カテゴリー別アーカイブ: 物理学基礎理論

瞬時電力の具象解剖

(2022/02/01) 電力とは何か?

誰もが生活に欠かせない、ライフラインである事を知っている。それが電力である。これほど日常生活で無意識に利用しながら、その物理的意味ほど理解していない事も無いかも知れない。そのように書く自分も、長く電気回路現象を考えて来たにも拘らず、本当に深く理解してなかった。二月に入り、今年のカレンダーを一枚剝がした。何となく気持ちも穏やかでない中で、瞬時電力とはどの様な物理的意味で捉えれば良いかと考え直した。

概して、学術理論は、物理学理論は抽象的な数学式などの解釈手法で論じられるものが多い。決して電気現象を論じる時、『電荷』とは何か、『電流』とは何か等の本当の基礎的な概念については全く考えることをしない。決まった科学論の常識の上での話になる。その科学的常識に習熟していない一般の市民はその話に採りつくことが出来ない事に成り易い。

抽象論と具象論。誰もが理解し易い話は、目の前にある空間にその具体的像を提示することが求められる筈だ。光の振動数がどんな特性を示すか等との話は全く学術の解釈法に慣れなければ理解できない話になろう。漸く電力の空間での像が示せるかと言う処まで辿り着いた。だから具象解剖論とも言えよう。その意味で電力の解釈を示したい。電気回路現象には『電子』など何の役にも立たない過去に人が創り上げた空想的仮想概念である事をはじめに指摘しておく。

『オームの法則』と電力。

電気技術の基礎理論は⦅オームの法則⦆である。そこには『電圧』と『電流』と言う基礎技術概念で電気回路現象を解釈する基本が示されている。上の図は2005年に描いたものだ。2010年に  電流は流れず で電気回路は『エネルギー』の現象である事を述べた時も使った。この回路をオームの法則では

瞬時電力

の様な回路図で表現し、解釈する。『電圧』V[V] 、『電流』I[A]そして負荷抵抗 R[Ω]の3つの技術概念で回路動作を解釈できる。とても優れた、完全な電気理論と成っている。直流回路であるが、その電力も瞬時電力として、電圧と電流の積で評価できる。これが科学技術の自然現象を利用するための理論体系の重要な基礎を成している。

科学技術概念と自然現象。

電気理論が完璧であるから、『電圧』、『電流』がどの様な物理的意味かを問う事をしない、疑問にも思わない。その科学技術用の理論体系を構築するには、理屈が成り立たなければならない。論理的である為に、『電荷』とか『電子』などの理論の基礎とすべき物理概念を創造し、定義した。それらは物理学理論の分野から特に組み込まれた概念のように思える。電気回路論や電力技術分野で組み込んだものでは無いと思う。しかし、どう考えても自然世界に『電荷』や『電子』が存在するとは信じられない。今、電気回路現象のその真相が分かった時、やはり電源から負荷まで何が伝送され、供給されるのかと言えば、それは他でもない『エネルギー』でしかないのだと分かった。電力の単位ワット[W]は書き換えれば毎秒当たりの『エネルギー』量ジュール[J]を評価する単位である。その『エネルギー』の単位ジュール[J]で計量するものは物理量として意味を成さないと考えるのか?物理学の回路解析に『エネルギー』と言う概念が認識されていないから。電気料金を支払って使っている電気量『ジュール[J]』を電気回路の現象に考慮しないで理論が成り立つ筈は無かろう。長い科学技術の歴史の中で、理論物理学の中でその『エネルギー』と言う自然世界の根幹を成す『実在物理量』が無視されてきた事への驚きを禁じ得ない。

「瞬時電力」という意味。

その物理的意味を考えてみよう。筆者も感覚的に「瞬時」と言う用語はとても厳密性のある概念を表現すると思って、良く使った。『瞬時実電力』や『瞬時虚電力』あるいは瞬時電磁界などと使って来た。しかし、『瞬時電力』と言う用語の使い方は初めから矛盾を含んでいたことに気付いた。電圧と電流も瞬時値がある。その積も当然瞬時値になる筈と思う。しかし電力の単位の意味は1秒間当たりの値である。1秒間は理論的に時間の瞬時ではない。光なら30万キロメートル先まで届く時間だ。電気現象も光の伝送速度に近い変化の回路動作だ。『電流』だって「電荷」概念で解釈すれば、その単位アンペア[A]も『電荷』との関係で、[C/s]の様に1秒間当たりの値だ。それらの積が瞬時値になる訳は論理的に無理だ。然し実用的には「瞬時電力」と言っても電気技術論としては許されよう。然し乍ら、論理性を身上とすべき理論物理学では、そのような意味は使えないだろうと思う。確かに物理学では『電力』など意識しないから『エネルギー』と同様理論には無用の電気量なのかも知れない。

『電力』とは何か?

