カテゴリー別アーカイブ: 光学

視界と光の科学

はじめに(2020/02/28)
視界の一事を理解することがとても難しいと知った。人も動物も水平二眼によって視界を認識する。視界の対象である万物から届く光によってその存在する世界を知る。すべて光の本性が司る世界像である。光の何たるかを知って初めて視界の意味が理解できるのであろう。また、人の視界認識の仕組み即ち二眼によって取得した光の情報を脳でどのように処理・判断するかの脳機能を理解して初めて視界の意味が分かったとなるのだろう。脳機能まで理解するなど無理である。大よその処で自分なりに納得できれば良しとしたい。

今思い出す印象的な記憶が有る。それも光の不思議としての子供の頃の思い出である。

図1.障子戸の針穴写像。朝早く、まだ板の雨戸を閉めたままの薄暗い部屋で、晴れた日の障子戸に映る鮮明な影絵が目に入る。板戸と障子戸の間は10㎝程の隙間が有る。雨戸の杉板の節の割れ目の針穴から光が差し込み、家の前の杉林の影が障子戸に映る。所謂「針穴写真機」の原理である。広い風景から、小さな針の穴を通して、その風景の各点からそれぞれの一筋の光が真っすぐに障子戸の紙に幾何学の直線を引くように届く。決して光は干渉等すること無く独立の一筋を描いて空間を伝播する。

視界構成に果たす光の基本特性。

光路独占の原理。視界を認識することができるのは光の特性にすべてが掛かっている。遠景も近景もその瞬時の同時性で認識できる。それは光の超高速度の『光速度』に依るからだ。もう一つは光の直進性に依るからだ。光は決して曲がらない。伝播空間の媒体の特性に従った速度で伝播する。それが「蜃気楼」のような現象になるのでは視界を認識できなくなる。伝播空間の媒体の空間特性の変化が生じるとそのように視界認識できなくなる。「逃げ水」もその例だ。そんな状況が普段は起きないから、当たり前のごとくに視界における光の特性など考えもしない。媒体空間に意識的に変化を起こさせるのが「レンズ」などの技術である。その視界における光の特性を【光路独占の原理】と仰々しく名付けたい。

図2.一点の放射光 視界の中に観る対象の一点から光は四方八方に放射される。この一点から全方位に放射される光が有る中で、ただ一筋の光だけが視界の構成に役立つ。その光は決して他の光の伝送路の邪魔をしない。その光の通り道はその光だけの独占光路である。宇宙論で、水星の近日光(?)と光が重力の影響を受ける話が有るが、光は伝播光路に障害が有れば、その近傍で回折する筈と、その現象の意味を考える。一言付け加えておく。視界の対象の一点からの放射光が眼の角膜を通して入射する。角膜の表面全体には対象の一点からの光が無数に入射し、それが水晶体を通して一点(水晶体の内側の面が硝子体管の入射面になる)に集光する。その点の光は対象の一点からの四方への放射光が角膜の表面の各点を通して、それぞれの一筋の光路を独占して入射する。

テレビ画面とその視界。PCやテレビの映像が現代社会の生活基盤を支えている。テレビ画面はどの方向から見ても、映像は乱れなく観察できる。何も不思議のことではない。当たり前の常識である。しかしよく考えると、テレビ画面から放射される光が、各画素の一点から半平面の立体空間(立体角 2π [st(ステラジアン)])に放射されている訳でありながら、その光は決して隣の画素の光の光路を邪魔するようなことはない。その事の中には、光が如何に自然界の厳格な仕来りを司る役割を担っているかという深い意味を持っていると考える。光路独占の原理と言いたい。自然界の王者光に乾杯!素粒子をも構成する素原として。

視界は天然色である。目に入る視界の万物は天然色である。視野・視界に入る対象はすべてその固有の色彩の光を放射している。木炭の炭は真っ黒い色で、それは光を放射していないからである。すべて光を炭の構造体の中に吸収してしまうからであろう。炭素抵抗体が電気エネルギーを吸収して熱に変換するように。さて、図2.の一点の色が決まるのは何故だろうか。何故その色の光を放射するのだろうか。視界に入る風景はすべて色彩豊かな景色である。その光はほとんどが対象からの反射光である。反射光という事はその反射光となる前のその対象に入射する基の光が有った筈である。それ等の対象を取り巻く空間に満ちている光が基の光である。全天空光とも言うかもしれない。青空の光と言うかもしれない。視界に入るすべての対象の色彩はその対象の入・反射の光波長変換特性によって起きると解釈する。その点を、光源の輝度とは? (2020/03/07) にまとめた。

水平二眼の視界。
図3.二眼の視界 目の前に蜜柑をかざす。片目をつぶって、それぞれその蜜柑を見る。蜜柑の位置が左右に動いて見える。右目で見れば、右側が見え、左目で見れば蜜柑の左側の側面が多く見える。それぞれ異った見え方で、左右にズレて見える。しかし両眼で見れば、一つの蜜柑として左右の混乱なく認識できる。水平二眼による視界の特徴は遠近とその機能による奥行きを無意識に捉え

ることにあると考える。水平二眼がどの様な光と視界の意味を持っているかを二眼珍カメラで考えれば分かるかも知れない。どんなに焦点をそろえても決して鮮明な写真は撮れないはずだ。二眼のそれぞれの像が写るから。

反射鏡の視界。

平面鏡。図4.鏡と写像。普通の鏡に映してみる。ガラスの透明な保護面を通して金属面での反射像を視界とする。鏡の反射視界像の特徴は、実際の視界と左右が必ず反転していることだ。前にNHKのある放送番組で取り上げられた問題で、初めて意識した。上下はそのままだが、左右だけが何故反転して映るかと言う疑問の提起であった。考えてみた。自分の顔が左右反転している。何故か?と問われても特段説明が付かない。鏡の反射像は目の上下、左右からの反射現象だから、鏡を通せばその反射光線の光路から、当然のことである。水平二眼の仕組みも、片目で鏡の写像を見ても、左右の位置が相当逆方向に移動した視界となる。異なる反射像を見ている筈なのに、一つの視界として認識する脳機能の方がとても不思議に思える。結局考えれば、反射鏡での光の反射現象としての理屈は当たり前のこととしての結論にしか導かない。

図5.放物面鏡と視界。反射鏡で有名なのが放物面鏡である。巨大な天体望遠鏡としても利用される。マイクロ波の通信アンテナ設備も、衛星放送のアンテナも放物面鏡の一つだ。天体望遠鏡は星の光を反射させる。衛星放送アンテナは放送電波を反射させて、焦点の受信端子で電波の縦波のエネルギー分布波を受信する。光も電波もエネルギーの縦波であるから同じものとしての機能が働く。図5.は焦点に二眼で見る意味である。厳密には二眼に入る一つの星からの光は僅かに異なる光路となるのだろう。それで遠近をと思うが、実際はどうか?天体観測は焦点の鏡の反射視界を望遠鏡で観測するのだろう。この視界も上下はそのままだが、左右は反転した視界となる。だから天体観測写真は左右逆転像の筈だ。見る方向で、横にして見ればその軸の左右が逆転像の視界となる。天体の上下左右は意味が分からなくなる?これも鏡の宿命的反射視界の現象だ。

逆さ富士の視界。湖が静かな時に、そこに富士山が逆さに映る。そのような湖面の反射像は上下が反転し、左右はそのまま映る。これも鏡の反射現象に基づく視界の一つと言えよう。

ネガの反転写真。カメラのネガの逆さの向きでの焼き付け写真。ネガの向きを逆に焼き付ければ、丁度平面鏡の視界の写真となる。以上幾つかの反転視界を拾ってみた。

視界認識―水平段層視界―
図6.視界認識。水平二眼による視界認識機能。視界を認識するには一眼でも可能である。あらゆる動物も一つ目小僧はいないようだ。カメラでの写真を見れば、普段我々が認識している視界の姿がその写真に見える。だから、一眼カメラの視界が我々の認識視界と同じと思っても致し方ないかも知れない。しかし、図3.の二眼視界のように二つの目で別々の視界を捉えている。それを脳の機能で一つの視界と奥行きのある三次元視界を見ていると解釈したい。その三次元は水平の視界認識においてである。だから、視界が水平二眼で認識されるという事は無意識に、水平の段層視界の積み重ねとして認識しているのではないかと考える。図6.はその意味を写真を使って水平視界の分解像として表現した。

むすび。
視界と光の科学(屈折) (2020/02/16) に続いた視界論。

光源の輝度とは?

