに挑戦してきたのかと思わざるを得ない。『禪』とは何か?

掲げた懐中電灯の回路で、乾電池から豆電球までの間は導線で繋がれている。その部分を図にエネルギー伝送路とした。電線が何の役割を持っているか。電池は何を貯えたものか。豆電球は何を光に変える電気製品か。光とは何か?豆電球が熱くなるのは何故か。こんな<問答>は、誰でも日頃の日常生活で不図思う疑問に関わるものではなかろうか。このような事を、科学理論・物理学理論の諸概念と突き合わせながら、考えてみよう。

〈第1問〉電池は何を貯える製品ですか。

『電子』ですか?『エネルギー』ですか?『電流』ではありませんね!多数決で決める訳にもいきません。電気技術者は、物理学者は何と答えられるだろうか。

〈第2問〉豆電球は何を光に変える製品ですか。

『電子』ですか?『エネルギー』ですか?

〈第3問〉電線で囲まれた空間の物理的意味は何ですか。

何の意味もないのですか?

〈第4問〉電球から放射される光や熱はどの様な物理量ですか。

『エネルギー』ではないですか?

〈第5問〉『エネルギー保存則』の『エネルギー』とはどの様な物理量ですか。

降り注ぐ太陽光線は保存されますか?その前に太陽光線が『エネルギー』と思いますかと聞かなければなりませんね。トマトもキュウリも太陽光線の『エネルギー』、それを栄養の一つとして食べて成長していると考えたら間違いですか?それを『エネルギー保存則』の意味と考えられませんか?『質量』と『エネルギー』は等価という意味に繋がりませんか?

懐中電灯回路のエネルギー論

上に挙げた幾つかの〈問題〉は電気回路の中に、『空間エネルギー』の存在を理解するか、認識するかの人の意識の問題に掛かっている。ここに在るのは『パラダイム』に関わる問題なのである。その専門性が故に細分化され自然科学と言う広い自然界を包含した学問の哲学性が衰退し、どんどん知的魅力に欠けつつあるように思われる。しかし、日常生活に直結した科学技術の分野の先鋭化は益々経済的競争に資する形で進んでいる。そこに自然の真理と科学技術理論との関わりの乖離が進んだ。理論の矛盾が遠くに霞んでいるように観える。その意味を懐中電灯の中に示したい。残された『パラダイム』の問題として。