ここから電気物理学は始めなければならない筈だ。地球温暖化の社会的問題にもなる『エネルギー』を意識しない理論物理学では社会的責任も果たせない。「瞬時電力」は『電圧』と『電流』の積と言う捉え方では、その『エネルギー』の瞬時的状況を理解するのは無理である。せめて空間に流れる『エネルギー』の分布量を理解することで、その実態がわかろう。『電圧』も『電流』もその概念の奥には『エネルギー』を評価する技術概念であったことが隠されていたのだ。その意味は自然単位系の[JHFM]での解釈が必要になる。時空は[H] [F]で、そこには『エネルギー』だけが展開する自然世界がある。その『エネルギー』とは光であり、見える光も見えない電磁波もある。

「瞬時電力」は伝送エネルギー分布として。

オームの法則の回路を『エネルギー』伝送現象として観る。

漸く電気回路現象が『エネルギー』の伝送回路として理解できた。余りにも有り触れた電気回路だから、その現象を科学論文とするには拍子抜けするような気もする。到達した結果は誰もが分かり易いと思う。中学生でも『電圧』とは何ですか?等と質問したくなる科学技術概念の理論はそれなりに難しい意味なのだった。ただ『エネルギー』が流れている事を感覚的に捉えられるかである。特別に難しい数式もいらない。電線路の導体で挟まれた空間を、電圧の負側の電線導体近傍の空間を導線に沿って、ほぼ光速度に近い速度で、『エネルギー』が流れているだけなのだ。その『エネルギー』の分布量が幾らになるかは、電源の所謂「電圧」と言う技術概念がとても良く示しているのだ。

 

『電圧』は電源が持つ『エネルギー』供給能力を捉えた技術概念だ。電線路を張れば、その張り方で電気回路の空間構造が決まる。空間構造は電気解析で、分布定数回路として取り扱われる。電源電圧が直流であろうと交流であろうと、その回路特性はただ空間構造で決まる。科学技術解釈で『静電容量』と言うコンデンサの意味を使っている。それは正しく電線路の空間の、電気の『エネルギー』をどれ程保有できるかの特性値に成っている。電源に電気回路空間を繋げば、自動的にその電源の能力にあった『エネルギー』が電線路空間に流出し光速度の速さで、全体に規定の『エネルギー』分布空間を生むのである。電線路の単位長さ当たり、1m当たりの『エネルギー』分布量をδ[J/m]で捉えれば分かり易かろう。その意味なら「瞬時電力」と言った場合の物理的意味が分かると思う。光速度で流れる『エネルギー』だから、1m当たりの値など数μジュールでも大きな電力量となる筈だ。

無負荷時。『エネルギーギャップ』と『エネルギー』分布密度。

『エネルギー』分布密度δv[J/m]は電線路の空間構造に対して、電源が規定する『電圧』に対応して自動的に決まる。無負荷時なら、静的定常分布密度で電線路空間が『エネルギー』の値となる。この『エネルギー』の分布密度量は、電気技術量『電圧』の意味を表すものとして『エネルギーギャップ』と言う表現を使って来た。半導体接合面や電池の陰極電極表面空間に対してその『エネルギーギャップ』と言う用語を使わせて貰った。『エネルギー』は空間で片側に偏る性質があると認識しての使い方である。ロゴウスキー電極への印加電圧に対して、負電極側に高い密度の『エネルギー』分布を示して流れる。

負荷時。

負荷抵抗値は単位オーム[Ω]で決まる。純抵抗負荷なら『エネルギー』を一方的に消費する機能要素だ。しかしそれも抵抗内部は微細構造体であり、『エネルギー』を線路空間から吸収し、内部空間に貯蔵しそして高エネルギー密度空間と、温度上昇を来し、遂には外部空間に『熱エネルギー』、『光エネルギー』として放射する。負荷が掛かれば、電線路の特性値 C[F/m]から抵抗体内の構造空間に『エネルギー』が自然に流れ込む。抵抗体も内部は空間構造であるから、その機能はR=√(Lr/Cr)[(H/F)^1/2^] の様な次元で捉えられる。だから線路特性、特性インピーダンスZoとの比較値で解釈して良い。R=αZo と置いて良い。α=1.であれば負荷と電線路が整合した状態である。電圧による供給エネルギーがそのまま負荷に流れ込み、δv=δI [J/m]である。一般には、1<αである。その時のα値は

α=R/Zo=√(δv/δI)      (訂正して、√を付けた。)

の関係がある。

新電気回路解析法。

自然世界の実在物理量『エネルギー』を認識した、電気回路解析法の新しい物理学理論への扉でもある。電気回路現象には『電荷』も『電子』も無縁の長物概念である事を認識することから教育は始めるべきだ。

(参考): エネルギー[J(ジュール)]とJHFM単位系(2010/12/18)

日本物理学会に参加させて頂き、最初の発表内容でもある、2p-D-11  物理概念とその次元 (1998).