はじめに 風景を見れば、それは天然色に彩られている。何故万物はそれぞれの固有の色彩なのか。視界をなす光の特性の謎が増す。その光源は何か。

照明工学と輝度 風景は光の反射現象によって成り立つ。

その光の光源は何か。視界の物理現象を理解しようと考えたら、その視界の光源の意味が分からない。日中は太陽の光で視界全体が明るい光の中にある。直接太陽の陽が当たらなくても、視界は天然色に彩られている。その色彩を奏でる光源は空全体の輝度と見做せるかと考えた。視界の物理現象として理解を深めようとしたが、結局は無理であったかと考えざるを得なくなった。その訳が照明工学での、技術用語の定義や概念にあると理解した。上の絵図で、ローソクの炎を例にまとめてみた。照明の用語には光の量を捉える『光束』、その単位ルーメン [lm] があり、その量を基に単位系が構築されている。一応「電気工学必携」を参考にして、光度 I[cd] (カンデラ)および輝度 B[sb=cd/㎠] (スチルブ)の定義をまとめた。

光束[lm]が物理量『エネルギー』との関係で定義されないところに、色彩や照明の物理的解釈ができない原因がある。人の視感度曲線で、可視光線しか認識できないため、紫外線などの自然界の現象を司る成分を我々は閑却しているのだと気付いた。自然の万物の天然色の色彩は我々が意識しない光の波長成分が大きな意味を持っているのかとの予感がする。光束[lm(ルーメン)]と比視感度 (2010/11/25) が原点にあった。

薔薇は何故赤い。

詩心 乗せて観世の 帆掛船 177号(2007/08/07)

「深紅の薔薇は何故赤い」の色彩の考察の絵図である。薔薇の色を演ずる自然の仕組みは深すぎる。深紅の光が有る訳ではない。人にその薔薇の命の営みに共感してほしい願いの姿と見たい。その色彩を演色する花びらの物理的機能を何と捉えるか。花弁に入射する光が如何なる波長変換機能によって、赤い色に変換されるか。入射光が決して赤い光の訳ではない。元々光に色が有る訳ではないから。命同志の心のつながりの仕組みを奏でているのだと解釈した。

参考記事。色の世界を尋ねて (2012/01/05) は自慢の色彩論である。視界と光の科学を纏めるに、視界の光源の役割は何かと少し別にまとめた。光の波長変換機能として万物の色彩の意味を解釈する外ないと考えた。薔薇の花弁の分子構造体の空間格子構造内での光エネルギーの共鳴現象と捉える。それには光が空間エネルギー分布波と解釈する必要が有ろう。振動数では空間像が捉えられないから。

 

視界と光の科学(屈折)

はじめに(2020/02/11)
視界は人が見る光の世界である。すべての生き物はその命の保全を図るに周辺外界の安全を常に注意しなければならない。その感覚器官の中心に視界認識が有ろう。視界の意味を知るには光の物理現象を知る必要が有る。その上で更に、人や動物は水平二眼によって視界を構成認識しているという意味を考える必要が有ろう。そこには、上下と左右の視界構成の機能的意味の違いが有るように解釈する。それが次回の記事(視界論)になろう。その為の予備知識を整理しておきたい。

光の科学(物理特性) 光とは何か?と考えた時、思い浮かぶ現象・知識の基礎は次のようなもの(高校生の学習項目程度)になろう。しかしその解釈は物理学での教科書の内容とは同じくないかも知れない。あくまでも筆者の電気回路技術感覚を基にした『エネルギー』を基準にした解釈になる。光も空間エネルギーの振る舞いとして捉えたいから。科学実験で観測不可能な『エネルギー』であるところにその科学論としての認識の困難さが有ろうが。

①光は毎秒30万キロメートルもの超高速度で直進する。自然現象を理解することが大切である。光の速度を知ることで、さらに何故その速度なのかあるいは直進とはどの様な空間に対する意味なのかなどに疑問を抱くことが物理学の大切な視点と考える。それは哲学にもなろう。

②屈折現象が有る。空気と水、空気とガラス、空気と角膜などの境界面で、垂直でない角度で入射するとその媒体の特性によって屈折が起きる。それはその伝播空間媒体での光の速度が異なるからである。境界面に垂直で入射する光は屈折はしないが、入射媒体内で波長によっても速度は異なる。それが色収差あるいはプリズムの原因と考える。上のような意味が屈折現象の起きる原因の基と考える。

③望遠鏡、顕微鏡あるいはカメラなどはレンズの表面の曲率によって、主に空気との間の屈折現象を利用する光学機械・器具である。

④反射現象。光は鏡、放物面鏡あるいは水面などで反射する。木炭のような完全吸収体以外の物体はすべて反射体である。物が見えることはその対象が反射体であるからだ。確かに太陽光や焚火あるいはホタルの光は反射光ではない。それは質量のエネルギー変換(化学物質反応)光と見做してよかろう。それらの発光源からの光以外の視界に入る風景の万物はそれぞれの色彩と形を持っている。その景色の基になる光は同じ光でありながら、対象はそれぞれの色彩をもって反射光を放っている。

⑤電波と同じ特性である。パラボラアンテナでの反射現象は光と電波で全く同じである。

⑥光はエネルギーである。その現代物理学理論での表現は ε=hν [J]  である。プランク定数 h[Js] と振動数 ν[1/s =(Hz)]で評価した表現式である。しかし、光の実体は空間分布エネルギーの縦波と考える。光には教科書の解説のような振動などする物理的実体は何もないだろう。光のエネルギー量と振動数の概念を具体的に解説することが市民感覚と物理学理論との乖離をなくする大事な現代的課題と考える。

ここに挙げた6個ほどの認識について、そのような現象は何故起こるのだろうか?それらの現象の中で、今回は屈折について、その何故?について考えてみよう。

屈折とは?
屈折現象について物理学での解釈はホイヘンスの原理で成される。何故媒体が異なる境界面で屈折するのか。光の進行方向が曲がるのか?ホイヘンスの原理は良く分かり易い説明である。しかし、光の波長が違うとプリズムのように屈折角が何故違うのだろうか?ホイヘンスの原理で理解できるだろうか。波長が異なる光の違いをホイヘンスの原理でどのように捉えますか。波長とは何ですか?その辺の極めて日常的な生活感覚からの疑問が自然現象を理解するためにはとても大切な事と思う。物理学理論あるいは教科書での解説は、それは学術的な専門家集団の常識的統一解釈を取りまとめた共通認識論法である。決してそれが自然現象の本質を捉えた論理的な科学論であるとは限らないのだ。国家統一論と同じく、全体的な掌握手法としてとても有効ではあろう。自然現象を論理的に矛盾無く捉えようとすると、厳しい事象を乗り越えなければならない現実に突き当たる。屈折現象は光の物理学理論になるが、光の捉え方で、波動性と粒子性の統一し難い困難がその一つの例でもあろう。光が粒子でないことは分かると思うが?また波動性と言っても、どんな波動かと疑問が沸いて当然と思う。その波動性をすんなり現代物理学理論として理解するような能力を筆者は持っていない。学術論が理解できない劣等感は若い頃から抱いてきた。そんなことから今回も、素人的な感覚だけから、一つのレンズを取り上げて、その屈折現象を具体的な実験装置で考えてみたい。

