カテゴリー別アーカイブ: 物理学基礎理論

電気回路のエネルギー問答

はじめに(この記事は、早や一か月以上前の8月5日に書き始めた。今9月17日でまだ投稿できていない。次々と新たな課題が生まれる。その単体問題として幾つかまとめた。電圧・電流とエネルギーと時空 (2019/08/11)、光エネルギーと速度と時空 (2019/08/23)、電流1[A]の論理性‐考える理科教育への科学者の社会的責任‐ (2019/09/07)、空間定数とエネルギー伝播現象 (2019/09/14)。)

遥かなる呼び声がする。何度も関わってきた筈のことであるのに、未だに未練がましく電気回路に呼び止められているようだ。『瞬時電力』の物理的意味 (2018/03/15) に疑問を呈した。エネルギーの物理量を理解しているかと自問した。実験的検証の技術と人の自然認識の関係を自然と科学理論の架け橋はいずこに(2019/05/13) にも述べた。極めきれない概念量にエネルギーがある。

エネルギー量の単位 1[J] とは? その量は小さいが、世界を知る基本単位として大きな意味を含んでいる。それは1[g]の純水の温度を0.24[°C]だけ高めるに要するエネルギー量でしかない。

物理量のエネルギーは空間に実在する量である。

今まで、様々な電気回路の問題を取り上げて考えてきた。もう一度エネルギーの意味を電気回路の中でまとめておきたい。

単相交流回路のエネルギーから、最後は三相交流回路の「瞬時虚電力」の物理的意味をまとめたい。

〈問答1〉電源からのエネルギー送出量を決める要因は何か。

エネルギー流は如何に

電源が直流であろうが交流であろうが、その電源はエネルギーを供給する元である。電気回路論では電圧と電流という電気量で評価し、解釈する。しかし負荷で利用するのはエネルギー量である。図で、スイッチを直流側に投入すれば、伝送路の電圧は負荷まで主に電源電圧Esによって支配される。負荷までの電圧はどのように決まるのか。何がその電圧を決めるのか。

〈問答1-1〉無負荷線路の電圧 短い電線路を電源につないだ。つなぐ前は電線路には何の電気的意味もない。触れても何も感じられない。スイッチが投入されると、今度は電線に触ることは危険になる。何故だろうか。電線路にどのような電気現象が起きたのか。こんな愚問あるいは哲学問題は決して電気回路論では取り扱わない問答である。皆さんはどう答えますか?電源はエネルギーの供給源といいました。当然エネルギー以外ありません。それではどこにエネルギーをどのように送出するのでしょうか。金属の導線を繋いだのです。導線の中の金属原子結合空間でしょうか。決して『電荷』や電子では解釈困難のはずである。答えは電線路が握っているのでしょう。

〈問答1-2〉 電線路の物理的意味。

単相の2本の電線が張られれば、それは電気エネルギーを伝送する空間を規定する電気回路となる。金属導体が挟む空間は電気要素の静電容量という場となる。負荷があるかないかに関わりなく,エネルギー源の電源に繋がれた時点でコンデンサの機能を持つ。ただそのコンデンサに自動的にエネルギーが流れ込むことになる。流れる速度を規制するのが電気要素のインダクタンスである。それは自由空間を伝播する光のエネルギーの関係と基本的には同じ現象である。ただ、光のエネルギーが伝播するのに電線路はなくても、空間自体がエネルギーを伝送する真空誘電率と真空透磁率の伝送特性を備えているのである。電線路は金属導体で伝送空間が局所的に制限される点が異なる。そこに電圧の2乗の意味が働く。電圧・電流とエネルギーと時空 に答えを示した。

〈問答2〉 電気回路の電気量の波形を観測できる。その波形の物理的意味は何か。表現波形にも観測できる波形とできない波形がある。右に(問答2)観測波形の物理的意味。として回路と検出の図を示した。一般的には電圧と電流波形が普通の観測波形となろう。電圧と電流の積をとれば、電力の波形も観測できる。

 

【回路条件】具体的な回路条件で考えよう。

 

 

 

 

〈問答2-1〉電流波形の物理的意味 不可解な電流の物理学的概念について考える。電荷の時間微分 [C/s] を電流アンペア [A] と定義している。いくら不可解だといっても、オッシロスコープで実際に電流波形が観測できる。電圧波形 v と電流波形 i は図のように簡単に観測できる。ただし、図には電流 i を有効分 ia と無効分 ir に分けた波形も記した。電流波形 i は観測できるが、ia や ir は観測できない。ここでは電流 i についてその物理学的意味を考える。実際の観測は、電流も電流計のシャント抵抗と同じく回路の抵抗降下電圧を検出して、電流と解釈しているのだ。だから、本当に電流という電荷の時間微分値を計っている訳ではない。電線の中の電荷の挙動など観測できる訳ではない。電荷量[C(クーロン)]の時間微分[d/dt]値、電流[A=dC/dt]が流れるとはどの様な物理現象か?例えば、電線路の導線のある点に1[A]が流れるとは電荷がどのような状態と解釈するのですか?ここにも、「見えるもの(波形) 見えないもの(意味)」が隠されている。電流が電線の中を流れる電子の逆流等ととても難しい哲学的で抽象的な概念で解説するのが科学論の論理性に適っているとお考えですか。愚直に、科学論の言わんとする概念や内容を自分の心に共感して納得できるかどうかを追究する過程で、納得できない矛盾に突き当たれば、その矛盾を取り除くにいかなる道があるかを探るだけである。その結果が『電荷』には科学論の基礎概念の資格がないとの結論に達してしまった。だから『電流は流れず』などの表現を使ってきた。電気回路現象から否定した電荷概念が科学論全体にいかなる混乱を与えるか、計り知れない恐ろしさを抱く。考えれば、電流が電荷の何々という意味で理解できない訳で、エネルギーとの関係で捉えなければならないものだ。前の記事電圧・電流とエネルギと時空で示した 電流の2乗  i^2^[J/H] から、線路定数 μ[H/m] による電線路のエネルギー流 μi^2^ [J/m] の意味を捉えた科学技術量が電流だと解釈すればよい。

電流 i を有効電流 ia と無効電流 ir の2つの電流に分離して図に示した。それは次のようになる。

i=ia+ir= √2 ×10 sin(ωt-θ) , ia=11.31sin ωt , ir= -8.48cos ωt

ただし、θ=tan^-1^(12/16)=36.87 [°]=0.205π [rad.]で、力率 cosθ=0.8である。

<問答2-2> 電力波形の物理的意味。電線路の各部で、そこの電力は電圧と電流の積で解釈される。電力工学やその技術感覚では電力と言えば、何の躊躇もなく電圧と電流の積で p=vi [W=(J/s)] と捉えて理解する。

電力波形の意味 この電力とその波形の物理的意味は何かとあらためた考え直すと、よく分からないことに気付く。それは時間軸上に描かれる電力波形が,時刻のその瞬時におけるエネルギーの時間微分という物理的不明確な概念をどのように理解できるかという問題である。電圧と電流の積が電力ということが表現する意味は何か?ということだ。「積」の[×]と言う記号の意味は何か。巷の専門的記事の解説は如何にも当たり前のように電力の単位ワット[W]で納得しているようだ。恐らくすべての専門家が疑問にも思わないのだろう。その常識的基礎の電力の意味が分からないと言えば、専門家の中には入れないだろう。専門家とは共通の学術的基礎の基盤の上に立って論議のできる人たちから構成された職業的繋がりの集団であるから。しかし電力という単位の意味が筆者には理解できないのだ。ある時刻における、ある電線路の位置で、その点の電力という『エネルギーの時間微分値』とはどの様なエネルギー像で捉えればよいのか。[W]は[J/s]で、その電線路の位置の1秒間の値など決して電力波形で表現できる筈がない。時間軸上に表現すればそれはその瞬時の値で時間の長さはない筈だ。1マイクロセカンド[μs]の時間での微分値と言ってもそれは瞬時値ではない。しかしながら、誰もが上の図のように電力の波形 p を描いてその意味を解釈する。その波形の物理的意味が明確ではないにも拘らず。このような論法は、科学技術論の専門的仲間同士の論議にはならないのである。しかし時間軸上の瞬時値波形には決して時間での微分値概念は描けないのである。磁束での変圧器の鎖交磁束の論議と同じく専門的な話が進まないのだ。もともと電圧(磁束の時間微分)、電流(電荷の時間微分)も時間微分値の概念であるから、同じことではあるが。この先の論議が本当の自然現象の物理的意味を探る話になるはずだ。それは哲学道場での論議になる。所謂東洋的削ぎ落しの思考の場となる。物理学とは何かを問う話にもなろう。例によって JHFM 単位で考えれば、電力は次のように表現できる。