回路電磁空間。

乾電池と豆電球を導線で結べば、電球に電圧V[V]が掛かり、電流I[A]が流れる。これが電気回路解釈の基本法則で、「オームの法則」である。この法則から見れば、導線が2本で十分電気現象を理解できる。豆電球の抵抗値が何Ωと分かればすべて解決する。電線で囲まれた空間など殆ど意味がない。殆どの人はその空間など意識しなかろう。電池のマイナス側から『電子』が流れ、電池のプラス側に戻れば、それで科学理論の原理は全て解ったと言っても良い科学論の『パラダイム』に在る。1864年、有名なマックスウエルの電磁場方程式が登場した。電磁波が空間を伝播するという事をその方程式に表現してまとめた。電気信号が空気中を伝わるという科学的発見の理論方程式である。後にヘルツと言う人が無線通信(空気中の電気信号の伝播)の実験に成功した。その後の100年に亘って、電気送電網が生活に灯りをともし、近代生活を支えて来た。今は「携帯通信機」が誰もの生活必需品になっている。情報革命ともいえる時代を生きている。光も電磁波の一種であるという。光の速度は「特殊相対性理論」でとても理解できない数学的記述で、どこで測っても、例えば地球の速度との相対速度にも無関係に『光速度一定』の規範に在ると説かれる。レーマーの光速度測定実験に照らしてその確かさを信じれば、筆者には「特殊相対性理論」の唱える意味がさっぱり理解できない。筆者にはPCや通信機の回路の意味さえ何も知り得ない電子回路の通信技術全盛時代だが。みんな空間を伝播する電気信号理論の筈だ。そんな科学技術が先導する社会に生きて、懐中電灯回路の導線で囲まれた「空間」の電気磁気学的意味を紐解いてみようと思う。光も電波も、それを伝える媒体(昔はエーテルが伝える媒体と考えたこともあった)が何もない真空空間を伝播するというのだ。その電気的な現象が有るのに、何故懐中電灯の回路で、電線で囲まれた空間に電気的意味が無いと考えるのか?電線路空間には本当は電界と磁界と言う電気磁気学の専門用語の空間概念があるという事になっている。しかしオームの法則ではそんな意味は全く考えない。技術法則は誰でもが理解し易く出来ている。しかし少しでも専門性がその威厳を持って、介入してくるととても複雑な理論に化けるのである。オームの法則が電気現象の自然世界の真理を唱えたものかと言えば、それは必ずしも正しくはない。ここで「間違い」と言う言葉を使うことがとても複雑な心理的負担を感じるのだ。「間違い」ならオームの法則は教科書から消して良いかとなるが、それは困るし、正しくないと言わなければならない。しかし「間違い」とそう言わざるを得ないその訳は、本当は電線の中を『電流』が流れられないから。また『電子』が『電流』の代わりに電線の中を逆向きに流れると解説されるが、それも「間違い」である。自然の『真理』と社会的技術概念との間にはとても曖昧で、複雑な意味が隠されているのだ。何故マックスウエルが空間を電波が伝播すると唱えたのか。懐中電灯の電気と電波の電気は違うのだろうか?空間に『電界』と『磁界』があると電気磁気学理論では解説される。しかし、懐中電灯の回路では電線の間の空間に電磁界が在るとは考えなくても、オームの法則だけで立派な電気技術者として社会に貢献できる。それで電気回路の専門家として、いわゆる科学理論の『パラダイム』の専門家集団の一員として立派に責任を果たせる。しかし自然世界の『真理』として『電子(電流の逆向き)』を流さなければならない訳・理由は無い筈だ。金属導体は本質的に『エネルギー』を反射する。『エネルギー』伝播に何の障害にもならない空間がマックスウエルが唱えたように有るのに、その空間を通らない電気現象あるいは『エネルギー』などない筈だ。導線で囲まれた、導かれる空間にこそ電気現象の本質があることを考えて欲しい。光と同じ電気『エネルギー』は空間しか光速度で伝播できないことを理解してほしい。この科学的認識の前提には、光の空間エネルギー分布縦波認識が必要ではあるが、それは別に学習すればよいだろう。振動数では光の1波長の空間のエネルギー分布波は理解できないから。

電圧と空間と電界

マックスウエルが唱えた方程式には、電界と磁界と言う理論の根幹をなす概念がある。電気現象は空間の中に存在するという意味である。右の図のような電池の配置で空間の電気的意味を考えてみよう。乾電池1個なら電圧は1.5ボルトである。その乾電池を2つ繋げばその電圧は2倍の3ボルトとなる。乾電池も電気にはプラスとマイナスがある。このプラスとマイナスという意味も中々意味深な概念で、哲学的論題になる。世界に「マイナス」と言う物の存在は無いのだ。電気だけの特殊な、不思議な世界観のもたらした概念なのだが。身の周りに「マイナス」の物を探してごらんなさい。見つかりますか?「プラス」も「マイナス」も原子論の世界で生れた概念なのでしょう。本筋の論議に戻りましょう。電池の端子から電線を張りましょう。その電線の間には、それぞれ電池の電圧が何処の電線にもかかります。その電線から別の電線を枝分かれして図のように空間に或るギャップを開けて配線した。その間の間隔は A も B も同じとする。今電線路には何も電球などの負荷は繋がっていない。さて何を問題とするか。それは空間が電気的に何か意味を持っているかどうかを考えて欲しいのだ。『電界』と言う概念について。図の AとB で空間の電気的状態が違うことを知ってほしいのだ。A とB の『電界』が違うのだ。と言う事は『空間』がオームの法則では理解できない意味を持っているという事になる。そこに電気現象の本質が隠されているという事だ。世界は空間で出来ている。空気と水の空間で、音も光もその速度が違う。今、A とB のギャップを1㎝とする。Bの方の電池の電圧をどんどん高くしてみよう。とても高い1万ボルトの電圧としてみる。するとそのギャップの空間が何か異常な空気になるかも知れない。 近くの田圃の上に送電線が通っている。多くの電気エネルギーを送る電気設備だ。電線の間が大きく離れている。何故そんなに間隔を開けなければならないのかと理由を考えるだろう。その空間の広がりが必要だからとしか考えられない。電気を送るには無駄と思えるような空間が必要なんだ。『電流』、『電子』が電線の中を流れるだけで、電気を送れるならそんな空間はいらない筈だ。空間が電気現象、電気エネルギーの伝送に必要だからと理解できよう。もう一つ空間の『電界』の意味を取り上げてみよう。