屈折と媒体

こんな実験装置は時間を掛ければ手作りできそうである。特別予算を組むほどではない。透明プラスチック容器にレンズを取り付け、不透明版を張り付ければできそうだ。側面が透明であれば、半透明膜の写像は観測できよう。レンズを通した光はボックス内の焦点距離に像を結ぶ。半透明膜が焦点(写像距離)に在れば、像が写る。カメラはレンズの両面が空気だ。空気とレンズの境界面で「屈折」が起きる。その距離をXとする。次にボックスの中に水を満たして半透明膜を移動して写像距離を調べる。必ず長さXは長くなるはずだ。その距離Xは何で決まるかと言うと、レンズの表面の曲率半径とレンズとその接触媒体の物性(誘電率)によって決まる筈だ。当然レンズの光の入射面では反射も起きている。屈折で色収差(プリズム現象)も基本的にはある。また、水以外の透明なゼラチンなどではさらに距離Xは変わろう。レンズ表面の曲率と伝播媒体の特性差で距離は決まる筈だ。レンズ内部ではそれぞれの入射角によって方向が異なる直進光路を辿る。出口ではその媒体によって屈折角が違うため、Xが変る。Xが違っても鮮明な写像(媒体内でエネルギーが吸収されない限り)が映し出される。眼球内の硝子体のような媒体であれば透明であろう。媒体間の屈折の物理現象について、誰もが水中でゴーグルを外して水中視界を見ようとすれば、理屈抜きに感覚的に理解できよう。同じ目で空気中では見えても、水中では視界など歪ボケして見えないのだ。それでなくても元々人の角膜の曲率半径は小さく、小さな瞳からの僅かな光で視界を認識する。水中では角膜表面での屈折が弱く、水晶体の終端即ち硝子体管の入口に視界の像が結べないからだ。そんな意味も考える屈折の実験装置になればと提案した。

2016年にレンズに関する関連記事。

レンズと焦点距離 (2016/11/03) 。眼球の光路とカメラ機能 (2016/11/09) 。レンズの機能 (2016/11/27) 。

⑥の光はエネルギーである。その意味を 光とは何か?-光量子像- (2012/01/15) に述べた。

大学教育に求められる「電気磁気学」

光は電磁波である。

光とは何かとの問いにそう答えるようだ。

その訳は、光も電磁波も同じ『エネルギーの縦波』であるからだ。

-縦波の意味:一般の情報網の解説wikipediaのような、ばねの振動現象とは異なる。一方的に『エネルギー波』が進行方向に進むだけの波である。水面波も縦波(この場合は水面上を全方向に進行する“水圧のエネルギー”波)だ。ー

その意味を理解しなければ、電気磁気学の眞髄を教えることは出来ない。

電界や磁界の科学的仮想概念を幾ら論じても求められる大学教育には成らない。

『エネルギー』と電界、磁界の関係をどのように理解しているかが大学教育者に求められていることである。

『電荷』とは何か?と考えることを忘れた大学は歌を忘れたカナリヤと同じだ。

『電荷』無しで、空間を伝播する『エネルギーの波』で電磁波を描いて欲しい。

そうすれば光の意味が観える筈だ。

金澤:波はエネルギー流 日本物理学会講演概要集 第66巻2号2分冊、p.310.

金澤:瞬時電磁界理論の実験的検証とその意義 電気学会、電磁界理論研究会資料 EMT-88-145 (1988-10) 『電荷』の物理概念を問う実験写真データ。

プランク定数の概念

光とは何か 

光の物理的意味をどのように理解するか。光を振動数や電磁波の横波で論じていてはその本質を理解できない筈だ。光は粒子であり、波動であると言われる。確かに粒子のような性質で解釈できる現象を示し、また波動であると解釈できる現象をも示すであろう。その粒子性と波動性の両方を備えた光の空間像を空間エネルギー分布像 光とは何か?-光量子像-として提唱した。また、光の物理的特性はプランクの定数h[Js]によって決定的に特徴づけられる意味が分かっている。すべての光がプランク定数hによってそのエネルギーの評価が出来るという画期的発見に支えられて、光の特性を理解できると考えてよい。(2020/07/16)追記。ここに述べたエネルギーの評価ができるという意味について少し書き加えておく。このエネルギーの評価とは、光のエネルギーが計量できるという意味ではない。ある波長の光の単位量子の物性に作用する力の意味を評価するに極めて有効な捉え方であるという意味である。しかしエネルギー量を評価できるものではない。その波長の光の作用性としての概念で特段の意義がある。

光とプランク定数

光を述べる教科書には必ずプランク定数が登場する。プランク定数がどれ程重要であるかは、教科書をみれば良く分かる。ところが、物理学での光は振動数で解釈されている。光に振動する物理的実体など全く無いと考える筆者には、その振動数という意味が理解できない。改めて、振動数とは何を意味しているかをエネルギーの縦波との関係で解釈したい。合わせてプランク定数の物理的意味を光エネルギーの空間像との関係でもう一度示しておきたい。

光の空間エネルギー像

光は空間エネルギー分布波の縦波の連続波である。その事は実験で証明できない空間エネルギー密度波での解釈であれば、科学論として受け入れられないかもしれない。しかし、最初から光を振動数で解釈する物理学理論に疑問を持っていた。『エネルギー』に対する電気技術感覚からの違和感であった#脚注(1)。

光の物理的最小単位

光は空間を光速度で伝播する物理的実体である。空間内にある体積を占有する物理量実体である。その実体をどのように認識するかが問われていると考える。光を振動数で解釈するのであれば、光の何が振動しているかを明確に示さなければならない筈だ。筆者は光の実体として、振動数に変えて空間エネルギー分布の最小単位εの連続の縦波で解釈する考え方を提唱したい。

img251

物理的最小単位

表現式ε=hνには空間的な意味が観えない。しかし波長λで表現すれば、空間寸法内のエネルギー量と観ることが出来よう。波長λに因るその光の最小エネルギー量を物理的最小単位εと解釈する。その光の最小単位が占める空間寸法をどのように解釈するかの問題は残るが、波長λに関係付けた体積と考えて良いだろう。このエネルギー量の ε[J]が波長λの空間長さ内に一塊りとしてある分布形を成す物理的実体と看做す。全く質量の無い空間エネルギーの実在体。このエネルギー感覚が物理学理論・概念には無いように思う。その認識が理解されるかの問題と思う。

波長について(2018/09/04)追記

今まで、光の波長λ[m]について無意識にエネルギー分布波の繰り返しの波長として取り扱って来た。その波長は標準的な正弦波の波長とは異なる。一般には正弦波の一サイクルを1波長と定義している。正弦波の一サイクルはエネルギー波で見れば二つのエネルギー波から成り、エネルギー波の2波長分となる。例えば正弦波50[Hz]の電圧波ではエネルギーの波100[Hz]となる。従って電磁波の周波数および波長に対して、エネルギー分布波の周波数は2倍、波長は二分の一の長さとなる。光の物理的実験の経験が無いから実際の光の波長観測の意味は分からない。この事から、振動数νと波長λについての意味もエネルギー波で全て評価して来たので、一般的な定義と異なることを指摘させて頂きたい。