電圧[(J/F)^1/2^] × 電流[(J/H)^1/2^] = 電力[J/(HF)^1/2^]

この上の式が表す次元と電力の意味を理解しようと考えても、筆者は電圧と電流の積の物理的意味さえ捉えきれていないのではないか。理解できない、分からないあるいは不思議だと感じた時が、それが新しい理解の道の入り口になるのだ。疑問こそ宝玉、道標。疑問に思わなくなったら進歩は途絶える。書いている筆者自身が分かっている訳でなく、これから答えを探す旅。第一歩は、何が分からないのか探る、その道の入口を探すこと。とボーっと過ぎる時間の中で一つ見つけた。光の速度が空間定数で決まる訳を。それが時間の次元[s]が[√(HF)] と同じ意味である訳が見えた。光エネルギーと速度と時空 の記事とする。電力の意味はその後に託す。電力p[J/s]の意味と解析(1)意味 (2019/09/ 16) に回答の一部を示した。

むすび

この記事のはじめに挙げたように、電力の意味を尋ねて、途中でいくつかの問題に結果をまとめた。電力p[J/s]の意味と解析法(1)意味 にようやく一つの納得できる結論に到達した。次に具体的な負荷特性との関係をアドミッタンス解析法としてまとめて、電力の姿を自分が納得できるようにしたい。

 

電流1[A]の物理的空間  (インダクタンス算定式)

電気回路の構成要素はインダクタンスと静電容量そして抵抗である。その中で電流と直接関係するのがインダクタンスである。電線路の特性は特性インピーダンスが握っているといってもよかろう。その特性インピーダンスの算定式には電線路単位長当たりのインダクタンス[H/m]が欠かせない。平行導線路のインダクタンスL[H/m]の算定は電流概念がその拠り所となっている。そのインダクタンスの算定理論における電流1[A]の物理的概念がいかなる意味を持っているかを確認したい。基本的には電流によって、その周りの空間には磁束が発生するという電気理論が前提になっている。

インダクタンスの算定回路空間。

磁束鎖交数φa=LI[Wb] をインダクタンスL[H]と電流I[A]の積で定義する。電流の比例定数がインダクタンスL[H]である。

次元は電流が[(J/H)^1/2^=A]であるから、磁束量あるいは磁束鎖交数の単位[Wb]は次元で、[Wb=H(J/H)^1/2^=(HJ)^1//2^]となる。

さて、インダクタンスL[H]の算定は電流I[A]が流れている導線周りに発生する磁束量の計算によってなされる。図は平行導線路の場合で、導線aとbの往復線路である。まず、算定法では導線1本について計算される(文末の文献 p.93    5.3 インダクタンス 参照)。a導線の電流I[A]によってa導線の周りに発生する磁束を計算する。図1.に電線路単位長当たりのa導線の自己インダクタンスが示されている。その第1項の2分の1は導線内部電流による磁束計算量である。しかし実際は導線内部に電流など流れていない訳であるから、少なくともその項は無意味と考える。第2項は導線半径rと線路離隔距離Dによる自然対数である。その計算結果の訳は次の示す。

a導線からxの位置に、その電流I[A]によって生じる磁束は、その磁界Hx=I/2πx[A/m]にその空間の透磁率μo=4π×10^-7^[H/m]を掛けて、磁束密度Bx=μo×Hx[Wb/㎡]と算定される。電線表面rからDまで、単位長さ1[m]当たりの面積1×dx[㎡]で積分すると、 2I∫(1/x)dx 10^-7^[Wb/m] =2I×10^-7^ln(d/r) =LI [(HJ)^1/2^/m=Wb/m]と、自然対数式となる。

上の算定に関する質疑。

  1. b導体の電流は考慮しない。それは何故か?コイルの場合の鎖交磁束は全体の一周電流分で考える。
  2. 磁束は図のΦaのように導体aを周回していると考えるのか?コイルの場合は、コイルの外側には磁束はない筈だから。
  3. もし導体を磁束が周回していると考えるなら、物理学理論では、磁界Hx[A/m]の場には(1/2)μoHx^2^[J/㎥]のエネルギー密度がある筈。理論的には、そのエネルギーが導線の周り全体にある筈だ。しかし、そのエネルギー量はほとんど計算には意味を持たないことになっている。更に、そこに磁束の電流との鎖交数という意味にも特別論理性があるようには見えない。円周の長さ2πx[m]を計算の基に考慮しているが、実際の計算にはrからDまでの積分として周回の意味は特にないようだ。
  4. 電線内部磁束鎖交数による 2分の1は必要ないと考える。

以上の質疑があるが、算定式の第2項は実際の利用で、有効性を示す。さらに、平行2線式電線路の単位長当たりの自己インダクタンスL[H/m]は何故か導線1本当たりで計算する。その訳を次のように解釈した。以下の解釈は削除させていただきました。上の質疑1.のb導体の電流分を平行2線式電線路で考慮しない理由の解釈に、削除した記事が間違っていたかと考えた。

むすび

インダクタンス算定式(電線路単位長さ当たり)

L=0.4605log(2D/d) [mH/km]=0.4605×10^-6^log(2D/d)[H/m]

と得られる。ただし、d=2r であり、自然対数と常用対数の間に ln x =2.3026log x の関係がある。

このインダクタンス値ともう一つの静電容量算定式により、電線路の特性インピーダンスおよび伝播定数が決まる。その特性値により、高周波分布定数回路から、同軸ケーブル(この場合は少し考慮必要)および三相送電線路の特性まですべて統一的に決まる。

電流1[A]の空間の意味をインダクタンス算定式に関する観点から考察した。厳密な意味ではその電流概念の論理性が保証されているとは言い難い面がある。しかし技術的な算定式ではとてもよく実際の応用で適合している。科学技術と自然現象との関係の捉え方には慎重な解釈が必要と考える。

(参考文献) 電気学会大学講座 送電工学(改訂版) 電気学会 15版(昭和49年)

空間定数とエネルギー伝播現象

空間とエネルギ-伝播現象の関係を図にまとめてみました。

 

 

 

 

 

 

 

 

 

 

 

 

 

エネルギー伝播特性 光を含めすべてのエネルギーの伝播現象がその空間定数、透磁率μ[H/m]、誘電率ε[F/m]によって決まると考えてまとめた。細かな点では違いもあるかも知れないが,エネルギー流という物理的実体の流れを総合的に捉えれば、その伝播現象の基本的姿は図のようになろう。特に電気回路の具体的現象を考えると、回路が電線路導体で囲まれた空間内を流れるエネルギー流の現象と見えてくる。長距離送電線路の伝送方程式では、回路定数による分布定数回路としての捉え方が基本となっている。その中に特性インピーダンスZ=√(L/C)[Ω]と伝搬定数γ=ω√(LC) [rad/m] がある。この中で、伝搬定数にはω[rad/s] という角周波数が含まれている。それは定数に入れるべきでないと考え、伝播定数としてγ[s/m]の速度の逆数を定数にした。電気回路のエネルギー伝送現象を考えるにはこの伝播定数の方が分かりやすいと思う。それはエネルギー伝送現象について光エネルギーと速度と時空で、電力p[J/s]の意味と解析法の記事で明らかにした。この電気回路定数との関係を述べた。