空間と『エネルギー』。電池の導線にもう一つコンデンサを繋いでみよう。コンデンサと言う要素の構造は金属導線を平板に広げた2枚を向かい合わせた形態である。その平板面積に比例してコンデンサの容量 C[F] が決まる。コンデンサ容量が大きいという事は、その金属平板の間の空間により大きな『エネルギー』を貯蔵できることになる。その物理的意味は単に金属の間の空間には『エネルギー』が存在するという事でしかない。細い電線でも2本あればどんなに少なかろうと、そこには『エネルギー』が在るのだと言える。『電荷』の存在と言う基本認識の『パラダイム』に属する科学論に賛同される方も、コンデンサの空間内に『エネルギー』が貯まるという意味を理解できると思うのだが、どの様な『エネルギー像』で認識なされるのかとお尋ねしたい。当然誘電体の分極と言う『電荷』概念に基づく解釈をなさるのではないかと思う。しかし、たとえ誘電体の無い真空空間でも『エネルギー』は貯まる筈と考える。それは光が電気の『エネルギー』と同じ物理量であることからの認識になる。

『電界』と『磁界』

『電界』と『磁界』は本来空間に定義された概念である。そこで、物理学理論ではその空間にある『電界』や『磁界』は何の為に必要と考えるのか。空間に張られた電線の間に電圧が在るという事は、その電線の間隔の距離で電圧を割った値が『電界』の値で、E[V/m]と言う単位の意味である。空間に電圧が掛かっている意味だ。電線の中に『電子』を加速するための電圧が掛かっている意味はない。次に『磁界』とは何か。懐中電灯の二本の電線を広げて空間を作り、その間に磁石のコンパスを近付けると向きが変り、その空間に何かが在ると考えられる。それが電線に流れる『電流』を原因として空間に生じる磁気の意味と考える。電線で囲まれた空間に何も無かったら、コンパスが力を受ける理由が無い。空間に磁気があることは確かだ。その回路の電線を広く広げて空間を大きくする。きっとコンパスの作用する動きの強さが空間の場所によって違うはずだ。コンパスが力を受ける強さで、そこに磁界が在ると考えて良かろう。『磁界』もその大きさを電流の単位アンペア[A]で、 H[A/m]という距離との比率で評価する。電線の『電流』からの距離で評価する。その『電流』が流れないと言いながらの『磁界』であるから、筆者の理屈は矛盾していると言われそうだ。それが『アンペアの法則』と言う電気磁気学の基礎理論の意味の話になる。誰も『アンペアの法則』が間違っている等とは言わないだろう。それを『電流は流れず』という事で、『電流』の概念を否定した解釈を1987年の秋、電気学会の電磁界理論研究会で発表した。『電流』を否定したら、電気理論は使えない『パラダイム』からの離脱と言える状況になる。電気の研究者などと言っていられないことで、職業の場を失う。それは空間の『エネルギー』の実在を認識するかどうかに関わる電磁界理論の根幹を問う課題となる。現在の電気理論を、物理学概念を科学論展開時の論理的論拠として考える専門家は決して『電荷』や『電子』を否定しない筈だ。否定したら『パラダイム』からの離脱を意味するから。『電子』が『電流』の逆向きに電線内を流れるという『パラダイム』の現代科学者集団の専門性に則っているから、『電流』や『電荷』を決して否定はしない。そこにその科学理論が現代社会の規範となって、一般市民も信奉する科学常識に支配された世界となっている。そこに『パラダイム変革』の難しさがあるのだろう。