光量子空間像と概念

光の正体で示した図である。(2018/09/03)追記。この光量子空間像の表現には波長とエネルギー分布波形で、波頭値の意味が分かり難い。波長との関係を次の図で示す。

波長とエネルギー分布模様

大よその波長比較として、4つの波長のエネルギー分布を取上げてその模様を描いた。その光の先頭値である波頭値の比較を(波頭値比較)として図の左側に描いた。光の波長で、その作用の強さが異なる訳は周波数の高い程エネルギー分布の波頭値密度が高いからだと解釈する。その波形分布式を次に示す。

光の空間像 

光のエネルギー分布波形を時間を止めた瞬間でのエネルギー分布波形の一つの表現式である。この波頭値Hλ[J/㎥]が波長の4乗に反比例する場合の式である。この表現式はエネルギー分布が進行方向に均等分布平面波との一つの条件での式であり、条件で変わる筈である。光のエネルギー分布の軸性(光の偏光に関係すると考える)は考慮していない波形である。

  プランク定数の物理的概念

光の最小エネルギー単位εの空間寸法λは空間を通過する時間の周期τで置き換えられる。すべての光はその最小エネルギー単位εとその空間通過時間の周期τとの積が一定であるというプランク定数の物理的意味を持っている。特別目新しい内容は無いが、プランク定数の物理的意味は光の空間エネルギー分布形態で解釈する処にあると言えよう。

 

#脚注(1)

  • 金澤:物理学が問われていること 日本物理学会講演概要集 第55巻2号2分冊310頁(2000)
  • 金澤:プランク定数の次元と実在概念 同上 56-1-2、p.310. (2001)

光の正体

光とは何か? 光ほど日常に関わる物理量は無かろう。しかしその正体は何かと問わずにいられない程理解困難なものも無いかも知れない。検索で、光とは何かと尋ねると多くの記事がある。光を見ているのに、その正体を見ることはできないからであろう。光は眼の前の空間に満ち溢れている。しかし光は直進するから、眼に入る光は眼と対象の各点とを結ぶ直線の一筋の光路の光のみである。対象の各点からは四方へ光が放射されている。しかし各点からの一筋の光のみを受け入れるから、景色の全風景を見る事が出来る。光の基本の特性は直進性である。ただし光の進行を妨げる様な障害物が無い限りにおいて。衝立の端に掛れば光の分布エネルギーに作用して、光の直進性が影響を受け回折する。

光の空間概念 簡略な表現で表せば、エネルギーの衝撃波と看做せる。雷の衝撃波が指数関数形状として捉えられている。自然は基本的に単純な統一性で捉えられよう。雷は空間の貯蔵エネルギーの爆発現象と観る。光の放射もエネルギーの放射現象に因る。初めに光の基本概念を提示し、以下で論じたい。

光の基本的特徴 1.粒子性と波動性 2.光の色調の意味 3.光の振動数と空間像 4.偏光性 5. 空間定数と相対光速度 の五つを話題にしたい。

  1. 粒子性と波動性 光の特徴はその正体を確認するに、粒子としての性質と波としての性質の二つが現れる。しかし、それはどこかで解釈の仕方あるいは観測の手法に因る観方に表面的な捉え方で満足しているからと思わなければならない。二つの異なる性質で解釈しなければならないのは、解釈する側の考え方に不十分な点があるからであろう。同じ光を粒子か波動かで観方を変えなければならないのは、その観方の解釈の根本に深い考察の不十分な点があるからではなかろうか。即ち粒子性とか波動性とかの一方の特性で捉える観方に解釈上の混乱があるのではなかろうか。光は常に両方の特性を持っているとしたらどのような物と考えるべきかの問題ではなかろうか。粒子とは質量の特徴的な運動エネルギーを持つ性質が見られるからとなろうか。波動とは電磁波の横波と看做す解釈に似た特徴的な現象・作用を持っているからであろう。電磁現象の波動を物理学では縦波としては見ないようだ。その粒子性と波動性の両方の特性を兼ね備えた光とはどのような物理量か、どのような観方が出来るかと考えることが必要ではなかろうか。以上がこの問題点であろう。
  2. 光の色調の意味 光は周波数でその特性を比較する解釈法が常識であろう。光に本来色がある訳ではないが、風景や物には異なった色があるように観察される。それは観測する主体と観測される対象との間の世界の仕組みに因るからだと簡単には考えて置いて良かろう。光には基本的に決まった色など無いと考えるべきだ。一つの光もそのまま変わらない訳でなく、どのようにも変化するのである。光はその周波数が変化する本性を備えている。光の周波数は放射源とその環境条件で変化するのだ。光と対象との相互干渉で周波数は決まる。一つの具体例を挙げておこう。白熱電球を考えてみよう。タングステンフィラメントで50,60ヘルツの商用電気から可視光線の光の周波数領域に変換をして利用しているではありませんか。これがこの問題点である。
  3. 光の振動数と空間像 プランクの定数が光の物理的評価・解釈に欠かせない。それは光の振動数・周波数によって評価する手法の基本になっている。先ずプランクの定数の意味をどのように理解するかであろう。その次元がエネルギー量と時間の積であると言う意味をどのような物理概念として捉えるかではなかろうか。h[Js]である。このエネルギー量のジュール[J]とは何を指すと考えるか。更に時間[s]はどんな時間を含意していると考えるか。そのエネルギーと時間の積が定数であるとはどんな意味と解釈するか。その辺が重要な物理的意味合いを知る手掛かりとなろう。
  4. 偏光性 光を薄膜に通すと入射光と透過光の間に特徴的な変化が見られる。場合によっては入射光が透過できない光遮断現象も起こる。それらの現象は偏光と言われる。何故光に偏光が起こるかは光の正体を解釈する大事な性質と看做せよう。光の空間像の捉え方に影響する意味と看做す。
  5. 空間定数と相対光速度 光の伝播特性の認識の問題がある。光が伝播するのは空間である。光の速度は世界の最高速度で、光速度一定で理解している。その光速度一定とはどの空間に対して定義するのかが明確でなければならない。その光が一定で伝播する空間が規定・定義されれば、その空間に対して運動する光の観測者にとっては、必ず光との間に相対性が存在する。『特殊相対性理論』はその光と観測者の間の相対性を否定する理論である。その問題の考察が必要であろう。光速度一定であるが故に相対光速度に成る。

光の正体 上に挙げた五つの観点から光の正体を解剖しよう。見ているが見えない物の代表が光のエネルギーである。ものの姿容は光を通して認識出来る。世界を理解する事は必ずその世界の中からエネルギーを取り込むことで初めて可能になる。青空に一つの白い雲が浮かんでいる。白い雲から光が放射されている。その光は雲の各点から無限の光エネルギーが放射されている。その内の各点からの一筋の光路のエネルギーの波の総体像が眼に入る。その眼への入射光のエネルギーを取り込むから雲の姿容が認識出来る。電気回路に電圧計を繋いでその電圧値を知る事は電気回路から電圧計に線路のエネルギーの一部を取り込む事によってはじめて電圧を計る事が出来る。見る雲の色が白いと分かるのは、その色を白い色と学習して色彩の評価の常識に従って理解しているからでしかない。それは何も考える必要の無い、自然と人の感覚に因る世界認識の「生命の機能」である。光を自然科学的解釈で捉えるかあるいは日常生活感覚で捉えるかで観方も変わって来るのではなかろうか。自然科学論的理解が優れていると一概に言えるかどうかも分からない。それでもその訳を知りたいと思えば、それは無理だと青空に笑われる。青と白から一先ず青空と白い雲に退散する(青空の色は太陽光線の紫外線、γ線など遠紫外線が原因と観る)。さて、光とは何かと尋ねても余りにも日常的な生活そのものにまつわるものであるから捉えようがない。光の正体を突き止めようとすれば、光の呈する色の違いの訳は何かと考える事から始めるしかないのかも知れない。光はすべて太陽が有っての事から始まる。発電で電気エネルギーを得るにも太陽のエネルギーが地球に蓄えられたから使えるのだ。石油資源や核燃料としてすべて太陽によって育てられた地球の辿り尋ねるも困難な古い昔の生命・動植物が元に成っている。光が世界の全ての基であると言う意味で。光の基本的特徴を五つの観点からまとめようと思うが、過去の記事の整理とかねて追記として順次論じたい(2018/01/26 公開)。