むすび 科学技術はその広範な分野に分かれて、それぞれ独自な理論を構築しているように思える。そのため各分野を統合して考察する機会が失われているように思う。未来の科学には生活感覚から観る市民の理解できる易しい解釈・解説が求められる。そこに全体を統合した捉え方をするには、ますます科学全体に共通した矛盾の無い少数の基礎概念の提示が求められるはずだ。その市民科学への寄り添いに科学者の努力と責任が求められよう。そんな意味を込めて、真空空間の空間定数による光エネルギー伝播特性を基準にした、すべてに共通した捉え方の一端を提示した。光と電気エネルギーは同じ空間エネルギー分布波の伝播現象だという意味を。スマホの通信も電気回路も同じエネルギーの伝播現象であることを。

 

電圧・電流とエネルギーと時空

今、電気回路のエネルギー問答 を書き始めた。その途中で、一つまとめておきたいと思った。その問答の中の一つの答えでもある。物理学理論では、エネルギーは主役ではなく、何か端役あるいは誘導量という捉え方で理解されているように思う。しかし、電気技術から見た場合、電気回路現象を考えると回路内を伝播するのは光と同じエネルギーしか見えない。それでは電圧とか電流という電気量は何を表現したものかと、そこに戻ってしまう。また物理学理論では、あまり重要視されていない空間概念がある。それが誘電率と透磁率である。世界を支配している物理量の代表が光エネルギーであるとの認識に立った時、その光速度を規定する原因がその伝播する空間特性にあると考えざるを得ない。

光速度=(透磁率×誘電率)^-1/2^ =  1/√(με) [m/s]

ただし、μ[H/m] 、ε[F/m] から、[(HF)^1/2^]=[s] である。

空間の誘電率は空間長1m当たりの静電容量[F]、空間の透磁率は空間長1m当たりの誘導値(インダクタンス)[H] で、その空間を伝播する光エネルギーの空間共鳴現象としての伝播特性を呈すると解釈する。光を世界基準の物理量と見做した時、その伝播する空間の長さと時間を規定する「時空」概念として時間[s]と長さ[m]の時空基準を光エネルギーと速度が決めていると見做せる。この何もない空間が電気回路のインダクタンスやコンデンサの回路定数の単位ヘンリー[H] やファラッド[F] との関係で解釈できることの中には、そこに物理量『エネルギー』という空間伝播実体である光の『エネルギー』が空間分布として存在するからと理解する必要がある。光には振動する実体はないのだ。観測技術としての評価概念が振動数である。

上の解釈で電気量を解釈したとき、

電圧の2乗、電流の2乗と次元

その2乗値の単位はエネルギー[J] との関係で図のように認識できる。

次の問答の記事の答えともなるが、電線路には回路特性として単位長さ当たりの静電容量と誘導インダクタンスを備えている。その電線路単位長当たりの静電容量をε[F/m]とすれば、その電線路には1m当たり εv^2^[J/m] のエネルギーが線路空間に存在するとなる(係数1/2は省いた)。このように考えた元に、例えば電流を取り上げて考えた時、アンペアの単位が[C/s]と言う電荷の時間微分値であるということである。電線路の電荷の時間微分とはどんな意味か分かりますか。電流計で測る点で、その電線内の電荷がどんな意味と捉えるのですか。電流波形で描く時間軸のある時刻の電流値とはその電線の中に電荷が時間的にどのように存在し、変化していると考えたら、その電流の意味を納得して理解できるのか?その辺の電流概念への疑問から、どう考えても電流概念棄却の結論にならざるを得なかった過去がある。1987年8月に決断した研究会資料:電気学会、電磁界理論研究会資料 EMT-87-106 である。その5.むすび に・・・電磁気学の基本概念である電荷や電流までも疑い、棄却さえしなければならなくなってしまった。云々と記した。

次に電流 i^2^[J/H] は線路定数の誘導量インダクタンス[H]との関係で、流れるエネルギー量に関係した捉え方ができないかと考えたが、今のところ答えに到達していない。(2019/08/19)追記。電線路にはその単位長さ当たりのインダクタンスという流れを制限する回路要素がある。μ[H/m]の分布定数があるとすれば、電線路の単位長さ当たりμi^2^[J/m]の流れる伝送エネルギーが分布していると考えることはできる。同じく負荷のインダクタンスL[H]とは当然の関係で、Li^2^[J] の貯蔵エネルギーとなる(1/2は省く)。

負荷抵抗R[Ω]の次元も[(H/F)^1/2^]である。抵抗も空間特性は誘電容量と誘導容量の意味を持っているものと見做せる。この見方をとれば、i^2^Rの単位は[J/H][(H/F)^2]=[J/(HF)^2]=[J/s]=[W]という意味で納得できよう。

JHFM単位系 1990年(平成2年)春にまとめた単位系である。マイケルソン・モーレーの実験とマックスウエル電磁場方程式の関係から得られた。色々あって、1998年4月2日に初めて日本物理学会で発表させて頂いた。物理的概念とその次元 日本物理学会講演概要集 第53巻、1号、1分冊、p.13.  関係記事 エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18) 。

まとめ 電圧及び電流という電気量はその根底には深い知恵が潜んでいる。その科学技術量を理解するには、自然との間の深いつながりを紐解かなければならないだろう。その辺に考えるということの意味があるのだろう。単に法則や原理ということで、それを鵜呑みにしていては本当の自然の深い意味を知ることはできなかろう。電圧と電流もその2乗に意味があるのであって、その平方を電気量の概念として実用化しているのだった。電圧、電流はその測定器があるということとの関係で、如何に優れた量であるかということになる。しかし負の電荷の電子が電線の中を流れているという解釈は誤っている。

科学論と電荷

はじめに どうしても思考が初めに戻ってしまう。1985年から2年間初めて電気磁気学・電気理論の授業をすることになった。基に既にあった「磁束は電圧時間積分によって決まる」の認識が「アンペアの法則」の電流による磁束発生理論への疑念を抱えての出発であった。振り返れば、命を守る地獄の中で纏めた『静電界は磁界を伴う』の1987年4月2日電気学会全国大会での発表となった。その時の所属はいったいどこにあるのか、今でも理解できない(4月発表の数日後自宅に、既に去った筈の高専校長から職員会議への出席要請の手紙が届いた。さらに次の年1988年の1月中頃どこからか自宅に、長岡工業高等専門学校の健康保険証が送られてきた。その時は既に、電磁界の物理的概念と地磁気の解釈 春の昭和63年電気学会全国大会 32. p.35-36 の発表予定で投稿していた。しかも全く所属分野の意識もなく、全学共通ぐらいの気分でいたかも。など混乱と理解に苦しむ疑問のまま今日までそのままである)。『静電界は磁界を伴う』の発表内容は結局『電荷概念否定』になる。その原点となった考えの状況を纏めておきたい。なかなか科学論だけの話ではないところが誠に不可思議である。しかも今になれば、その当時の政治的意味合いも含んだ長岡技術科学大学の邪魔者排除対象者として選ばれ、政府・文部省の「中曽根臨時教育審議会」に関係していたことであることが分かる。さすがに常識に疎い無知の筆者にしてみれば、このような意味不明で回りから嘲られたような仕打ちが続いたことは。精神的にも限界を超えていた。みんな政治意識に無頓着だった筆者の無知と相談しようもない孤立無援の中にいたことに関係していることだ。1988年10月、電気学会電磁理論研究会での、「瞬時電磁界理論の実験的検証とその意義」EMT-88-145.(1988.10.) の発表を機に大学から離れた。この研究会資料は世界の科学常識を問う実験データの写真集でもある。