科学実験の世界

とても面白く、貴重だ。世界を変えた20の科学実験

表紙の写真はマイケルソンとモーリーの光の相対速度検出実験に関するものであろう。

実験で光の相対速度が検出されなかったという結果をアインシュタインが『特殊相対性理論』の根拠にしたと理解している。

しかしそれは、レーマーが木星の衛星観測から『光の速度』の相対性を実験的に証明している筈だから、光の速度は何処で観測しても、観測者に対して「一定だ」と言うのはアインシュタインが間違っていると思う。

アインシュタインの「特殊相対性理論」が物理学理論に大きな影響を与えた。そのころから量子力学など理解困難な理論が華やかに唱えられてきたようだ。

マイケルソンとモーリーの実験は光の相対速度検出実験が成功しなかったが、その実験結果への試みが間違っていた訳ではない。光は『エネルギー』の縦波伝播であるから、観測者との間には必ず『相対速度』がある。ドップラー効果と言う現象が存在する事は、それが光の観測者に対する相対性の証拠である。

『静電界は磁界を伴う』は『電荷』概念否定の実験結果でもある。一つの新しい科学論への認識を喚起すると思う。ロゴウスキー電極空間の磁界 (2020/06/18)。

 

 

空間構造とエネルギー

やはり空間の『エネルギー』だ。

それにしても物理学理論や地球物理学は何処か矛盾の闇の世界に観える。残念ながら、その根本的な原因が、専門家の表明する文章・お話での専門学術用語の検証不可能性とその真偽が日常生活に経済的損害を与えない空想物語である事にある。雷論は、雲の上昇氷の摩擦で、何原子が基になってプラスとマイナスの『電荷』に電離するか?氷分子のイオン化なのか極めて曖昧でも、自由に大量の『電荷』と言う便利学術用語が駆使可能で、何方も経済的損害を受けないから異論を挟まず御自由にお唱え可能だ。『電荷』と言う魔術的学術用語は誰も批判できない、原子の内部構造を決して誰も確認できない安全圏の御説だから。山の頂上でも、柱状節理がメリケン粉の振動説でも批判もされないから御自由にお唱え可能だ。磁束が自然界にある訳でもないのに、磁気の本質が何かの深い物理学理論での解釈が曖昧だから、地球が逆転したような「何とかニヤン」が地球的お話になる。電荷間の力の矛盾論 (2021/05/11) にも、どう考えても物理学理論が自然世界を真剣に見つめようとする心からの解釈論には見えない事を述べた。ただ過去の解釈論を無意識的に継承しているに過ぎない。それぞれの物理学理論などは、大学などの高等学術機関の研究室で、その専門的高等特殊理論の伝統を引き継ぎ、将来に亘ってその分野での専門家としての権威を継承する道が整えられる。生活が保障される。その学術理論に異を唱えれば、即刻その専門家としての社会的役割は終了する。科学理論とは極めて非論理的で、保守的な学術の専門性をその背景に秘めているのだ。科学理論の自然世界に広く適応可能な統合的完全性を求めるなら、少なくとも二つ以上の異なる分野の研究の経験が望ましい。一つは科学技術の分野の具体的経験と感覚。空間的『エネルギー』の実在性を認識する経験。

現代物理学理論には、運動エネルギーや位置エネルギーは良く教科書でも取り上げられて、誰でも理解している。しかし空間に実在する『エネルギー』と言う物理量の認識が無いようだ。それは空間の構造を余り意識していないからと思う。

その根底には、抽象的解釈論(理数学的)と具象的解釈論(空間像認識)の違いが在る。

真空透磁率  μo[H/m] と真空誘電率 εo[F/m] 。現代物理学、自然科学あるいは自然哲学、それらのとても専門的な高度のお話に「時空論」があるように思う。それらは遠い宇宙から、過去未来の時間を超えた壮大なお話になる。それに対して、μo[H/m]、 εo[F/m]等の手元の電気回路論などの身近な空間の意味など、余り意識されていないようだ。しかし、光の『エネルギー』の伝播する空間を、科学的な意味で解釈しようとすれば、何かその空間の解釈概念が必要になる。最低でも、その透磁率と誘電率位は空間構造の解釈の基礎に据えたい。

電力工学では、空間が保有し得る『エネルギー』には限界が在ると認識している。と思っているのは自分だけなのか?その空間の意味は電界で定義し、1cm当たり30kVを一つの目安にする。それ以上の電気的ストレスを空間に掛けると、火花放電やコロナ放電を起こし、空間が絶縁機能を失う。この空間は空気の事で、空気その物の中の物理的状態の問題なのだ。『電荷』説では、その空気の『電荷』を論じている訳ではない。『電荷』そのものが火花を散らす論説ではない筈だ。『電荷』は専門的雷の御説の解釈依存概念としてお借りする間接的学術用語でしかない。火花に成るのは空間の空気なのだ。専門家は火花の話で、『電荷』などその後にどうなろうとその意味など意識に無いのだ。『電荷』が光になる訳を説明など決してしない。存在しない『電荷』が『光』に化ける、化学変化の物理学的論拠も無いから説明など出来る訳がないのだ。それでも科学学術雑誌に載れば、とても専門的風格の誰もが異論を唱えようが無い雷論となる。火花放電現象は空気の絶縁破壊現象だ。完全な真空空間なら火花放電は起き難い。具体的なプラスの『電荷』がどの様なものか、『陽子』か『水蒸気イオン』あるいは『酸素イオン』か等は全く分らなくても、何でも良いのだ。『電荷』が『雷光』に変換される原理の為の量子力学も無いようだから。