粒子性と波動性 光の基本認識で、粒子性と波動性と言う二つの観方でなく、一つの捉え方でなければならない。満足する光の基本特性は空間エネルギー密度分布波の縦波以外なかろう。しかし、物理学理論に「空間エネルギー」と言う物理量や概念があるかと言う誠に困った問題がある。考えてみると粒子と言うが、粒子性と言う意味はどのような光の性質を捉えた用語なのかわ分からない。コンプトン散乱現象がその論拠には挙がっている。誠に特殊な物理学実験室での特殊性に注目した実験結果をその論拠にしているように思える。デジタルカメラの撮像理論に応用されていると解説がある。カメラ技術はそんな理論などには無関係に技術開発されている筈だ。光電子が飛び出して云々と言う解釈も、それはそれで一つの理論と言えば理論に成るが、光電子がどのような物かは誰も証明も観察できない。光電子の質量と電荷がどのような物理量として認識するかは意味不明で、曖昧な筈である。光電子などでなくて、エネルギー即ち空間エネルギーであっても何ら困らない筈だ。光電子でなくて光エネルギーの散乱現象で少しも困らない筈だ。光が当たって光が放射される現象でしかない筈だ。この世界に電荷は無くてもエネルギーは実在する。太陽光線はエネルギーである。そこに電荷など必要が無い。光が空間エネルギーの縦波の波動であることは間違いないが、粒子である必要は全く無いのだ。この光の話に『電荷』概念を持ち込む事は論点を曖昧にするから止そう。しかし、空間エネルギーの存在を認識しないでは話が進まない。質量に無関係なエネルギー即ち空間エネルギーを物理学では認識しているかと言う根本的問題がある。

光の色調の意味 色の鮮やかさは動物・植物に際立っているように思う。雉、孔雀の羽根や玉虫、黄金虫更に揚羽蝶などに見る色合いはとても微妙な光を放っているようだ。日本の伝統工芸で、玉虫の厨子や螺鈿細工がある。玉虫の羽は厨子の細工模様に使われてもその輝きを失うことなく不思議な輝きを保っている。夜光貝や阿古屋貝の微妙な輝きは螺鈿細工にそのまま残っている。薄暗い中でも微かな光で輝くのだ。その輝く光はどんな波形の光の合成から作り出されるのだろうか。すべてその輝く対象からの放射光が奏でる色合いである。光の波長範囲でも可視光線は1000分の0.38mmから0.76mmの範囲である。1万分の数ミリと言う長さの光の空間寸法で光を捉える。その空間寸法と言う概念は空間エネルギーの寸法と言う解釈から来るものである。1万分の4ミリの波長の光は紫色であろう。1万分の7ミリの波長の光は赤色を呈するだろう。その光の長さと言う空間寸法は振動数と言う概念だけでは捉え切らない筈だ。光がエネルギーの空間分布波と言う捉え方をしなければならない。その一波長分でも光はエネルギーの塊である。その光に質量は必要がない。さて光の呈する色合いは、上の螺鈿細工に見る姿がどのような訳で演色されるかの解釈に負う事が出来よう。それは単純な波長では捉え切れないものであろう。複雑な波形が周期性を持って繰り返されることで創りだされているのだろう。合成波形の演色効果とでも言えよう。それは観測対象の物質の分子構造に因る空間格子模様が、その空間構造内でのエネルギー共振を生じ、そのエネルギー放射現象として造り出される光の合成波と言う感じがする。エネルギーの共振現象は電子レンジマグネトロンの空洞共振現象に似たものと言えよう。光エネルギーの共振空間をColor Cell と呼ぶ。過去の記事色の世界を尋ねてを整理せずに挙げたい。いつか書き換えたいが。

光の振動数と空間像 先ず光の振動数と言う用語の概念をどのように認識するかの問題があろう。何が振動すると言う意味なのか?エネルギーの縦波と捉えれば何も振動する実体は無い筈だ。光の特徴を振動数で捉える考え方が科学常識である。紫外線などのように、光の振動数が高くなれば作用力が強まる。その訳をどのように理解しているのだろうか。振動数が高いとは光のどのような働きとして作用すると考えるか。何か実体が分からないが、質量的な物が振動して対象物体に強く働くような想定で解釈しているように思える。しかも実験的には計測可能な振動数しか評価法がないから、光の振動数と言う概念が科学的論証には欠かせない訳である。そこにプランクの定数が光の量子性を表現するに極めて有効な概念を提示している訳である。その定数h[Js]と振動数ν[1/s]の積と言う極めて簡便な表現式 hν[J] が光の作用性の強いか弱いかを判断する実験的証明を果たしているからなのだろう。この式の意味をどのように解釈するか。振動数が何故光の作用性に効くのか。振動数νの逆数1/ν[s]は光の一波の波長分の時間である。光が対象に作用する時間t[s]はその作用性に対してどのような意味で捉えれば良いのか。時間の長さは作用性に影響するのか。長い時間光を照射してもその作用性には影響がないはずだ。エネルギーの照射量ではないと言うのが基本的特性であろう。おそらく光の一波長の分でも作用力が発揮される場合もあろう。振動数で評価する光の特性は1秒間の振動回数が意味を持っている訳ではなく、光の一波長分のエネルギー空間密度分布波形がその作用性の鍵を握っている。光量子とプランク定数の意味を図に表すと次のようになろう。

光量子空間像と概念(プランク定数の物理的意味) 光の作用性を振動数(1秒間に何個の光量子列の放射をするかの意味を振動数と言う用語で表現している)で評価する意味を図に示した。光量子1つが空間エネルギーの塊である。それが光量子のエネルギーε[J]である。その波長λ[m]の長さの空間に衝撃性のエネルギー密度分布を持っている。プランク定数h[Js]がどんな光に対しても定数の意味を持つと言う事は光量子一つのエネルギーεとその周期τ[s]の積が一定であると言う意味である。図の振動数が高い光量子ε2が空間領域の狭い範囲で高エネルギー密度の粒子性を持っていると言うことである。丁度弾丸のように破壊力・作用性が高いと解釈する。しかしこの解釈を実験的に証明する事は難しかろう。科学論と言うより哲学的と非難されるかもしれない。この光量子のエネルギーεの算出法は大よその意味を光とは何か?ー光量子像ー に示した。エネルギー波の波頭値H[J/m^3^]がその光量子の作用性に影響する。

(2021/04/26)追記。プランク定数の概念 (2018/07/17) 。光量子空間像(D線) (2019/05/03) 。

偏光性 この偏光性も光の空間エネルギー分布波形に関係している。偏光板が伸展される薄膜の方向性に関係しているようでもある。光が透過する薄膜の分子の格子構造と光エネルギーの極性の関係が直交するか平行かで左右されるのではないかと思う。後日図で示したい。