“ミズリー号甲板上での無条件降伏調印式(1945/09/02)  1945年9月1日(海軍解散最終日)に父は『任海軍上等兵曹 舞鶴鎮守府』辞令。9月2日の調印式のため、日本政府代表団はゴムボートにて艦船への往復をした。父はボートクルーの任務に就く。1939年12月1日家族は舞鶴鎮守府へ戸籍転籍された。戸籍上に帰還の痕跡がない。公務員資格は?筆者存在の可否が根源にあったか?”今戦後74年が経過しようとしている、戦争の悲劇の意識が薄れ、政治意識の希薄さが危険な道につながる選挙にも無関心な世相の日本にある。政治はその選挙への無関心に対して、政治意識の重要性を教育に反映する対策も故意に回避しているように思える。今も所属機関もなく、研究発表もできない事態にある身として、思えば戦後処理にすべてがつながっていると。

「電荷への疑念」 電流は電子の流れとの解釈が科学論の基にあった。電子は電荷と質量の合成素粒子と理解していた。しかしアンペアの法則では質量は無視され電荷のみで論理が成り立つ。電子という時の科学論では質量を意識していないように思う。電流概念は電荷の時間微分でアンペア[A]であろう。その電荷が空間で運動すると何故周りの空間に磁界が発生することになるのか。その疑問が電気磁気学の授業をするに連れ強くなっていった。1986年10月1日ある方に『電荷』は存在しないのでは?と疑問を投げたと記憶している。その方は実験で証明する必要があろう。と仰った。確かにその通りと納得して、すぐに実験に取り掛かった。今でも何故高電界中の磁界検出が『電荷否定』の検証になると考えたか、その意識のつながりを明確に覚えていない。何の躊躇もなく翌日から高電圧内の磁界を検出すればよいと取り掛かった。オリエンテーリング用のコンパスをロゴウスキー電極の中に置き直流電圧を高めていった。しかし見事に失敗であった。火花放電が起き、コンパスの表面が黒く焼けた。これで終わりかと自室(ある人の部屋の間借り)に閉じ籠り、歩き回った。閃いた!!油入りのコンパスは地磁気には反応するが、電界の空間エネルギー流には反応しないのだ。それは空間エネルギー流をホール素子で検出する意味と同じ無意味なことと。それからが電界の空間のエネルギー流の何かをとらえられないかと考えて、マグネットの吊り下げ検出器を作った。クーロン力という解釈の指摘を排除するために、等方性の円平マグネットを使った。10月30日ごろと記憶している。その日の長岡市は、朝から雷が鳴りひどく荒れた天候であった。その時思った。天の神が自然の秘密を暴くのを怒っているのだと。それだけきっと磁界が検出できると予感していた。試作マグネットを電極間に近づけて設定。徐々に電圧を上げた。平板マグネットの矢印の方向が変化した。静電界は電荷による電界の空間と電気磁気学では解釈されている。しかし、その空間に磁気コンパスを動かす力が存在するとすれば、その訳を説明しなければならない筈だ。そもそも『電荷』とは何か、その空間像を認識しているか。アンペアの法則及びその電流、その法則による磁界の発生。ビオ・サバールの法則、フレミングの法則などその根源的物理概念は『電荷』である。それほど万能な『電荷』とは何者か。『電荷』が動くとその周辺空間の物理的状況に何が起こるか?それが『電荷』の空間像を考えた起点である。『電荷』は磁気特性を含有するか?

「電荷像と磁気」 電荷への疑念を膨らませた図がある。

電子の磁界発生原理は? 何も特別のことを考えた訳でもない。電子が電荷の具体的代表例だから、それが運動すると静止の時とどのような変化が生じるか。ただそれだけである。電流が磁界を発生させる原因だと物理学で理論構築されている。電流の基は電子だという。それなら電子が静止しているか、運動しているかで回りにどのような物理現象の差が起きるかという疑問でしかない。何も数式など要らない。『電荷』という物理的概念を探るだけである。まず、電荷は空間にどこまでその物理的存在を主張するのか。理論的にはどこまでも無限に意味を持つような解釈にあるように思われる。電界が電荷の周りに在るなら、それは空間エネルギー(1/2)εE^2[J/m^3]が存在する意味である。そのエネルギーは電荷とは異なる物理的実体ととらえるのか。そこに物理学としての論理性があるのか.あるいは電荷内の空間で完結するのか。そんな如何にも学術的科学論あるいはその手法からかけ離れた思考である。巷の科学論とでもいえよう。専門的学術論からかけ離れた素人的疑問は誠に科学論としてはお粗末で、始末に負えないと顰蹙を買いそうだ。電子の寸法もわからないから、実際は空間像を想像することすら無理なのであるが。

結び 『電荷概念はエネルギー流の認識の妨げになっている。』

『電荷否定』の科学論が伝統的科学論の世界で通用する見込みもないと危惧しながらも、ただその実験結果がだだ事でない科学革命の萌芽を含んでいるとの確信になった。その確信が全ての危険な先行きを無視して突き進む情念になった。社会に対する怒りを生み、遣る瀬無い身を恨んだ。そこに情報・テレビなどの操りの罠に引き込まれても行った。飛行機と花火にも踊らされた。陰で操る闇の日本社会。その中でも、現在ようやく物理学理論として『電荷』の概念が曖昧のままでは済まない意識が生まれつつあるか?と考える。科学論の革命が迫っていると。昭和57年度からの工業高等学校の文部省改定を前にして、もう工業高等学校では研究の余地はなくなると喜んで長岡技術科学大学での生活を想定した。しかし、結局望まれない人材として厄介者となってしまった。今思う。研究しか能のない世間知らずが役立たずで誠に困ったものと。しかしお世話になった川上学長も技術に対して理学への不信を抱いていたのではないかと思う。技術から、物理学理論の矛盾点にメスを入れ自然科学としての未来への進むべき道が見えてきたと筆者は思うようになった。『静電界は磁界を伴う』には相当御心配されたとも思う。また、今でも斎藤 進六 学長の創造性の「創」という文字は大きな傷を伴うという意味だとのお話が印象深く気持ちの上で拠り所となってきた。電気系の皆さんにもお世話になっただけで役に立てなかった。新潟県教育委員会が筆者を正式採用をしていなかった事務手続きはについては、今でも行政機関としての意味を理解できない。そこから「割愛」などできないと思う。

戦後処理問題:舞鶴鎮守府の軍籍問題を知ったのは平成7年頃であった。

エネルギー変換物語(炭火とエジソン電球)

はじめに  火は人類の生活基盤を成す。人類の文明の始まりにも関わる生活科学であろう。炭火や囲炉裏火は生活そのものであった昔に思いを馳せる。それはエネルギーと科学論の懸け橋にもなる深い意味を含んでいる。そんな日常生活の古い姿を振り返って、誰もが思い描ける生活の中にとても深い科学の視点が残されていることを拾い上げてみたい。難しい数式も要らない、しかし現代物理学理論が疎かにしてきた『エネルギー変換論』を展開しようと思う。物理学理論が『エネルギー』の意味を認識していない事を考えてみたいと。

炭と光熱 木炭がいつ頃、何処で使われたかははっきりしなかろう。木を燃やし、残り火を灰で覆えば炭が残る。火の扱いは生きる技術として必須の知識であった筈だ。図1.炭と光熱 科学の知識や科学理論を知らなくても、生活の中心に在った囲炉裏の火や火鉢の炭火が人の繋がりに欠かせない居場所を作っていた。ただ燃える火の揺らめきが心にぬくもりを与えてくれた。ゆっくりとした人の生業が穏やかで、効率で監視される現代の心の歪みなど有りようがなかった。寒い雪国には、行火(アンカ)が有った。夜の就寝時に布団の中に入れる個人用移動炬燵である。朝までに炭はすべて灰に成り、熱源としてのエネルギー変換作用を応用した生活道具であった。図2.行火がそれである。

炭火や焚火にはとても不思議な意味が隠されているように思える。今までも、その不思議に誘われて幾つか記して来た。焚き火と蝋燭 (2013/02/01) 、焚火の科学 (2018/05/26) など。しかし、それでもまだ肝心なことに気付かずにいた。それは炭や炭素原子のエネルギー変換作用についてである。それは不図した気付きでしかないがとても大きな意味に思える。最近は年の所為か夜中に目が覚めて、詰まらぬことを思い巡らす。なぜ炭素や抵抗体は熱エネルギーに変換する機能を持っているのかと、不図思い付く。それが記事の基だ。