その事の意味を、『電荷』や『電子』で考えるべきか、あるいは『エネルギー』で解釈すべきかを問うのである。その為の空間構造の例を提起して考えよう。

空間構造例。

何も難しいものではないが、余り意識しない空間構造の電気現象解釈かも知れない。直流電圧を2枚の円盤間の空間と2本の円環リング間の空間に掛けるだけでしかない。

(1)円盤。これは誰でもコンデンサと理解できよう。

(2)リング。何の役にも立たないだろうが、一応電圧を掛ければ電気回路である。この回路(?)を取り上げた意味はインダクタンスL[H]の巻き線コイルの空間『エネルギー』と1ターン電圧の関係を意識して欲しくて取り上げた。ちょっと電気技術者らしからぬ変なオジサンの思考で。

どちらも、スイッチを入れて電圧を徐々に上げて行けば、何時かは火花放電になり事故状態となる。電源にはヒューズが必要だが忘れてしまった。🙇。

ここで考えることは。空間の空気絶縁破壊と言う現象の物理的意味である。『電荷』と『エネルギー』の自然科学論の認識の問題である。それは考える人の夫々が今まで経験してきた科学的解釈の手法、習慣によってある程度感覚的なものに依るかも知れない。

問題は空間に『エネルギー』が在ると意識するかどうかである。

(1)のコンデンサの円盤内の空間をどの様な電気的空間と意識するか。

電荷の論理性(2020/10/26) で取り上げた問題がある。それが右である。この問題を 電荷Q[C]とは何だ❕ (2021/05/19) で論じた。また、大学入試問題例(エネルギー問題) (2021/05/25)。ヤッパリ「電荷」だ❓ (2021/07/03) 等で、『電荷』否定の解釈理由を論じた。内容は如何にも高尚な学術論文には程遠く、幼稚な、言ってみれば下界の囲炉端話に近い素人論に観えよう。しかし、このような科学論理の矛盾を科学者、物理学者は無視して過ごしてきた事に気付かなければならない筈だ。

(1)の円盤電極に『電荷』が、プラスの『電荷』とマイナスの『電荷』が原子から分かれて、あるいは電源の電池などから分離して、集電すると本当に考えるのですか。それで物理学理論として矛盾を感じないのですか?

それが、電中研の『雷』論にも成って子供達への解説となっている。雷と科学論

この(1)の場合の具体的計算をしてみよう。

円盤の面積A=100 [cm²]、D=1[cm] とする。その静電容量 C=8.9[pF]程度となる。V=30[kV] で放電に至るとすれば。

その時の貯蔵容量は E=CV² = 7.9 [mJ] 程度となる。

次に(2)のリングの場合。

コイルに電圧を掛ければ、コイルの巻き線の間に『エネルギー』が分布する。その巻き線間にも空間的には幾ら僅かであっても静電容量と言う空間的電気的要素機能が存在する。そのコイル1ターン当たりの電圧を1ターン電圧 vu[V] と解釈する。巻き線全体では巻き数 n 倍すればコイル端子電圧となる。そのようなコイルリングの意味を図(2)で考える。いくら小さくてもリングの間には『エネルギー』が存在する空間が有る。その空間の空気にもコンデンサと同じ『エネルギー』の貯蔵限界が在る。限界を超えれば、火花放電の絶縁破壊現象に至る。その破壊電圧を V [V]。コイル静電容量 C [F/cm]が分かれば、

エネルギー 分布密度

δ= C V² [J/cm]

(1)の円盤電極の場合と同じリング半径 r=35[cm] として、線路静電容量 Cr[F/cm]を算定してみよう。平行電線路の場合の算定法を適用してみる。電線径d=1.6[mm] で、D=1[cm]とする。

構造係数 k=(2.3029/π)log(2D/d)=0.710 を利用してみる。

しかし、C=9.6[pF/cm] と大き過ぎる算定結果となる。

ここでは、以上の結果で、残念ながら検証は取りやめる。

以前に、 L とC と空間エネルギー (2017/08/02) で、同じような事を述べていた。今回の検証回路の結論も、数値的な結果が出ず、未熟さを反省します。

結論。科学論で、特にあらゆる科学論の基礎と考えられてきた、現代物理学理論の基礎概念および専門学術用語が極めて不明確で、曖昧なものである事を指摘した。水の水面に広がる波さえ、その原因に『エネルギー』を捉えていないようでは、何時か理論がその基礎から瓦解することを危惧する。理科教育にその責任があるのではなかろうか。

 

 