空間定数と相対光速度 現代物理学が抱えた重い課題がある。『光速度一定』と言う意味は明確であるか?光速度と言うが、それはどのような伝播空間座標に対して定義したものであるか。光の観測者と光の伝播速度を定義する空間との間には常に相対関係が存在する。観測者が光の伝播空間と定義する空間座標に対して運動していない場合以外は、光の観測は必ず相対関係にある。その立場はレーマーの光速度算定実験の解釈を正しいとして理解する立場である。アインシュタインの『特殊相対性理論』の立場に立つか、レーマーの立場に立つかのどちらかで、光の光速度一定と言う認識がまるで違ってくる。まず、光の伝播する空間の媒体特性が光の速度を決めると観て良かろう。真空、水中、空気中あるいはガラスとその伝播媒体の特性で光の速度は決まる。電気回路でも同軸ケーブルなどではその充填される絶縁体で電気エネルギーの伝播速度は殆ど決まろう。さらに光でもその周波数で光速度一定ではない。プリズムの原理はそのガラスの特性が光の周波数に対して異なる事が基になっている。光速度が周波数で異なるのだ。地球の表面での光伝播特性は地表や上空の電離層の影響を受けやすいだろう。それでもある基準の周波数を決めて、その伝播速度・光速度を光の速度を定義できる基準空間でどうであるかを論議する事は出来よう。地球の運動と光の光速度の関係をマイケルソン・モリーの着眼点に立って論議する必要がある。『光速度一定』と言う意味は、その定義する空間が明確でなければ論議できない筈だ。光は放射源から放射された場合に、その放射源の運動の影響を受けると考えるか否かも明確にしておかなければならない。放射源の運動速度の影響は全く受けない事を前提にしなければ、議論は不可能だ。『光速度一定』と『光速度不変』の意味から明確にしなければならない。光の速度は一般的には変化するものと解釈しなければならない。決して速度不変ではない。それは光速度一定と言う事にも同じことである。伝播媒体の空間定数に従って光は伝播する掟にある。厳密に論議するには真空空間しか論議する場は無い。(a)『光速度一定』、『光速度不変』の定義空間。(b)光のドップラー効果。(c)光の伝達時間。(d)空間・時間概念。に分けて考えてみようか。

(a)『光速度一定』、『光速度不変』の定義空間 一般に速度と言えば必ずその基準が明確である。100m競争の記録が9秒幾らと注目される。その時は地球がどの方向に回転していようが全く無関係に競技のトラックが基準である。しかし光の速度と言えば、そう簡単には行かない。どのような空間基準に対して光速度が秒速30万キロメートルと言うかが明確でなければならない。光の速度はその伝播空間の掟に従う筈だ。すべての物には速度が幾らと言う意味が付いている。地球は太陽に対して相対的な回転速度を持っている。星空の観測をする時、そこには少なくとも3つの速度が関係している。観測対象の星の速度、光の速度そして観測者の速度である。『光速度一定』と定義基準空間 星空を見上げれば、有名な星座はその形に時が経っても変わりは無いようだ。億年単位でも変わりないとは信じられないのだが。図に描いた星からの光を観測する。今観測する光はどのような空間を辿って来たのかその一筋の光路が描く筋道を認識できるかの問題がある。見ている星は既にその位置には無い筈だ。光が直進すると言う意味をどう解釈するか。その光の辿った一筋の直線を描く空間が実在する。その空間は光がどのような方向に伝播しようと直線が描かれる。そのように定義する空間が存在すると考えるかどうかの問題であろう。その空間に対して、星やその観測者は速度を持つ。その空間ベクトルをVsVe とした。その速度を定義する空間の存在を認識するかどうかに掛ってこよう。その空間が認識出来れば、その空間こそ光の伝播する定義基準空間となる。星から放射されて観測者に届くまでの時間の長さは、その定義空間で過去の星の位置と今観測している観測点間の直線距離の長さを光速度で除した長さの時間となる。この空間と時間の関係には空間歪みも無ければ、時間の短縮も無い。空間に対する光の速度が極めて高速であると言うだけのことで、普通の運動力学のままで『特殊相対性』など全く無いのである。ただ問題は観測者自身が如何なる速度であるかを知り得ないというジレンマにある。我々は太陽に対しての相対的回転、自転の運動速度である。しかし太陽の速度が光規定空間に対して如何なるかを知り得ないから結局自分の速度を明確には知り得ない。更にもう一つ指摘して置かなければならない事がある。それは観測する光の周波数・波長は一般的に変化する事である。観測者が定義基準空間に対して速度を持って居れば、必ず光の速度との間で相対速度の観測になるからである。(b)光のドップラー効果および(c) (d)については過去の記事 光の速度と空間特性 (2011/05/22) を光の相対速度と空間 (2020/06/08) に書き換えて、例題も挙げて述べてあるので、ここで一先ず区切りとする。

光の屈折と分散

初めに 光の実像をどのように認識するか?光は目の前の空間に実在する。眼で物を観ることは眼に光が入り、その光の一粒(と言ってよいか?質量的な粒と言う意味は無いから。光の波とみた場合、1波の光は空間のエネルギー分布の縦波であるから粒と言うには無理があるのだが。)ずつの総体として物を脳機能に因って理解する。取り入れる情報は光のエネルギーである。光のエネルギーを物理学でどのように解釈しているかと言えば、プランクの定数と光の振動数の積で捉えている。(2020/4/25 以下訂正と削除)『振動数』が意味する内容は、気体分子運動論で熱エネルギーを解釈する論法の『質量』の振動論に通じる意味であると勝手に解釈させて頂く以外ない。しかし光子が『質量』を持つとは言えないのでは?おそらくマックスウエル電磁場方程式の電界・磁界の横振動波を思い描いて解説するだろうが、電界や磁界が振動する訳ではなかろう。電界・磁界には光のエネルギーの空間像の意味が隠されている。子供達も検索で光に質量は無いのにどうしてエネルギーがある事になるのかと質問する。エネルギーは質量が持つ運動エネルギーだと物理学教育で教えているからだろう。電気回路内は質量の無いエネルギーだけなんだ。検索で屈折現象の解説がされている。光の伝播媒体で、速度が異なるから異種の媒体の接触境界で屈折すると説明されている。それで正しいと思う。しかし物理学とは、「何故」と問う事から始まる。何故媒質に因って速度が異なるのか?振動数では説明にならないのでは?媒体が違っても振動数は変わらない筈だ。変わるのは波長だ。さて屈折する理由は何か?その何故かを問題にするのが物理学の要になる。

屈折と分散に隠れた意味 ここに書いたことは誰もが当然のこととして分かっていた。筆者だけの不明であったので削除させてもらった。光の散乱・分散分かり易い高校物理の部屋 に在る。しかし、一般に光の速度は一定の光速度と認識しているが、それは媒体が真空でしか通用しない現象と考える。空気中も真空と必ずしも同じとは言えなかろう。確かに空間定数は空気中も真空と同じと解釈しているが、夕焼け(水蒸気含有量)などは分散現象であろう。真空と空気中での光の速度の差は無いと言えるのか?(2017/12/04)以上追記。

屈折現象 何が屈折を起こす原因か?昔“何も足さない 何も引かない”と言うコマーシャルがあった。何か『エネルギー』一つを背負った旅ガラスの心境に思えた。捉えどころのない『エネルギー』だが、光の振動数より分かり易いとここまで引き摺って来た。