電球の機能と放射エネルギー

電球の物理現象は何だろうか。電線路空間に『電界』と『磁界』があることは理解されても、だからと言ってそれがどれだけの価値があるのかと反論され、理解されないかも知れない。さて、豆電球は灯りをともす。灯りは空間に光を放射することで得られる。光は電波と同じ電気の姿ともいえる。光は電波と波長が違うだけの空間に放射される『空間エネルギー』である。空間を飛び、伝播する電気の『エネルギー』である。電球はどんな秘術を尽くして光を作るのだろうか。簡単に理解できない魔術的物理現象を使って豆電球のフィラメントを『電子』が通過すると、置き土産に光の『エネルギー』を放射して、しかも『電子』は何も失わず『エネルギー保存則』の原理も無視して世間的に通用する科学常識と言う理論となり得るのだろうか。フィラメントと言う抵抗体のコイル内を『電子』が通過すると、どの様な機能で光の『エネルギー』を放射するのかを解説できなければ、科学の論理性が疑われる。『電子』が『エネルギー』に対してどの様な機能を発揮するのかが説明されていないのだ。『電子』論は『エネルギー』を全く無視しても、その解釈が科学論として通用している。其処が不可解なのだ。

電池の機能

乾電池も図のようなプラスとマイナスの意味を持たせた長短の二本線の記号で表示する。誰もがその記号で電池を理解するだろう。記号からプラスとマイナスの『電荷』による電圧が掛かっている意味の機能素子と思うのではないか。しかし、電池に求める技術的機能は『エネルギー』の貯蔵機能ではないのか。『電子』の貯蔵器とは思わないだろう。Energy Cell とした。「+」と「-」の記号は少しでも電気を学習すると、全く違和感もなく当たり前の科学常識として意識化される。考えてみればプラス、マイナスと言う表現で定義する物がこの世界に存在すると何故考えるのかその訳が理解できない。何故「+」と「-」を必要としたかはクーロンの法則で代表されるような、物の結合力を託す理論構築のための概念が必要だったからであろう。それならそのような『電荷』が空間で引合う結合力を発揮するには、単に「+」と「-」と言うだけで、その空間像がどのように違うから引合う力が生じる現象かを、その空間的理由を論理的に示さなければならない筈だ。日本の「この紋所が見えないか!」と同じ科学的暗黙の威圧だけで納得させているようだ。「+」と「-」に空間的にどのような構造的違いがあるというのか。その違いが無ければ互いに作用し合うという理屈は成り立たない。論理性が理論の根本からないまま、科学常識として暗黙の科学論となってしまった。なぜ電池が「+」と「-」の『電荷』を貯蔵することでその役割を果たせるとなるのか。あくまでも欲しいのは『エネルギー』の筈だ。『電子』と『+イオン』で『エネルギー』がどの空間に、どの様に貯蔵されると考えるのか。『エネルギー』は空間に実在する物理量なのである。『電子』や『電荷』ではコンデンサやコイルの空間に或る『エネルギー』の代わりには成り得ないことを認識すべきではないかと思う。『電荷』を否定した立ち位置で想定できることは、化学材料物質の構造形態の変化として、空間に『エネルギー』が貯蔵されるものなのであろう。

 

まとめ

『空間エネルギー』と『電荷』の間の関りをどう解きほぐすかの社会哲学的課題であるかもしれない。自然世界の『神髄』と自然科学理論の論旨との関係を自覚したうえで、教育に誤った権威的態度を取らないことを目指すべきと思う。この記事を考えながら、『Electrons』の紋所と科学理論 (2020/4/7) と電気回路要素の『エネルギー』処理機能 の関連記事となった。

周期関数(方形波)

(2020/02/04)追記。何故自分のブログを印刷すると「購読ブログ」となるのか?