電磁気学の論理性❓

物理学の基礎分野に電気磁気学がある。

最近科学論に疑念が膨らんで遣り切れない。

みんな自分の心に生じるものだから、自己責任という事かも知れない。

一つの代表例として「電気磁気学」を取り上げる。

それは『電気』と『磁気』がその基礎概念となっている。

大学の授業で取り上げる内容の代表例が「マックスウエル電磁場方程式」であろう。『電界』と『磁界』がその専門的学理の理解の基礎概念となっている。

『電界』は『電荷』が定義されて初めてその空間概念が確定して、理解できる。『電荷』同士の間に様々な空間的関りが生じる現象の解釈論である。『電荷』には二種類がある。『正』の電荷と『負』の電荷である。しかしその『正』と『負』の空間的違いが如何なるものかについて解説した理論・論理を知らない。昔から先生が仰ったことや書物に書いてある事から、間違いのない真実と信じて疑わずに来たのが『電荷』の実状である。

その科学理論の根本を疑い、『電荷』の実像を理解しようと孤軍奮闘してきた。多くの電気磁気学の法則を考え併せて、その最も基本である『電荷』の概念とその真相を探る発表が『静電界は磁界を伴う』であった。

今改めて、問わなければならない。

大学で電気磁気学を講義されておられる先生方に。『電荷』の空間像をどの様に認識なさって居られるかと。ただ意味も無く『正の電荷』と『負の電荷』が引合うのだと述べるだけで、そこに学術論としての論理性が在るのですかと。

一定の変動しない高電圧を掛けた電極版の間は静電界と言う場の筈です。電気磁気学では『正の電荷』と『負の電荷』が両電極版に集合して、その向き合う空間が静電界と言う場になる。電気磁気学では、その空間場には決して『磁界』は存在しない筈です。

さてそこで、もしその空間が『磁界』で、コンパスが決まった規則による方向性を指すとしたら、その現象を電気磁気学でどのようにご説明為されますか。

その解釈には、『正の電荷』と『負の電荷』の間に何故引合う力が生まれると解釈するかの論理的説明が必要でしょう。『正』と『負』の間にどの様な力の概念が生まれると考えるかの論理性の問題でしかない。『電荷』には、運動力学の基本である『力』を生む対象の慣性は定義されていない筈です。物理学理論の『力』の定義に関わる基本問題の筈です。ニュートンの力学理論を御理解なさって居られれば、力と慣性は表裏一体の基本概念である筈です。『電荷』には慣性は定義されない筈です。なのに何故『力』が発生すると解釈できるのですか。

『磁気』に関しても同じ論理性の問題がある。N極とS極と言う定義概念の、その本質は何ですか。磁束が空間に伸びている像で捉えるようだ。『磁束』は力の原因となるのですか?『磁束』には力学理論の論理的対象としての『慣性』はやはり無い筈です。何故『慣性』の定義されないクーロンの法則が『力』の法則として成り立つと解釈されるのですか。『力』は慣性で抵抗があるからこそ生じる概念ではないのですか。慣性が無ければ、瞬時に無限速度で力の対象が消えてしまう筈です。それが科学の論理性ではありませんか。

電気磁気学と言う余りにも、現代物理学理論の根本理論であり乍ら、極めて曖昧な矛盾論が科学常識として大学で講義されている現状を如何に認識されているのでしょうか。

30数年前の『静電界は磁界を伴う』の実験的検証の意味を問うのです。

電子とエネルギー(バンド理論は魔界?)

時は今、エレクトロニクスの時代。エレクトロンとは何者だ❕

電子の実像を探し求めて、長き彷徨いの中を過ごした。電子は質量と電荷の二刀流の使い手だ。その変幻自在のあり様は正に魔境に誘い込まれたが如くに、その意味不明に惑わされる感覚になる。問答実験(2014/01/31 )にも。

何の知識も、学術研究の取り立てて自慢できるものは何もない。『バンド理論』が量子力学の主戦場の英雄となって、君臨している。

物理現象の本質はすべて、空間での『エネルギー』の振る舞いにしか見えなくなってきた。長く『バンド理論』のその周辺の意味を理解しようと考えを確かめてきた。過去の記事がある。

謎(pn接合は何故エネルギーギャップ空間か) (2017/05/07)。

『エネルギーギャップ』と電圧に関係した記事に、

電池と電圧(エネルギーの基礎研究) (2019/11/19)。電池と電圧(エネルギーの実験) (2019/11/19)。ダイオード電圧 (2020/08/26)  等がある。

バンド理論の『バンドギャップ』とは何か?その代表的な解説がある。半導体の部屋にその図が示されているので参考にさせて頂く。

半導体の伝導現象は『バンドギャップ』と電子及びホールがその解釈の基本的対象概念である。そこで、電子がエネルギーレベルで高い状態になるか、ならないかで伝導帯に上がるか、価電子帯に留まるかが決まるとの解釈である。