光エネルギーの屈折 光は電気エネルギーと同じく、空間に存在するエネルギー密度分布波である。質量など必要としない、エネルギーそのものの空間分布の波である。上の図は学会での発表に使ったもので、プリズムを想定して描いた屈折現象の解説である。光エネルギーあるいは光は光速度で空間を伝播する。その光速度は、障害の無い真空自由空間では何故毎秒30万キロメートルであるのか。その訳は真空の空間が握っていると考えたい。エネルギーが通過するに許された空間の支配条件に従わざるを得ないということであろう。光と同じ電気エネルギーが伝送線路の電力用ケーブルを伝送される状況と比べて考えてみよう。ケーブルは電気絶縁物で充填されている。その中でのエネルギー伝送速度は遅くなる。ケーブルの単位長さ当たりの誘電率と透磁率でほぼその伝送速度は決まる。プリズムのガラスの媒体特性も誘電率と透磁率で評価できるだろう。その媒体の空間定数の値で光の伝播速度が決まるだろう。真空は何も伝播媒体が無い空間であるが、その真空でも誘電率と透磁率が科学技術の単位系を決める根本的定数として決められている。真空透磁率μo=4π×10^-7^[H/m]がMKS単位系の拠り所と決められている。その空間媒体の定数が光エネルギーの伝播速度を規定している。プリズムのガラス中の速度もその定数によって決まる。

光エネルギーの速度 図は波長λの光が空間を伝播する状況を透磁率と誘電率に因って解釈したものである。電力系統のエネルギー伝送と自由空間での光伝播とは同じ物理的現象として解釈すべきである。ここには少し数式が入っている。平方根と分数と三角関数と若干の空間的定数概念[H/m]、[F/m]の空間的ベクトルの方向性を基にした数式である。この図で伝えたい事は光には正弦波の周波数が無く、波長λの繰り返しのエネルギー密度分布波の縦波が空間媒体の定数によって規定された速度で伝播するエネルギー波であるという事である。一波長でエネルギーなのである。媒体は構成成分の分子構造体であろうから、その構造体の物理的特性(空間エネルギーに対する吸収・放射の共鳴度とでも言えば良いかは明確ではないが、何らかの影響度を及ぼす強さ)に因って速度の影響を受ける筈である。その特性が誘電率と透磁率によって決まると解釈する事を示した図である。上の図は真空の空間特性と所謂光速度C[m/s]の意味である。分散は波長λに因って光のエネルギー密度分布波が異なるため、光伝播空間の媒体特性に因って、通過速度に影響が生じることは容易に理解できよう。実験的には分散が起こることは周知の事実であるから、その物理的理由をどのように解釈するかの問題であろう。光の空間的エネルギー分布を計測するなど不可能なことであろうから、科学的な検証は不可能であろう。光のエネルギーを振動数で解釈するという論理で、屈折や分散の物理的意味が感覚的に心に響くかは、高校生に尋ねて見れば分かるであろう。光エネルギーは1波長でエネルギーなのである。光を検出するには周波数や振動数でしか計り様が無いから、振動数が理論的な概念に組み込まれているだけなのである。数式を示してもそれが物理学の目的ではなかろう。自然は不思議の宝庫であり、魅力に溢れている。解ったと言うにはまだ早い。

分散 色収差はカメラなどの光学技術で問題になる。しかし技術は、技術者はその問題を解決して製品の質を高めて来た。しかし物理学は分散の物理学的意味を明らかにしているだろうか。解らない処を噛み砕いて何故かと考える事の大切さを教えているだろうか。不思議と思う事を伝えているだろうか。意味を教えないで伝統的教育法に従った数式を覚えさせるだけて済ませていないだろうか。

チューリップと哲学対話

チューリップの花心に聞く

なぜ人の心を惹くのか

その妖しげな花模様

色の支配者な誰なのか

光と色は哲学の入り口 チューリップに科学理論を尋ねても無理なことだ。花一片にも無限の不思議が隠されている。不思議を尋ねれば哲学になる。光に色がある訳ではない。色は自然科学理論の根源を問う対象だ。科学理論は人間の自然解釈方法だ。花弁の表面から放射される光に色がある訳ではない。人の目に入って来た『エネルギー』の縦波を人が認識する視神経の解釈法で理解しているだけである。光を細工して人に届けるその仕組みが花弁の表面の分子構造に組み込まれているのだ。光に色がある訳ではない。これも理科教育の参照基準にして欲しい。自然は未知の宝庫だ。

レンズの焦点・焦点距離とは?

(2017/11/21)追記。焦点距離(太陽の焦点距離)と写像距離(フイルム位置)の関係について、筆者の誤解も含めて、レンズと焦点距離に訂正・追記した。焦点距離と言う用語の定義が分からなくなったからである。しかし、焦点距離

(ウイキペヂア)には太陽の焦点距離と同じ平行光線に因る教科書の『焦点』の位置を定義しているようだ。観測対象・被写体の遠近で、焦点距離と言う写像距離は変化する。その使い方がカメラの焦点距離の意味であろう。

(2017/11/13)追記。レンズで気付いたことがある。スマホ等の携帯端末機の写真機能が抜群に良くなっている。あの小さなレンズで近距離撮影を考えれば、焦点についてレンズ軸に平行な光線などを光学的原理説明にする意味が見えない。生活に結びついた理科教育なら、高校生に携帯端末のレンズで解説するのが求められよう。今年のセンター試験の物理レンズ問題についての感想である。

(2017/07/24)追記。この記事の後、『フレネルレンズ』と言うものがあることを知った。やはり素人は知識量が少ない事を自覚した。しかし知識が多いか少ないかでは、レンズの焦点の解釈の誤りについては判断できない。灯台の大きなレンズは光を遠くまで分散させないで、平行光線で届ける機能が要求される。光が分散しては役に立たない。さて、普通のレンズの『焦点』は対象物からの光がレンズ軸に平行であればその光路は必ずレンズ軸の『焦点』の一点を通ると言うその一点が『焦点』と定義した専門的解釈である。それなら普通のレンズの『焦点』に光源を置いたら、その光は必ずレンズを通った後、平行光線になる筈である。そこで『焦点』の概念を否定する素人としての解釈を述べる。決して平行光線には成らないと。それは『フレネルレンズ』の片面は平面になっているから、平面に『焦点』の光源から入射する光の光路は、普通のレンズの球面に入射する光の光路と同じ筋道は決して通らない事だけは間違いない。その事は『フレネルレンズ』の片面が平面であるから平行光線としてレンズから放射されると言うことを示しているのだ。レンズの片面が平面であるか球面であるかによって、その光路が変わる訳がレンズの屈折の原理になっている筈じゃなかったのか?全く実験もせずに、ただのレンズに関する素人の解釈でしかないが、普通のレンズとフレネルレンズ(両方のレンズ直径の同じ物)で実験してみれば結果は明らかである。

昨年末(2016/10~12)にレンズの焦点について常識を否定する記事を書いた。今年の大学入試のセンター試験(物理)にも出題された内容に関わる点で、社会的問題でもある。長く教科書での標準的レンズ問題の解釈法として定着して来た理科教育の常識である。それを否定するなど正気の沙汰ではない筈だ。しかしやはりその解釈、教育指導法は間違っていると考える。

写像面全面が焦点 専門的にはカメラの光学技術で論じられる問題である。専門家の解釈はレンズの焦点という専門的解釈で論じられる。全くの素人である自分の、専門家の論理に違和感を抱いての、反論であることをお断りしておく。