不思議にも欲しかった関数が見つかった。

 

偶然にも円ベクトルを描いているとき、不図閃いた。関数電卓で計算してみたら+1と-1の2値が得られた。波形の極性切り替わり時、ωt= nπ では三角関数の性質上式の分母、分子が必ず『ゼロ』となり、計算不能となる。本来方形波もその場合は値が決まらない筈であり、不能が正しいのであるが。そこで周期角周波数ωに工夫をして、0.003を加えた。しかし、原点のt=0では計算不可能となる。なお周波数と波形の関係は正弦波の場合とは周期が2倍の違いとなる。また、ωの 0.003 の分で、ωt= (π-0.003)t= nπ時には計算不能となる。ここでは、ωt= ωt/10 と置いて計算した。

周期関数(科学技術と自然と数学)(2016/01/13)で欲しかった関数である。

電力p[J/s]の意味と解析法(2)解析法

 

(2020/02/04)。何故印刷すると、自分のブログが「購読ブログ」と表示されるのか?

はじめに(2019/12/03) 9月28日に表題だけで残してあった。電気回路解析法としてアドミッタンス法を考える心算で、そのままにしてあった。分布定数回路現象は電気回路のエネルギー伝送のより物理的解釈になるが、技術解析法として集中定数解析による手法がアドミッタンス法になろう。電流解析法で、瞬時有効電流と瞬時無効電流の分離に有効な手法となろう。再び電気技術解析手法に戻って考えてみたい。(2019/12/09)今、特に気付いたことがある。等価回路変換の定理 (2016/01/29) が回路解析上とても重要な意味を持っていると気付いた。それは電気回路解析であまり注目されていない『時定数』が重要な意味を持っていると考えていた。その『時定数』に着目した解析手法に関係付けて、インピーダンスの直並列等価回路変換に一つの発見をした点である。前の記事、電気回路のエネルギー問答 (2019/10/02) で示した負荷電流の分離(有効電流と無効電流)から電力の解析法を考えてみたい。

回路条件

以前、電気回路のエネルギー問答 (2019/10/02) で取り上げた回路条件である。この回路条件の負荷である直列インピーダンスを次の回路変換定理によって並列回路に変換する。『時定数』が重要な役目を担っている。

 

 

並列回路への等価変換により、ωT=X/R=3/4から、

R’= 25 [Ω] 、 L’ = 106.17 [mH]  および X’ = ωL’ = 33.34 [Ω]

となる。その結果により、アドミッタンス解析を取り上げてみよう。並列回路への変換に『時定数』を使うか、使わないかで算出計算の手間に差がある。また回路動作の意味を理解するに違いがある。

負荷回路電流を『エネルギー』の意味から、有効電流と無効電流に分離して捉えるには、並列回路が分かり易い。即ちアドッミッタンスと電圧の積で分離できる。

(2020/01/26)再記述始める。

アドミッタンス Y=1/R’ + 1/jX’  = G -jB [℧] での解釈をもう一度考えてみたい。一般には負荷の特性を評価する場合、直列インピーダンスとして捉えるであろう。負荷の電力をどのように捉えるか。負荷にはモーターなどその回路要素を捉え難い場合も多い。基本的には、電源電圧に対してどの様な『エネルギー』の流れになっているかを理解することが大切と思う。電源電圧がある一定の周期波形であることで、モーターの回転数も決まる。電圧値が変化することは送電エネルギー・供給エネルギーも時間的に変化する訳である。そのエネルギー流の変化は負荷特性によって電源にも様々な影響を及ぼすのである。そのエネルギーの流れを電源電圧値を基準にした二つの流れに分離する解釈が有効と考える。電圧の2乗によって負荷に供給されるエネルギー流とそれとは異なる負荷で吸収と回生のエネルギー流の繰返し成分とに分離して捉える考え方が有効と考える。

図1.電線路と瞬時電力 

電線路は三相の高圧配電線路で成り立ち、三相回路でエネルギーの供給が成される。変圧器を通して低電圧(対地電圧150ボルト以下の安全性で家庭に供給される)配電線路を通して負荷につながる。図に示すように、『エネルギー』は電圧波形に従って時間的に脈動して負荷に供給される。この『エネルギー』と言う物理量は瞬時的に捉え難いものである。『エネルギー』の量の瞬時値を波形で観測することができない。光や熱の『エネルギー』のように、それを観測できない不思議な物理的「実在量」なのである。代わりに「電力」でその『エネルギー』の意味を理解するしかないのである。図のように、負荷を通して消費されるものと再び電源に回生されるものとの二通りに分けられる。電源に回生される『エネルギー』は供給する電源側にしてはとても迷惑なものになる。単相線路で配電するものを統合して、三相として捉えた時、その厄介な回生『エネルギー』でもうまく吸収する機能が発揮されている。ただ電圧と電流概念で解釈するだけでは捉えきれない『エネルギー』が有るのだ。