さて理解できない事。それは次のような解説である。

『半導体は、電子が運動エネルギーで価電子帯より増加して、伝導帯に励起され、若干の電気伝導を示す。また、価電子帯から励起した電子の抜け殻にホール(正孔)が発生し、正の価電子の様に振る舞って電気伝導に寄与する。』

その解説内容は、電子が若干、そしてホールが正の荷電体の様に伝導の役割として働く意味の解説と理解する。さて、半導体は電気回路の銅線あるいはIC導線の金線から銅線に繋がって外部負荷につながる。そこで、電子は運動エネルギーが増加して、更にホールのエネルギーも高レベルの値で外部回路での伝導に寄与するとの意味での解説と理解する。

ここで、気掛かりの事がある。バンド理論の解説も意味不明であるが、繋がる電気回路がその電気エネルギーの伝導現象に重要な意味を持っている筈だ。電気回路で、電子(運動エネルギー?)あるいはホールが『エネルギー』をどの様に負荷に届けるかが、その技術の粋としての半導体の機能を発揮する役割の筈だ。それは、一般の電気回路の解説では電流が流れるという意味を、それと反対向きに電子が流れて電流の意味の機能を発揮するとなっている事との関係から見れば、全く無意味になる。

科学理論はあくまでも総合的に、広い場面との整合性が取れた解釈が出来ないと誠に不明確な分かり難いものになってしまう。どうも現代科学論は、とても専門性が重視され、その狭い専門的科学論によって総合的な整合性と言う面で、とても曖昧な理論となっていようだ。どの様に電子あるいはホールが負荷に如何なる理屈で『エネルギー』を届けるかが示されなければとても科学理論としての解説としては納得できない。誰もが何も疑問を呈しないところもまた不思議の極みに思う。

専門家とは、一般の市民が理解できるように易しく、詳しく(「電荷」の空間像等)解説するところにその真価が発揮されるべきと思う。筆者には、『電荷』像さえ理解できない為か、なかなか『バンド理論』の意味が理解できない。新潟県教育委員会での採用事務手続きも無かった16年間の教職員歴(?)はじめ、職歴不明(?)で悩む筆者の電気回路現象解釈論からの疑問に対して、専門家のご意見をお聞かせ頂ければ望外の喜びとの思いを込めて。

 

科学論と検証

(2021/06/16) 。科学論は客観的な検証が要求される。

科学論に限界は無いのか?どのように検証すればよいか。

ロゴウスキー電極とエネルギー流

科学的な計測が出来ない現象。ロゴウスキー電極間の静電界と言う科学概念は『電荷』によって発生すると解釈されていた。しかし、電荷を否定する科学論はその検証法があるだろうか。電極間のエネルギーの流れを唱えても、そのエネルギーを測定する実験的方法が分からない。それは丁度、光のエネルギー流を実験的に測定することと同じように思う。

ロゴウスキー電極間空間のエネルギー流がどの様であるかは分からない。その科学的論証方法はあるだろうか。特に電極中心部のエネルギーの流れが如何に在るか?

新世界への扉‐コンデンサの磁界‐ (2011/02/17) 。

 

電子流(1[A])の論理矛盾

(2021/05/02) 。1987年8月5日電気学会の電磁界理論研究会への論文を書きながら、『電流』概念の論理的な不適合に気付き、その概念棄却の思いに至った。あれから33年が過ぎた。電気回路現象はすべて電線路空間の『エネルギー』光速度伝播である。『電子』は、その光速度伝播に対応できない意味で、無用の仮想概念でしかなかった。しかし残念ながら、今でも電子は科学理論の根幹を支える物理概念となっている。

その後は『電流は流れず』と唱えてきた。電子は流れず (2019/06/06) にも述べた。中学生にも分かる説明が出来たらと思う。市民の理解できる日常生活に結びついた、易しい科学論でありたい。理屈の科学綴り方と言われるかも知れない。

右図は電子とエネルギーと質量 (2019/06/06) の記事、更に電流1[A] の論理性‐考える理科教育への科学者の社会的責任‐ (2019/09/07) に載せたものである。

再びこの図を使って、電子論の矛盾点を指摘しよう。 

電流が電子の逆流と言う論理の矛盾を述べたい。

電流 1[A] の意味を電子でどう捉え得るかを考えて欲しい。

電子が電線導体の中を流れる。誰もその電子解釈論に疑問を懐かないようだ。電線内を電子が流れると述べる科学者に問う。

〈矛盾1〉電子の流れと線間電圧。

上の図のように電子が流れるとなれば、電線の正側と負側の両方に満ちて流れることになる。その電子の密に分布した流れが電子流となる。電子の分布が均等に電線内に生じる意味となろう。電気導線は電荷が中性の銅原子等の構造体である。もし電子が電線内に満ちれば、電圧はどの様な原理によって電線間に掛かると考えるのか。電子によって電圧が消える論理的矛盾。どう解釈するか?