写像面が焦点写像面(フイルム面)が焦点 上の図は所謂レンズ軸に在ると言う『焦点』など必要ないと言う意味を表現したものである。図は観測対象の3点A、BおよびC各点からの光はレンズ全面を通して写像面の各一点a、bおよびcの各一点に集まり、その各点がすべて焦点であると解釈する図面である。観測対象からの光線がレンズ中心軸に平行光線である場合に、その軸上に定義される『焦点』に集まると言う専門的解釈を否定する図面である。特別に定義される『焦点』など考える必要が無いと言う意味である。即ちレンズ面に平行な写像面が焦点距離Fにあれば、その全面が『焦点』の集合した二次平面であると言う解釈である。『焦点距離』という意味もなかなか難しい意味でもある。レンズで太陽光線の焦点を求めた時、それをレンズの『焦点距離』と仮に決めるとする。ではその焦点距離が全ての観測対象の場合に対して写像を鮮明に得る条件に成るかといえば、違うであろう。カメラの焦点を合わせると言う意味はその焦点距離(フイルム面の位置)を観測対象のレンズからの距離によって変えなければならないと言う意味であろう。太陽光線でレンズの焦点を決めるが、それは太陽の無限遠の太陽像を写像面に映している事なのである。太陽熱で焦点は焦げるが、それは太陽の写像なのである。丁度観測対象の距離に適合する焦点距離の場合には、レンズを通して得られる写像面のすべての面の各点には、観測対象のそれぞれ各一点からの光だけが集まる訳で、その写像面全面が『焦点』と解釈すれば良いだけであろう。だから人がその丁度レンズの焦点距離の位置に眼の瞳を置いて対象を観測すれば、何も像は見えないのである。その訳はその瞳の位置に入る光が全て観測対象のただ一点からの光だけであるから、何も像など見える筈が無いのである。瞳の位置をその焦点距離のままの平面上の位置で移動すれば、また観測対象の別の点の光だけの視界となり、像など見えないのである。

関連記事 レンズと焦点距離 眼は一筋の光を観る 眼球の光路とカメラ機能-?― レンズの機能

 

空間とベクトル

眼前に広がる空間は実在空間である。その空間をどのように認識するかは易しいようで結構難しいかもしれない。その訳は、有名な科学者が五次元空間とか、多次元空間とかの科学論を話題にするが、どう考えても時間の次元を加えても4次元空間しか理解できないのだ。科学者の論理は難しい。そこには抽象化の論理展開が原因に成っているからなのかもしれない。5次元空間は実在空間と異なる抽象化空間だから自分には理解できないと諦める。

4次元空間(実在空間と抽象空間) 3本の互いに直交する直線の座標軸に時間の次元を加えて、眼前の空間に展開される自然現象を捉えることが出来る。ただその4次元空間と言っても、その認識する人の意識が同じとは言えないように感じる。観測者としての立ち位置をどう捉えるかという大きな問題が潜んでいる。『認識する空間』とは何かに答えなければならない問題を抱えているのだ。さらに、自分にとっては4次元空間でも実在空間と抽象空間の二つがある。

%e3%83%99%e3%82%af%e3%83%88%e3%83%ab%e3%81%a8%e7%a9%ba%e9%96%93%e5%ba%a7%e6%a8%99ベクトルと空間座標(②の図で、sinφは負になる) 図のi j k nα nβ nγ などはすべて単位ベクトルであり、大きさ1の方向性を規定する重要なベクトルである。先ず4次元の実在空間がある。眼前の空間は光に満ちている。光は日常生活そのものを照らす実在である。物理学理論を持ち出さなくても、日常感覚に溶け込んでいる。光は直進する。その速度は毎秒30万キロメートル進む。ただそれだけの意味の光の性質を元に、眼前の4次元空間に光の運動を考えてみよう。例えばビーム性の高い『レーザーポインタ』のような光源を取上げよう。その指向性の高い光パルスを1秒間真上に向けて放射したとする。その時の光の軌跡はどのように描かれるかと言う単純な問題である。その光のビームは連続的な一本の線を描くであろう。その線が直線であるか曲線であるかを問うのである。こんな余りにも素人らしい日常生活者の視点からの疑問がとても科学論には重要であると考えるのだ。光は1秒間に30万km進むから、光の軌跡もその長さは30万kmになる。さて光が直進すると言う意味はどのような意味なのだろうか。その時、光の進む空間をどのように認識するかが基本的概念になる。眼前の実在空間は光に対してどのような意味を持つのかである。自分が立っているのは地球である。地球は太陽を中心にして公転しながら自転している。太陽がどのような速度かは分からない。しかし、地球の速度を公転で考えても大よそ毎秒30kmと言われている。この地球の速度と光の速度との関係を実験で確認しようとしたのが二人の科学者マイケルソンとモーリーである。実験では上手く行かなかったが、考え方は正しいのだ。上の図の①は光が曲線を描くことを示した。光は光の放射源から空間に放射された途端に、放射源から完全に自由な光自身の空間伝播特性に従ってそのエネルギー伝播現象を示す。そのように光が直進することで決まる空間を光規定空間座標と考える。地球の空気層ではその媒体の特性の影響を受けるが、基本的には放射源の運動には支配されない。この問題は、光の相対速度を認識するかしないかの問題であり、認識する一人ひとりの解釈の問題である。光は『相対速度』でしか観測されない。その実験的証明は、レーマーの木星の衛星観測からの光速度算定実験に示されている。実験室での光観測実験では、光源と観測者が相対的に同一速度で運動しているから、光の相対速度は打ち消されて、観測できないのが普通の伝播現象である。やはり、実験に基づいた科学論を大切にすべきである。

電気工学と空間座標 空間とベクトルと言う標題で記事にした訳は、瞬時虚電力と言う電力理論の意味を分かり易く解説できたらとの願いで、考えている内に解釈の空間座標の意味を明らかにして置こうと思ったからである。『静電界は磁界を伴う』と言う実験結果の座標は実在空間座標になろう。コンデンサのギャップ空間の磁場を検出するのは普通の実験空間である。しかし、瞬時電力理論で展開する座標は独特の抽象化された、実在しない空間概念である。上の図②のように、一般に科学技術論で取り扱う空間座標は抽象化座標が殆どである。その抽象化された概念が専門家にとっては日常的にありふれた概念であるから、市民が理解するには無理がある事を余り意識せずに過ごしている。数学式で表現されると途端に難しくなる。数式で表現できる概念は、たとえ長い文章になっても日常用語で説明できる事が科学研究者の責任であろう。そんな意味で瞬時虚電力とは何じゃろうかとここに来て悩んでしまった。空間瞬時ベクトル解析法と交直変換器への適用は30年程前にまとめた論説であるが、なかなか良く出来ていると自分で書いていながら、読み直しても考えてしまう。世間知らずの無鉄砲人生の闇に翻弄されていた頃の思い出を乗せた論文資料だ。その意味を解説するに抽象化する科学技術の空間座標の意味を高校生にも何とか理解してもらえないかと思っての準備である。街なかの配電線路を見て、その中に在る自然現象としての『エネルギー』の振る舞いが日常感覚で何となく分かるようになればと思っている。

振り返って 図①の光の伝播ベクトルと空間の意味は、自由空間における光の伝播特性と周波数 日本物理学会講演概要集 第53巻第2号第1分冊 p.87 (1998)、光伝播時間算定のための瞬時空間ベクトル解析法 同上第54巻第1号第1分冊 p.77(1999) 2軸回転系の光伝播特性 同上 第55巻2号1分冊 p.77 (2000) にある。さらにこの関係でお恥ずかしい思い出がある。1999年7月中頃と思うがNatureに投稿したことがある。Instantaneous Space Vector Analysis of Light Energy of Root Element in Free Space 受付番号KO9198 とあるが、その当時に小杉文部大臣がロンドンに出向いて、この論文の処理に当たっていたように思う。その意味が理解できないが、natureからはregretと返送されて来た。これは光の相対速度を論じたもので、すでに光の速度と空間特性(2011/05/22)に示した。