図3.mc^2とエネルギー変換 図に①電池エネルギーと②燃焼エネルギーの場合を取上げた。①の電池エネルギーで電池のエネルギーとはどのようなエネルギーなのかと不図疑問が浮かんだ。すでに電子は破棄してしまったから、科学論を展開しようとすれば、電池に蓄えられているエネルギーとは何かを明らかにしなければならないことに成った。たとえ電子論を展開するとしても、電池の陰極側の化学物質に電子を負荷に供給するだけの電子が蓄えられていることを前提にしなければならないとなろう。その電子論では電子は負荷を通って電池の正極に戻ることに成っているようだから、電池内から供給したエネルギーはどのようなものと解釈すれば良いのだろうか。電池の質量が減少する理屈にはなっていないようだ。エネルギーと言うものが電池内に蓄えられていて、それが負荷で消費されると考えるのだが、電子論ではそのエネルギーをどのような理屈で消費すると解釈するのか。図①で表現した電池の陰極側からのエネルギーが電線路空間にどのように分布するかの見極めがまだ付いている訳でなく、疑問符?を書き込まなければならない不明は残る。ただ、電線路空間に表れる電圧とは空間のエネルギー分布によって生じる電気技術量・概念であることだけは間違いのないことである。だから如何なるエネルギー分布かを明らかにすることも自然現象の解明の学問として物理学の究める研究対象である筈だ。ランプから放射される光や輻射熱は紛れもないエネルギーである。『エネルギー保存則』とはどのような意味と解釈するのか。電池にエネルギーが有ったからそれがランプを通して高熱のエネルギーに変換されて放射されたと考えなければ、『エネルギー保存則』の意味までも曖昧になってしまうだろう。これはエジソンが工夫した木綿糸のフィラメントにどんな思い入れで取り組んだかにもつながろう。

①エネルギー変換原理は?   エネルギーとは誠に不思議なものである。ランプ・白熱電球は抵抗体の中で元々電池などの冷たいエネルギーを高温度の熱エネルギーに変換する機能が有っての結果に因って利用できる現象である。電線路空間に分布するエネルギーの大きさは電線路電力送電量の規模を規定する電気技術量・電圧の大きさで認識、評価できる。その電線路の負荷端に抵抗体が繋がった時、その負荷端子空間には光と同じ冷たい電気エネルギーが分布しているだけである。光も光速度伝播するエネルギー密度分布波では何も熱くはない。皮膚や吸収体で受け止めたとき熱エネルギーに変換されて熱くなる。光の速度が零に成る現象と看做せる。電気負荷抵抗の物理的機能は光エネルギーを吸収し、抵抗体の構造格子の中にエネルギーを速度ゼロの状態にして、吸収する熱化現象とも見做せよう。その詳細な物理機構は炭素などの結合格子構造に原因が有ると観なければならなかろう。マグネットの磁極近傍空間に在る軸性エネルギー回転流もおそらく電磁現象としての速度流で有り、光速度に近いと見做せれば、そのエネルギーも冷たいエネルギーである。それらの光的エネルギーは熱はないが抵抗体内に吸収された時、エネルギーの熱化現象が起き、新たな光エネルギー化に因る生まれ変わりの輪廻転生の一コマを演じることと見られよう。物理学として極めなければならないことは、抵抗体内で何故冷たいエネルギー・光エネルギーが熱い熱エネルギーに変換するかのその訳を解くことであろう。それには光エネルギーの正体を空間エネルギー分布として捉えない限り困難であろう。なかなか電子の逆流では解けそうもない事だろう。

②化学式の意味は? 炭火の話に成るが、炭素の炭と空気が混ざっても火は起きない。煙草の吸いがらでも、マッチ一本の火でもある条件が整えば、発火・燃焼に成る。化学式では炭素記号Cと酸素分子記号O2が有れば炭酸ガスCO2と熱・光エネルギーに成る様な意味で表現される。先ずこの両辺を結ぶ等号はどのような意味を結び付けているのか。勿論エネルギーのジュールでもないし、質量でもない。化学式に使われる原子、分子に込めた意味は何か?図3.のように炭には炭素だけでなく燃え残る残差物も含まれていて、燃焼後に灰が残る。その燃焼で発生する熱と光エネルギーは『無』からは生じない筈だ。それでは何がその光熱エネルギーに成ったのか。等号はその何がを意識に含んだ意味でなければ自然科学論としては肝心要が抜けているように思う。光熱エネルギーを含むからには、科学論としての等号にはエネルギーの次元で成り立つ意味でなければならないだろう。何が言いたいかと言えば、質量とエネルギーはその本質で等価であると言うことである。両辺の炭素原子記号と酸素原子記号の持つ意味で、質量が同じではない筈だ。炭素原子と酸素原子が結合して炭酸ガスに成ったとすれば、その原子質量が両辺で等しいならば光熱エネルギーなど発生する訳がない。無からエネルギーは発生しない事ぐらいは、高度な科学理論を学ぶまでもなく分かる筈だ。そんな日常生活上で感覚的に感じる科学常識を身につける為の理科教育でなければならないと思う。如何でしょうか?教育専門家の皆さん。塾の教育関係者もどのようにお考えですか。mc^2=E[J]と言う式をどのような意味で捉えていますか。特別素粒子など無くても質量とエネルギーは相互変換を通して等価なのです。

mc^2^から物理学を問う (2019/04/29) でも述べた。その意味を具体例として、独楽の心 (2019/01/05) や 熱の物理 (2019/02/07) でも考えた。

エネルギーとは何か

科学論としては『エネルギー論』が核となっている。ようやくその意味の全体像が捉えられるような心境に在る。そこで、改めて『エネルギーとは何か』と検索してみた。とても有益なエネルギー論考に出会った。少し古い(2009年)が、とても論理的で、よく考えられた記事の小人さんの妄想である。今まで、エネルギー(ENERUGY)とは? (2011/09/07) などをはじめとして電磁気現象の自然世界を『エネルギー』一つによって捉える論理的世界を捉えたかと思いたい心境に在る。それでも、『エネルギーとは何か』に答える助けになれればと論考を重ねる。(2019/06/15追記)また、EMANの物理学・力学・エネルギーとは何かと言う記事が有る。136万件の検索のトップに在る。この記事は所謂物理学教科書の解説に成っている標準的内容であろう。「エネルギーとは仕事をする能力」と言う定義に因って、「力×移動距離=仕事(エネルギー)」の解説に成っている。しかし、ここで考える内容はその解釈では通らないものに成っている。重力場(加速度g[m/s^2])での持ち上げる力も必ずしもf=mg[N] とは限らない。

小人さんの妄想の論考に応えたい。位置エネルギーを主題にして、重力加速度g[m/s^2]と力の関係を論じている。そこで論じられていることはその通りである。考える拠り所として、図に表した。m[kg]の質量が有る。基準からh[m]の高い位置に有れば、その物は位置エネルギー E=mgh[J] を保有していると解釈する。小人さんが論じていることは、物体を持ち上げる時重力 f1 と 持ち上げる力f2 の間に力が釣り合っていて、物体に掛る力は常にゼロではないか。それなら位置エネルギーは増加しないだろうと言うことの論理的矛盾を問うものと理解する。しかしそこのところは少し違うだろう。物 m[kg] に掛る力 f [N] はその物に生じる加速度によって捉えることが力学論の定義であろう。もし加速度  α[m/s^2^] で運動するなら、それが力の意味になる。その時は力 f [N] はゼロではない。だからと言って、小人さんが指摘した力の関係の問題に納得出来る訳ではなかろう。そこで更に問題となることが図の(※)の場合だろう。上昇速度が一定なら加速度はゼロである。従って、加速度ゼロなら力の定義からやはり力はゼロとなる。エレベーターを一定速度で上昇させた時、加速度ゼロだから力学論の定義によれば、エレベーターに掛る力はゼロとなる。力と距離の積で解釈するエネルギー即ち位置エネルギーはゼロと言うことになる。幾らなんでも、それは理屈に合わない。エレベーターを上昇させれば運転動力を使いエネルギーを消費する。エレベーターが高く上がれば、それだけエレベータは位置エネルギーを増加して保有することになる。少し付け加えて置くが、エレベーターの場合は平衡重りが掛けれれているので、重力あるいは位置エネルギー量には注意しなければならないことが有る。 それにしても加速度ゼロでの運転では、位置エネルギーの問題は小人さんの仰る通り、運動力学の理屈に合わないことは事実である。それを『力と位置エネルギーのパラドックス〈理屈と実際の間の矛盾〉問題』としておこう。