図2.回路変換と電流

図の①の直列回路については既に電気回路のエネルギー問答 (2019/10/02) に電流波形、電力波形として示した。

 

アドミッタンスへの変換

 

ここでは、計算結果は直列回路での計算と同じであることから、並列アドミッタンス変換回路に有用性があるかと疑問もあろう。確かに直列回路インピーダンスによる伝統的解釈でも電流や電力の分離は簡単にできる。図の①で考えた時、電流 ia と irはインピーダンスZ=√(R^2 + X^2)  (何故か? (jX)^2^= X^2^ で (j)^2^= 1 の不思議な虚数概念の矛盾が通る。)およびアドミッタンス Y= R/Z – jX/Z によって算定できる。ただそこには、電気工学特有の複素ベクトル記号 j の取り扱い方の問題がある。ピタゴラスの定理とオイラーの公式そして電気ベクトル (2017/01/15) に指摘した。この複素数ベクトルによる虚数の概念は共役複素数による分数有理化などの処理においても、j^2 = -1 の基本が所謂ご都合により科学論の論理性で矛盾した扱いになっている。この記号 j を虚数としての解釈では科学論と言うより、習熟による技術業界論になってしまう。図2.の②で、1/jX’=-j/X’=-jB は、1/j も -j も虚数ではなく、電圧に作用するサセプタンス B がその電流を電圧より位相π/2だけ遅らせる記号として解釈する。

この“ j ” について

伝統的ベクトル計算の関係を生かした、単なる位相の進みと遅れの解析記号として捉える意味を提示したい。+jはπ/2 進相、-jおよび  1/j  はπ/2位相遅れの意味を表す『位相記号』と解釈する。

 

アドミッタンス回路 図の②の場合は、印加電圧 v に対して同位相の電流 ia とπ/2遅れの電流 ir に分離されて、有効電流と無効電流の意味が直列インピーダンス回路より分かり易い。同じく瞬時電力も有効分と無効分が感覚的に分かり易いと思う。

(参考)2017年にベクトルと電気現象を考えた。纏めて挙げておきたい。三相交流回路の負荷と無効電力 (2017/01/01)。空間とベクトル (2017/02/03)。瞬時電力問答 (2017/02/15)。単相瞬時空間ベクトルと瞬時値 (2017/03/04)。三相交流回路の瞬時電流分離 (2017/03/24)。三相瞬時空間ベクトル (2017/04/07)。空間ベクトルと回転軸 (2017/09/07)。また空間ベクトルについて、空間ベクトル解析と単位ベクトル (2011/06/06) 。

 

 

 

帆掛船(2019年報告)

新しい子年を迎えて、今年が平和で、幸せな1年であったと次の年に渡れることを願います(2020/01/09)。

昨年も多くの自己問答を繰り返して、科学論の基礎概念として最後に残るものが『エネルギー』であるとの確信をさらに強くした。新たな不思議の発見のためにも、己を見つめるためにも昨年の記事をまとめておかなければならない。記事の標題の前に投稿の(月 /日 )を付けた。(2020/01/06) エネルギー像(物理学基礎論)と(2019/12/02) 燃料はエネルギーに非ず が参考になるかも知れません。

1.物理学的・化学的エネルギー

(1/5) 独楽の心 (2/7) 熱の物理 (4/22) 物理学理論と磁束 (4/29)  mc^2^から物理学を問う (5/21) 力の概念と電気物理 (6/14) エネルギーとは何か (6/29) エネルギー変換物語(炭火とエジソン電球) (9/14) 空間定数とエネルギー伝播現象 (11/13) 電池(エネルギー)の不思議 (11/17) 電気抵抗と物理特性 (11/19) 電池と電圧(エネルギーの基礎研究) (11/19) 電池と電圧(エネルギーの実験) (11/25) イオン化傾向とは? (12/20) 水の電気分解