〈矛盾2〉電子の流速V[m/s]と線内密度D[C/m]は如何程か。電流が電子の逆の流れだと言えば、電子の毎秒当たりの個数がその電流の値と等価でなければ成らない。電子の流れる数量・電荷量を算定できない科学論・物理学論では論理的だとは言えない。

  電子流の毎秒数値=電流値。

従って、   VD[C/s] = I [A]   でなければならない。

電子の定義概念はほぼ、

電荷および質量で、 e : 1.602 10^-19^ [C] 、9.108  10^-31^ [kg] 。

の値である。

電子の流速度 V[m/s]は幾らか?

電子の速度は幾らかが明確に確定されなければならない。素粒子論では電子は質量が定義されている。質量は電子の運動論を展開するには、それがあって初めて『力*』の物理的論理性が成り立つ意味で必要である。

速度は力と質量の関係で算定可能となる。そこで、電子の速度は幾らと算定できるか。力の原因をどう解釈するか?電子が流れる根拠の力が説明できなければ、電子が人の希望し、思う気分で流れる訳ではなかろう。気分電子論と言う訳にはいかない筈だ。速度が確定すれば、電線内部の電子密度分布量D[C/m]が算定可能になる。

 1[A]=VD[C/s]

によってのみ電子流が算定できる。そこに考える“理科教育”のあるべき姿が描けるはずだ。根拠を質さないで、学説・科学常識論に安易に従う姿勢はゆるされない。電子の速度が決まらなければ、電子の論理は成り立たない。金属電線内部に電子を動かす力など発生しない。

『力*』:電荷間に発生するというクーロン力は加速度・慣性などの力学運動論の基礎条件が欠落している法則の論だ。質量が無い電荷には力は生じない。電荷間に力が働くと言う発生原因の理屈が無い。

『電圧と電流』すべて逆だった

電気現象の解釈は長い歴史を経て、今電気理論として科学技術の根幹をなしている。しかし、そこには大きな誤算があった。『電圧』と『電流』に物理現象としての論理性がなかった。しかし、これからも「オームの法則」として科学技術に欠かせない理論として社会的な文化であり続ける。

科学理論と自然世界。

特に物理学理論として『エネルギー』の実在性を見誤ってきたところに、科学者の現代的責任が問われなければならない。『電荷』は自然界に存在しないのだ。従って、『電子』は誤った科学概念であった。電気現象に『電子』は不要の存在であった。そこに現代物理学の誤りの根源がある。

電気現象はすべて『エネルギー』の流れである。『電圧』は電気回路のエネルギー分布の逆向きの方向に定義した技術概念である。『電流』も電線の近傍空間に流れる『エネルギー』を、逆向きに流れると定義してしまった科学技術概念である。しかも、その『電流』の逆向きに『電子』と言う実在しない概念を創り出して、論理を構築してしまった。そこに科学理論の根本的矛盾を持ち込んできたことになる。光も『エネルギー』の流れである。今太陽電池の現象を考えながら、先に『電圧と電流』の自然現象・理科教育としての矛盾を述べた。

電気工学から物理学を問う (2017/04/09) の回答であったかも知れない。

Is Coulomb force between charges logical?

What is the principle of the force that the same charge collects? How much charge can be collected? Is it possible with Coulomb force ? What other principle of collective force is there? (訳)同じ電荷が集合する力の原理は何か?どれ程の電荷集合量迄可能か?クーロン力で可能か?他にどんな集合力の原理があるか?

Coulomb force is the basic of charge theory. The mystery in the theory of charge is “whether there is no contradiction in why they are discussed on the assumption that the same charge are collected.” (訳)電荷論の基本にはクーロン力が在る。その電荷の理論での不思議は『何故同一電荷が集合することを前提に論議されるのかに矛盾はないのか』という事である。

There is no “concept of force” for no object that cannot assume acceleration. “Charge” cannot define acceleration. Therefore, there is no logic in charge theory to discuss “force” in dynamics. (訳)加速度を伴わない物に『力の概念』は有り得ない。『電荷』には加速度を定義できない。だから、電荷論には力学上の『力』を論じる論理性がない。

Coulomb’s law does not include the underlying mass of the concept force. So it cannot be a formula that expresses the “force” in dynamics.  (訳)クーロンの法則は力の概念の基となる質量を含まない。だから“力”を表明する式とは成り得ない。

 

『Electrons』の紋所と科学理論

はじめに お読み頂くには恥ずかしいような低次元の科学論である。何処かに落ちこぼれていたモノを繋ぎ合わせたお伽噺とお笑いください。実は、電気回路の計測器で、電圧計と電流計があり、その意味を理解することがとても良い電気現象の解釈例題になるかと思った。その測定回路はコイルの内部空間の自然現象(『空間エネルギー流』)を巧みに利用した、優れた科学技術の結晶なのだ。その測定器の過去の記事を考えながら、纏めようとして、躓いたのが『electrons』と言う「お方」の姿の不可解さであった。何方かが明確な『electrons』の空間像をお示しいただければ幸いと思ったのが以下の記事の切っ掛けです。後から付け足しの前書き。