力と位置エネルギーのパラドックス問題。この問題の解釈の仕方について筆者の考え方を述べよう。地上から高くなれば、そこに在る物体は地上に落ちる時そのエネルギーを利用できることは間違いない。その物理現象は十分エネルギーの意味を説明するに役立ち、正しい。それが力学理論の『エネルギー』とは仕事をする能力として定義したことに対応した正にその意味でもある。しかし、重力に基づく位置エネルギーの増加の意味の力の概念は一般的力学理論による解釈に因る理屈で素直に受け入れられない矛盾が残る。

追加されるパラドックス。人が重い荷物をじっと持ち上げて居るとする。荷物を動かさないで、静止状態とする。それは仕事をしていることに成るのか?運動力学の問題になるか。力学が人の日常生活に結びついた、生きた学問となるにはどうしても『エネルギー』に視点を置いて納得できるものでなければならない筈だ。子供を負んぶしているだけで、人はエネルギーを消費し、仕事をしていることに成る。力と移動距離の積が零でもエネルギーのジュール[J]の消費に成る。この場合の力は、速度ゼロであるが、正しく重力に等しい値だ。エレベーターで、モーターに電源を繋いで回転停止の途中階で静止した状態の運転に等しかろう。モーターをロックしていないから重力に平衡した上向きの力で、運転エネルギーは消費している。法則は解釈の手法としては便利である。科学的な一律の解釈法が実際の世界の真理を示しているとは限らないことも有ると言う事を意識の片隅に認識しておくべきであろう。

結論と解答。 以上、小人さんの妄想の論考に応えたい で考えを述べた。しかし何も答えに成っていない。如何にも尤もらしい解釈をしたが、加速度と力の関係で間違いが有った。多分気付かれた方も多いと思う。何が間違っていたかの問題としてそのまま残しておく。図で再び訂正する。それは『加速度とは何か』の問題であった。重力場で、上昇力ベクトル fo  の加速度ベクトル αo [m/s^2] とする。今、質量m[kg]が地表面に対する加速度α [m/s^2] で上昇しているとする。その場の重力加速度 g [m/s^2] が高さに関係なく一定と仮定すれば、上昇力 fo [N] の加速度 αoα と更に重力加速度 g の合成加速度となる。静止した質量mを支えるだけで、重力加速度に対抗した力を掛けることに成る。その時位置エネルギーは増加しないが、力を掛けるだけでエネルギーは消費する可能性がある。mを荷台に乗せたとする、その時は荷台がエネルギーを消費するとは考えない。エレベータのモーターを機械的にロックしておけばエネルギーは消費しない。さて、速度が如何なる値でも、加速度α=0 ならfo=mg[N]で上昇するから、その力 fo と上昇距離との積の分だけ位置エネルギーは増加することに成る。従って、位置エネルギーは E= mgh [J] となる解釈に矛盾はなかった。しかし、α≠0 の時にE=mgh が成り立つかは分からない。そこには、位置エネルギーと言う概念が規準面からの高さh [m] だけで決まり、過程の状況には無関係に決まると言う意味にみえる。一つ簡単な例で確認してみよう。質量 1 [kg] の物体を1秒間だけ加速度α=0.2{m/s^2] で上昇したとする。その時の力の加速度はαo=10[m/s^2] となるから、力はfo=10[N]となる。この1秒間の上昇距離⊿hは0.1[m] だから、力との積は10[N]×0.1[m]=1[J] となる。しかし、位置エネルギーの算定は E=mg⊿h=0.98[J]となる。これは 1≠0.98[J] で等しくないから、力と距離の積に因るエネルギー量[J]の関係は成立しないことが検証される。そこに、位置エネルギーの高さ h[m] とは何か?と言う意味が持ち上がる。暗中模索式導水路。暗中模索さんに水力発電所の導水路の設計をお願いした。誠に穿った設計をなさった。途中の水流速度が複雑に変化する。速度v1の位置は水流が加速度の有る状態で、速度v2の位置では低速度の定常流に成る。ベルヌーイの定理で解釈するが、位置エネルギーはすべて規準面からの高さ h[m] だけで捉える。水の加速度や速度が如何なるかには関わりなく、ただ高さのみで位置エネルギーだけは決まることに成っている。速度エネルギーや圧力エネルギーのような相互間の変換は考慮されていない。位置エネルギーと言う物理概念も、考えればその論理性で単なる科学技術概念でしかないのかも知れないと。規準面を何処の位置とすればよいかは論理的に厳密ではない筈だ。地上5mの高さに10kgの重りのハンマーを設置し、地表から100mの深い穴に楔を打ち込むハンマーに利用する。利用するエネルギーは幾らか?しかしそのハンマーを地表面に戻すにはエネルギーがいる。差引科学技術利用エネルギーはやはり地表面を基準とした解釈に成る。さて、自然現象としての位置エネルギーを物理学理論として定義付けるには、本質的な意味で納得出来るかと言う疑問が残る。地表面に居るだけで、我々は地球の自転・公転の運動エネルギーの支配する自然環境に居ることに違いはない。折角回転運動エネルギーの意味を物理学で学んでいながら、地上高さがその回転運動エネルギーとは関わりのないものだとは解釈出来なかろう。位置エネルギーの『位置』と言う意味は、エネルギー利用技術からの量と看做したい。結論としては、地表面での重力加速度概念の場での位置エネルギーは、上昇力や消費エネルギーがどの様であろうと、過程には関わりなく、ただ高さ h[m] に在る質量 m[kg] の地表面で利用できるエネルギーは E=mgh [J] であると言う科学技術概念でしかないのだ。

 

電子とエネルギーと質量

『エネルギー』を窮めよう。エネルギーと繋がりのない世界は無いから。全宇宙、この世界で『エネルギー』の構成要素となる素粒子は決して存在しないから。

mc^2^から物理学を問う (2019/04/25) で述べたかった質量の意味。独楽の心 (2019/01/05) や熱の物理 (2019/02/07) にも繋がる。