2.電子・電荷とエネルギー

(5/26) 不可解な電荷 (6/6) 電子は流れず (7/6) 電子とエネルギーと質量 (7/28) 科学論と電荷 (10/23) 電荷と電圧の哲学 (11/20) サヨウナラ『電荷』 (11/27) 電荷方程式

3.光とエネルギー

(5/3) 光量子空間像(D線) (5/8) 光速度一定とは (11/2) 光と空間 (11/11) 軸性光量子像

4.電気回路とエネルギー

(3/3) 電気磁気学の要-Axial Energy Flow-  (3/17) 電気物理(コイル電圧) (3/21) 電気抵抗体の物理 (3/26) 電気物理(電圧時間積分とエネルギー) (4/3) 誘導エネルギーに観る技術と物理 (4/12) 変圧器の技術と物理 (7/16) 「高電圧」のエネルギー像 (8/11) 電圧・電流とエネルギーと時空 (8/23) 光エネルギーと速度と時空 (8/29) 分布定数回路と実験 (9/16) 電力p[J/s]の意味と解析法(1)意味 (10/1) これが電気回路の実相だ  (10/2) 電気回路のエネルギー問答 (10/6) 特性インピーダンスとエネルギー伝送特性 (10/31) 大学と基礎教育

5.電気工学と技術

(4/14) 励磁電流とは? (5/29) リサジュ―図形と技術 (9/22) 電流1[A]の物理的空間(インダクタンス算定式) (9/26) 静電容量算定式と理論 (10/14) 分布定数回路空間の世界

6.詩と科学と社会と文化

(2/3)負の科学技術と未来 (3/1)記事表示形式の違う訳は? (4/19) 月に立つは夢か (5/13)自然と科学理論の架け橋はいづこに  (5/18) 自然と科学理論の架け橋はいずこに (6/25) 津波前の急激な引き波―専門家に問う― (7/20) (8/2) 不思議とは (9/5) 『エネルギー』それが世界の根源 (9/7) 電流1[A]の論理性-考える理科教育への科学者の社会的責任- (10/28) Find more information here (11/24) 共謀罪は法の押しつけ (12/2) 燃料はエネルギーに非ず (12/25) 質量とMassの間に 

7.自然・日本の風景

(1/16) 地学ガイド 新潟の自然に感応して (4/25) 2019年の春  (5/10) 初夏の花 (5/18)蜘蛛の巣 (6/21) ダンゴ虫が何を? (7/4) 雨粒と波紋 (7/6) 生きる雨蛙 (8/3) 深山クワガタ (8/18)逃げ水現象の解剖 (8/28)実生の水楢 (9/4)岩ヒバ (10/20) 桔梗 季節に戻る (11/15) 秋の色 (12/3)霰の中に咲くサツキ

サヨウナラ『電荷』

(2019/11/27)追記。実験的検証法の電圧測定について。電圧の測定に普通の電圧計では巧くゆかない。一般に測定は必ず測定対象からエネルギーを取り込む。どのようにエネルギー量を失わずに測定するかの技術的工夫が必要だ。静電容量の小さいコンデンサで、電圧値が低ければ、実験の精度は得難いかも知れない。測定器の入力インピーダンスの大きなものが欲しい。あるいは減衰特性の写真判定など。電圧測定について一言ご注意申し上げたい。

電気理論の根幹をなす概念は『電荷』である。また電力技術・工学では『エネルギー』が根幹をなす概念でもある。『電荷保存則』と『エネルギー保存則』がともに重要な基礎をなしている。電池電圧や分布定数回路現象を最近考えた。急に気付いたことがある。やはり『電荷保存則』は論理的に矛盾している。コンデンサとエネルギーと電荷 (2017/08/31) で満足に答えられなかった問題があった。高校生からの質問のようだった。電池と電圧(エネルギーの基礎研究) (2019/11/13) に答えが出ていた。