一本の銅線があった。今でも、その中を『電子』というとても不思議な「お方」が通っているとお偉い方々が仰っている。みんながその通りと、それを信じて疑うこともない。水戸のお殿様のお話、TVドラマに「この紋所が眼に入らぬか!」がある。そう言われれば、平身低頭で御もっとも、御尤もとなる。
 そんな「お方」に肘鉄砲を食らわすように、撥ね除けたら世間から爪弾きされるは必定だ。
 その「お方」は不思議なお供を連れている。一本や二本では表現できない、頭も尾もない閉塞環の『磁束』と言うリング坊主(div B = 0) を連れている。その磁束はどれ程の大勢なのか定かでないが、護衛役よろしく、必ずどの程度かの、付かず離れずの間を取って侍るかのように、兎に角どこにでもお付きになっているようだ。そんな『電子』と『磁束』の関係について、その論理性を考えてみたい。『電流』は流れていないで、『電子』が電気回路を流れると解釈する事が最近の科学理論の常識と見做す風潮にあるようだから。

『electrons』と『磁束』の因果関係?

銅線のコイルに電流が流れるという。本当は『electrons』がその金属の導線の中を通っているのに、『electrons』でなく電流が逆向きに流れると勘違いして決めてしまった。実際は図のように『electrons』が流れているのだと。その『electrons』が流れると磁束がその電線の周りに発生する。『electrons』の電気回路における役割は何だろうか。『electrons』は負の『電荷』と『質量』を兼ね備え持った不思議な「お方」だ。なかなか凡人には、その負の『電荷』と言う具備条件の意味を理解しようと努力してみても、未だに腑に落ちない。矢張り素直に言われる通り御尤もと腹に収めれば、爪弾きされずに済んだのかも知れない。磁束と言うリング坊主は『electrons』のどの様な袖の下から繰り出す代物かと悩んでしまう。ある所には、『電荷』も『質量』も10桁のとても厳密性のある物理的権威を持って御達しが成されている。それを誰も本当ですかと疑うような非難はできない。今日も、ダッシュボードに励磁電流とは (2019/4/14) とご覧いただく記事が載っている。

『磁束』は『electrons』のどの様な機能によって創り出されるのだろうか。『電荷』は『磁束』も身に纏っているのだろうか。まさか『electron』の具備条件の『質量』は『磁束』の発生に関係ないだろう。『電荷』のクーロン[C]と言う物理単位に『磁束』のウエーバー[Wb]と言う物理単位が隠されているのだろうか。そんな付帯条件が『電子』に加味されているとはあまり聞いたことがない。御専門の方々がおられる筈だから、凡人にも分かるように御解説いただければ嬉しく、感謝申し上げたい。『electrons』は遠く離れた空間にも『磁束』を張り巡らす超級の能力をお持ちのように思える。普通は『電流』が『磁束』を作り出すとなっているのだが、『電流』は実際には流れて居なくて、『electrons』が電線の中に隠れて流れていることになっているから、その『electrons』の『磁束』発生の仕組みを皆さんのご理解成される程度に少しは分かりたい。『electrons』はどの程度の距離までその能力を発揮するのかとても興味を覚える。

空間を飛ぶ『electrons』も『磁束』を周りに纏いながら速度を上げるのだろうか。『electrons』の持つ『電荷』が原因でないとしたら、他の何が『磁束』発生の原因となるのだろうか。とこのような疑問を膨らませると益々『electrons』や『電荷』のお姿が、その実在性が信じられなくなるのである。有名な「アンペアの法則」による『磁束』発生の物理学の原理が本当かと疑いの深みにはまってしまったのが、『静電界は磁界を伴う』の『電荷』否定の実験の基になった。新世界への扉 コンデンサの磁界 (2011/2/20) 。

勝手乍ら以下に『静電界は磁界を伴う』-この実験事実に基づく電磁界の本質―と言う過去の発表記事の前書きを載せたい。

1.まえがき 現代物理学の基本概念に電磁界理論がある。その電磁界解析に欠かせないのがマックスウエル電磁場方程式である。しかし、マックスウエル電磁場方程式には時間的に変動しない電磁界いわゆる静電磁界に対してはエネルギー伝播の概念は含まれていない。この解釈から「電荷も電流も時間的に不変である限り電気と磁気とは別々の現象である。」(1)という当然ともいえる結論が得られる。しかし、マックスウエル電磁場方程式をエネルギー伝播と言う観点から考察したとき、筆者は「電界あるいは磁界のみが単独に存在するような場は有り得ない。」と言う結論に到達せざるを得ない。

2.空間瞬時電磁界ベクトル解析式の導出 

がその部分である。それはコンデンサ内の『エネルギー』を実験的に、磁気コンパスで測った内容だ。

まとめ

計測器と『空間エネルギー』。『空間エネルギー』の貯蔵空間の一つがコイルである。その空間の『エネルギー』の織り成す磁気的と解釈する自然現象の技術利用が『電圧計』『電流計』なのである。