時代はエレクトロニクス全盛期。
電子(Electron)と光子(Photon)が科学理論の根幹を担っている。物質の元素は原子である。原子理論は電子あっての基に成り立つ。そんな時代のど真ん中で、独り妄想にふける。端無くも電流は流れず (2010/12/25) にはじまる多くの顰蹙の種なるお騒がせを招き申し訳なく思いつつも已む無き事情に流されながらここまで遣って参りました。古くを辿って、再び電池の回路(電池のエネルギー)に戻る。電池は何を貯めているのかと不図の病が頭を支配する。電池の重さの意味に耐えきれず、その質量を計らんと無理を承知で心の感性に乗せて観んと思い付く。不図の病、それは電池からエネルギーが負荷ランプに供給され、エネルギーが光と熱に変換されて消費される。電池は少しも熱くはないが、電池の何が負荷で熱に変わるのか。ここの『エネルギー』と言う意味・物理量が現代物理学理論で捉えられ、説明されているのか。それは決して高等数学の式では説明できない自然の易しさの中に隠されている真理と言うもので御座いましょう。電池の中味がどのような化学物質ででき、構成されているかは分からなくても、自然の心を捉えるには特別難しいものではない筈なんだ。『エネルギー』が何たるものであるかを感じ取れれば宜しいのだ。それは電池の中に確実に溜って実在しているものなんだ。重量が計れなくても、化学物質の質量増加分として蓄えられているものなんだ。『質量』とは何かとまた顰蹙(ヒンシュク)の《問答》にもなる話だから、誠に御迷惑かも知れない。化学物質を顕微鏡で覗いても見えるものでも、質量増分を計れるものでもないから科学論証も出来ない話であるので、ご迷惑か混乱の基となるかも知れないが。筆者は原子質量が『エネルギー』の局所集合体としての、電子も陽子も無視した「Axial energy flow」結合構造と看做す物としての科学常識離れの認識に在る。マグネット近傍空間のEnergy flow は全く熱に関わりのない『エネルギー』であることも心に乗せて。それが電池の『エネルギー』と『質量』の等価性の原理の基である。E=mc^2^[J] の物理的意味である。ここから電池が電子を導線の中に流し出して、回路を還流したら、どのように電池に蓄えた『エネルギー』を負荷ランプに供給することになるかの《問答》が始るのだ。特別数式など無くても日常用語で説明できる筈だ。それが『電子』の意味を問うことになろう。

電子の実相を尋ねて。
最近の電子論、エネルギーから電子殻を問う (2018/05/21) や電池における電子の役割を問う (2018/05/24) で論じてきた。電気回路の問題では、必ず電流が含まれる。その電流概念で、正の電荷が流れるとは言えない為、電子が電流の流れと逆向きに流れていると解説される。この解説が検索情報の標準的なものとなっている。誰もその解説に疑念を表明することも無い。だからそれは世間の科学常識として子供達に教えられることになる。多分学習塾でも同じ説明がなされているのだろう。ここで再び、電流は電子の逆流か?と言う事を考えて置きたい。考えるにはその電子の逆流と言う回路状況を具体的に図に表現して見るのが良い。まず電子が電線路にどのように分布している状況かを示さなければならない。大事なことは、解説する人が先ず自分がどのように考えているかを空間的に図に表現することが必要だ。筆者もその意味で、皆さんが電子の逆流だと解釈する意味を、電気回路の電線に書き表してみた。電子が電流の方向と逆向きと言うことは、電線路全体に均一に分布していることと考えてよかろう。その分布電子が同一の速度で均等分布の流れとなっていると考える。それが図のようになる。この図の表現内容が間違っていると言うなら、それの間違いを指摘して欲しい。どのような電子の密度で分布するか。それは電子の速度が何によって決まるかにも因る訳で、その訳が明確に示されなければ分布も決まらないと思う。 『電子電荷』の速度を決める力学原理は何だっけ?電気回路の現象も特別難しい訳ではない筈なのである。解説する原理や論理性が明確であれば、それは日常用語で十分説明できる筈なのである。クーロンの法則に従うのか従わないのかを解説者自身が立ち位置を明確にして述べれば分かる筈である。上の図を見て、教科書を執筆されている専門の方々が、怪しいと思うか思わないか。そこに抱く意識に問題の解決の糸口が有る筈だ。ネット上の解説が正しいか間違っているかを。まず電子が電線路導体を流れると言うことは、図のように『負』の電荷だけの分布で良いのか?『正』の電荷の分布は無いのか?電池とは電子の回路循環機能だけなのか。電池の『エネルギー』はどのように負荷に供給されるのか?解説の中には、電子が移動すると、逆に電子の抜けた殻の穴が『正』の電荷の意味を担って、電流の方向に流れると考えれば良い。等の解説をする方も居られる。その方も自分の思う電気回路図を描いて、その全体の図で御説明されればよいと思う。兎に角、上の図では電気回路は『負』の電子だけで『正』の電荷の出る幕がないことになる。今までの説明には数式は使わないできた。どこか数式がないと説明にならない処が有っただろうか。科学の心を伝えるには数式など無くても良いのだ。政府の津波対策の防災情報で、海岸線の津波波形の図が余りにも滑稽過ぎて、誰があんな波を津波と考えるかも水の心が理解できていない科学論が招く怪しさなんだ。科学とは自然の心を心で受け止めて、心で伝えることだろう。解説者が自分の心に偽りのない意味を伝えてこそ科学論になる筈だ。偽善科学はやめましょう。

 

リサジュー図形と技術

リサジュー図形は技術評価の観測手段として有用である。オッシロスコープで3次元(時間と平面)図形として観測できる技術手法である。先日、記事整流回路とリサジュー図形が見られていた。そこに図5.スイッチングとリサジュー図形(e.i)がある。電流ベクトルiの描くリサジュー図形は6角形の頂点の6点を示す断続のリサジュー波形となる。その直流側の負荷は平滑リアクトルLが在るため、直流電流は一定値となる。三相交流電流波形は方形波である。その為電流のリサジュー図形が6点のみになり、6角形の辺は見えない筈だ。瞬時に6点にジャンプ移動する筈だから。今回リサジュー図形の意味を理解するのに参考になるかと少し追加して置きたい。この三相全波整流回路で、負荷がリアクトルL=0で、抵抗のみの場合は電源側の電流も波を打つ

変動波形となる。この場合の瞬時空間ベクトルのリサジュー図形で、電流ベクトルi に変化が現れる。その時のリサジュー図形を示す。a、bおよびc相の電流瞬時値ia、ibおよびicの値から図のように6角形の頂点に臍のような軌跡が現れる。

 

 

 

 

 

 

この電流ベクトルリサジュー図形に似た波形が在る。pq理論のリサジュー波形を見つけて (2014/11/21)の写真②に似た波形が在る。この写真波形は、後に空間瞬時ベクトル解析法と交直変換器への適用 (2011/10/30)と言う研究会資料になった基である。この研究会資料のp.77~p.79 の3次元軌跡図はリサジュー図形である。電力系統監視システムとして有効な手法と考えた。電力系統の状態を瞬時監視手法として生かされる筈だ。系統の瞬時アドミッタンス値と言う捉え方は余りなかった手法と思う。しかし、諸般の事情によりもっと大事な『静電界は磁界を伴う』の物理学基礎概念への方向転換になり、大学の講座性も工業高校と同じような気分で意識なく、研究能力の欠落かと、人権侵害の中に居るとは知らず、非常識の立ち位置から居場所も無く頓挫した。昭和62年、63年に電磁界理論研究会で、 電磁エネルギーの発生・伝播・反射および吸収に関する考察(EMT-87-106) と 瞬時電磁界理論の実験的検証とその意義 (EMT-88-145) を発表した。それはパワーエレクトロニクスの電力部門の講座に所属する内容ではなかった事を後で理解したが、無我夢中の夢の中のこと。 考えてみれば、昭和39年から、新潟県教育委員会はじめ、採用説明会と事務の取り扱いを一度も受けた経験が無かった。共済組合の加入手続きも書類に記載し印鑑の捺印など、一切した事も無かった。しかしそんな中で30年、50年以上の思考で、不可解な電荷の物理学の本質に辿りついた。研究者の端くれとしての責任と社会への貢献の一部は果たせたかと。

電気工学とリサジュー図形としてはピタゴラスの定理とオイラーの公式そして電気ベクトル (2017/01/15) 、ソーヤータワー回路の謎 (2016/07/19) さらに励磁電流とは? (2019/04/14) および変圧器-物理学解剖論- (2011/09/13)などを過去の記事から拾っておく。

pq理論と瞬時空間ベクトル。そのリサジュー図形を理解するには少し専門的な意味を理解する必要があろう。三相交流瞬時空間ベクトル (2017/04/07)  および単相瞬時空間ベクトルと瞬時値 (2017/03/04) が参考になるか。三相交流に瞬時虚電力qのベクトルを導入したことで、電気ベクトル空間座標が時間と合わせて4次元座標となった。