実験的検証法

 

回路はいたって簡単である。コンデンサが電圧V0に充電されている。同じコンデンサをスイッチでつなぐ。電圧は幾らになるか?結果は図のように、『エネルギー保存則』に従った電圧になる。だだ、スイッチオンでの追加コンデンサの充電時に突入電流(電流ではなくエネルギーの突入ではあるが)で、エネルギー消散が起きる分の誤差はあろう。小さなコイルでの突入制限を抑える方法はあろう。兎に角、『電荷保存則』は否定され、『エネルギー保存則』に軍配が上がる筈だ。実験確認が可能と考える。以上急な思い付きの報告。

 

電気抵抗の物理特性

オームの法則は電圧と電流の関係を関連付ける役割が抵抗と言う係数の数値だ。電池(エネルギー)の不思議 (2019/11/13) でLampのエネルギー変換機能について取り上げたので、その意味に以下で挑戦してみた。しかし解答には至らなかった。

電圧=R×電流

R = 電圧÷電流

抵抗の物理特性を電圧と電流で解釈しようとしても、何も納得できることにはならない。

抵抗の特性

抵抗は電気回路からエネルギーを吸収して、そのエネルギーを熱・光に変換し空間に放射する。何故抵抗はそのようなエネルギー変換作用ができるのだろうか。その物理的原理は如何なる事か。電気抵抗とエネルギーの間に繰り広げられる現象を論ぜよ。等と自分に問答を投げ掛ける。

抵抗の内部構造とエネルギー変換機能

到来エネルギーに対する3つの仕分け。①受け入れずに反射する。②一旦受け入れて後一部を反射して戻す。残りは貯蔵して熱化する。③受け入れて吸収し、熱化貯蔵すると共に、貯蔵密度が限界を超えれば光放射する。一応この3つに分けて考えよう。

①の受け入れずに反射する場合があるだろうか?これは抵抗と言う機能から無いとしてよかろう。高周波伝送の分布定数回路で、負荷終端短絡や無負荷開放ではすべて到来エネルギーは反射される。それは抵抗零と無限大に相当する。エネルギー波長に対して比較できる数千キロメートルの電線路なら、商用周波でも負荷短絡が意味を持つ現象を呈するかもしれない。この①の場合は考慮から外す。

次の②が悩ましい場合である。抵抗内部に入射するには受け入れに内部静電容量の機能が必要と考える。その受け入れたエネルギー量を貯蔵するにはインダクタンス機能が必要と解釈する。そこに抵抗内部構造のエネルギー貯蔵・熱化機能が無ければならない筈だ。一部を反射するには、静電容量で受け入れたエネルギーをインダクタンスが受け入れなければ当然元に反射することになる。

ここに③の抵抗体の基本機能だけで捉えてよいかの疑問が残る。即ち受け入れたエネルギーすべてが貯蔵・熱化変換されて線路に戻されない。その時に、基本的なエネルギー反射現象が起きる。線路特性インピーダンスとの関係で定格系統電圧保持への電源制御がなされる筈だ。抵抗体に到来した線路伝播エネルギーの内、抵抗体入射エネルギー分は線路特性インピーダンスとの関係で抵抗体の静電容量構造値に依って決まり、残りが線路側への反射エネルギーとなると考えたい。抵抗体への入射エネルギーはすべて電線路へは反射されず、熱化と光放射へのエネルギー変換機能としての抵抗体の物理現象を呈する。

まとめ

抵抗体のエネルギー変換機能としての物理現象を考察したが、未だ明確な論理的解釈には辿り着けなかった。抵抗体の種類、構造などの特性に対する実験による考察が必要となる。少し高周波での定在波などの特性観察が必要だろう。エネルギーの動静を感覚的に捉えるにはやはり実験的取り組みが必要のようだ。何方かの挑戦に期待する。あくまでも「電荷」や「電子」での概念に縛られていては無理であることだけ注意しておく。

過去にも同じような事を述べていた。重複しますが。https://hokakebune.blog/2019/03/21/電気抵抗の物理/ やhttps://hokakebune.blog/2016/06/15/電気抵抗のエネルギー論/