不可解な電荷

電気理論は易しいようで難しい。その訳の一つは数式で解釈する処に在るのだろう。数式で表現されると、数学的な内容を理解しようとして、電気的な現象の中味を理解する事に注ぐ余裕が無くなることも原因に成っていよう。後で不図不思議だとか、何故かと疑問が浮かんでも、考え直す時間的余裕がない為、後々までももやもやが残るのかと。ITなどに、質問で『電荷』とは何かと疑問が多いようだ。数学・数式は『電荷』が実在するかしないかを論証はできない。人が設定した条件・仮定の上での解釈しか論証できない。科学理論の根源的概念に、『電荷』、『質量』更に『光』あるいは『エネルギー』などを挙げて良かろう。それらの中で際立って不可解な物理量・概念が『電荷』である。多くの皆さんが自然界に実在すると考えているかと思うその『電荷』を否定する為に長い30年以上の道程を辿って来た。学術論の「雷」などもその『電荷』概念に基づいて論じられている。その『電荷』を考えることは、自然科学理論の何たるかを考えることにも通じることである。
《電荷問答》
初学者が後々疑問に思うだろうことを問答形式で取り上げたい。この辺の内容を授業をなさる先生方に良く汲み取って解説をして頂きたいと思ってもいる。授業の展開方法に、論理的矛盾は無いか?本質的に見過ごしている視点は無いか?本当に深く突き詰めて納得して教えているか?失礼を顧みず少し気掛かりな視点を取上げて論じてみたい。『電荷』とは実に不可解な概念であり、とても自然界に実在するとは信じられないから。

①クーロン力。クーロン力はこの世界には『正電荷』と『負電荷』の2種類の『電荷』が実在することを絶対的な科学理論の条件に据えて、その電荷間に働く力を数学的な式で表現した自然世界の法則である。と言うことが現在の電気理論の世界の科学常識となっている。その法則が論理的に矛盾だらけで、これが科学理論と言うものの実体を示しているのだ。ここでは高校生があるいは大学生が教室で学習する教科書の内容の意味を自分で解釈する手掛かりに成ればとの意味を込めた解説の心算でもある。本当のところは、電気工学や物理学を学んだ、その後の大学院生あるいは現役の先生方に考えて欲しい内容でもある。

《問答第1》 そこで、最初の『問答』となるのはその電荷の『正』と『負』の違いはどのようなことなのか?形が違うのか?大きさが違うのか?色が違うと言うことは無いだろう。何が『正』と『負』の違いを生む原因となっているのか?

《問答第2》 同じ電荷同士、『正』と『正』などは反発し合う。異種電荷同士、『正』と『負』の間では引き合う。それがクーロンの法則の基本的内容である。そのような力の掛り方が違う訳は、原因はどのような意味から起きる事か?科学論は理屈が大切であるから、因果律を大切にしたい。何か『電荷』の間で異なる現象を生む理由が有って言えることであろう。

《問答第3》 図のように、+Q[C] や-q[C]で同じ『電荷』同士が集合する状態を説明に使うが、その集合する訳は何ですか。クーロンの法則に逆らって同符号の『電荷』が集合する理由は何ですか?それは雷の発生原因として学術論で論じられている手法の訳にもなることであろう。摩擦電気で『電荷』が『正』と『負』に分離し、同符号同士の『電荷』が集合すると言う論理にも関わることである。その原因となる力は何ですか?

②コンデンサの充電・放電現象。コンデンサはエネルギーを貯蔵する回路機能素子である。しかし余り『エネルギー』を貯蔵すると言う解釈が示されていないようである。『エネルギー』より『電荷』の貯蔵機能素子と見られているようだ。『電荷』で解釈することが本当に『エネルギー』貯蔵機能として捉えられると言うのか?それは電気技術感覚から考えても無理に思える。本当に理解してもらいたい事は、感覚的にコンデンサの貯蔵という意味を、『エネルギー』の空間像として捉えて欲しいのである。『電荷』には『エネルギー』が見えないから。

《問答第4》 コンデンサの充電はどのようになされるか?直流電源のバッテリーB.にコンデンサ(容量C[F])を繋ぐ。たちどころに電極板の正と負側に『電荷』が『正』と『負』に分かれて集合すると解釈される。《問答第1》での『電荷』の2種類の話であるが、『正電荷』は基本的には陽子の電荷で、『負電荷』は電子の電荷となっている。しかし、陽子が自由に電子のようには移動するとは考えていないようだから、原子の電子が抜けた『ホール』と言う原子イオンを『正電荷』と看做して論理を組み立てているようだ。電極板の原子は移動できないから、その正電極板の金属原子の中の電子が負側の電極板まで速やかに移動しなければならないことになる。と言うことは直流電源のエネルギー供給の役割は正側電極板から電子を引き出し、負側の電極板まで運ぶことに費やされると考えるのだろうか?さて、コンデンサはエネルギーの貯蔵がその機能である。確かに電子を引き剥がして負側まで運ぶとなれば、仕事をすることになるとは言える。それでは何処でエネルギーが費やされるか?となる。コンデンサは電源のエネルギーのある分を受け持って貯蔵する役目であり、『エネルギー』は消費しない筈だ。エネルギーが費やされてしまうのはコンデンサの機能としては意味が違う。正電極板の原子から電子を引き剥がすにはエネルギーが要る。それはコンデンサの面目を潰すことに成り、許されない。原子から電子を剥ぎ取る力を電源がどのように働くのか?原子に対して電源の電圧は働きようがない筈だ。例えクーロン力(電荷間の)を仮定したとしても、直流電源の一方の端子だけでは何の電源電圧の役目も果たし得ない訳だから。勿論電源とコンデンサを繋ぐ導線内には電界は生じ得ない。この事は物理学会の専門家・学会発表の座長さえ電界が在るとの認識で有ったのは今でも驚きの一語に尽きるが。どのような意味で電界が有ると成るのかその辺から討論をしなければ話が噛み合わないのも確かなことである。導体内に、現在の物理学理論で解釈すれば、電界が在って初めて、電子が移動する可能性は生まれると解釈されている。電界で電荷に力が働くと言う理論そのものが自然の真理ではないのだが。しかしそれでもその科学常識の理論に従うとしても、そんな電界が電源電圧に因って、どのように導線内に生じると考えるのだろうか。結局、直流電圧で電極板に正と負の『電荷』を分離する理屈は成り立たない。当然直流電源が正と負の『電荷』を電源内部から供給する機能も同様に成り立たない。そこで初めて、電源の供給する『エネルギー』のコンデンサへの貯蔵がどのようになされるかの問題意識が生まれる筈だ。『電荷』でなく『エネルギー』の実在性を意識することが物理学の極める視点でなければならない。直流電源の負側の導線の近傍空間を通してコンデンサ内の空間に『エネルギー』が貯蔵されるのがこの場合の電磁現象の真相である。 

《問答第5》 電源が電池でなくて変圧器の場合も取上げた。はじめに、電池の場合は電池の『電荷』がコンデンサに供給されると解釈されるかと考えたが、上の《問答第4》でそれは無いことが分かったと思うから、変圧器を取上げる意味も無かったかもしれない。しかし、この変圧器電源ではコンデンサの『電荷』貯蔵機能は直流の場合よりさらに交流の為、極性まで交互に代わるだけ複雑になろう。『電子』は両極板の原子から剥ぎ取る機能の論理性を問うことになる。『電子』はそんなに光速度の速度対応は出来ない筈だ。それ程の論理的な困難が在っても、『電荷』『電子』で理論を構築するのかが問われる筈だ。それに対して『エネルギー』は光エネルギーのように、電線路空間を通してコンデンサ貯蔵機能に光速度の素早さで対応可能である。

むすび

『電子』論の矛盾を力学論から拾い上げて、アンペアの法則の論理的矛盾を解説する前にもう一度、『電荷』の持つ科学概念をサイエンスコミュニケーションの題材として取り上げた。ここでも数式に頼らないで、前の記事力の概念と電気物理に関係した意味で取上げた。