カテゴリー別アーカイブ: エネルギー論

帆掛船(2019年報告)

新しい子年を迎えて、今年が平和で、幸せな1年であったと次の年に渡れることを願います(2020/01/09)。

昨年も多くの自己問答を繰り返して、科学論の基礎概念として最後に残るものが『エネルギー』であるとの確信をさらに強くした。新たな不思議の発見のためにも、己を見つめるためにも昨年の記事をまとめておかなければならない。記事の標題の前に投稿の(月 /日 )を付けた。(2020/01/06) エネルギー像(物理学基礎論)と(2019/12/02) 燃料はエネルギーに非ず が参考になるかも知れません。

1.物理学的・化学的エネルギー

(1/5) 独楽の心 (2/7) 熱の物理 (4/22) 物理学理論と磁束 (4/29)  mc^2^から物理学を問う (5/21) 力の概念と電気物理 (6/14) エネルギーとは何か (6/29) エネルギー変換物語(炭火とエジソン電球) (9/14) 空間定数とエネルギー伝播現象 (11/13) 電池(エネルギー)の不思議 (11/17) 電気抵抗と物理特性 (11/19) 電池と電圧(エネルギーの基礎研究) (11/19) 電池と電圧(エネルギーの実験) (11/25) イオン化傾向とは? (12/20) 水の電気分解

2.電子・電荷とエネルギー

(5/26) 不可解な電荷 (6/6) 電子は流れず (7/6) 電子とエネルギーと質量 (7/28) 科学論と電荷 (10/23) 電荷と電圧の哲学 (11/20) サヨウナラ『電荷』 (11/27) 電荷方程式

3.光とエネルギー

(5/3) 光量子空間像(D線) (5/8) 光速度一定とは (11/2) 光と空間 (11/11) 軸性光量子像

4.電気回路とエネルギー

(3/3) 電気磁気学の要-Axial Energy Flow-  (3/17) 電気物理(コイル電圧) (3/21) 電気抵抗体の物理 (3/26) 電気物理(電圧時間積分とエネルギー) (4/3) 誘導エネルギーに観る技術と物理 (4/12) 変圧器の技術と物理 (7/16) 「高電圧」のエネルギー像 (8/11) 電圧・電流とエネルギーと時空 (8/23) 光エネルギーと速度と時空 (8/29) 分布定数回路と実験 (9/16) 電力p[J/s]の意味と解析法(1)意味 (10/1) これが電気回路の実相だ  (10/2) 電気回路のエネルギー問答 (10/6) 特性インピーダンスとエネルギー伝送特性 (10/31) 大学と基礎教育

5.電気工学と技術

(4/14) 励磁電流とは? (5/29) リサジュ―図形と技術 (9/22) 電流1[A]の物理的空間(インダクタンス算定式) (9/26) 静電容量算定式と理論 (10/14) 分布定数回路空間の世界

6.詩と科学と社会と文化

(4/19) 月に立つは夢か (5/18) 自然と科学理論の架け橋はいずこに (6/25) 津波前の急激な引き波―専門家に問う― (7/20) (8/2) 不思議とは (9/5) 『エネルギー』それが世界の根源 (9/7) 電流1[A]の論理性-考える理科教育への科学者の社会的責任- (10/28) Find more information here (11/24) 共謀罪は法の押しつけ (12/2) 燃料はエネルギーに非ず (12/25) 質量とMassの間に 

7.自然・日本の風景

(1/16) 地学ガイド 新潟の自然に感応して (4/25) 2019年の春 (5/10) 初夏の花 (6/21) ダンゴ虫が何を? (7/4) 雨粒と波紋 (7/6) 生きる雨蛙 (8/3) 深山クワガタ (10/20) 桔梗 季節に戻る (11/15) 秋の色

エネルギー像(物理学基礎論)

自然世界の認識には(2019/12/01)、唱えることを具体的空間像で描写することが大切である。存在するものは空間を占有する形状を持つ筈だから。見えるとは限らなくても、実在するとは空間にしか存在し得ないから。数式の中に存在することはできないから。抽象的な数理式で表現する以前に日常用語で一般市民が納得できる論説が必要である。日常用語が専門的科学論を展開するに不足する程貧相であるはずがなく、十分な能力を持っている筈だから。例えば『電荷』とはどの様なものかを日常用語で説明できなければ、それは実在しない虚概念と見做してよい。空間に存在していながら、目で見る事のできないものの代表が『エネルギー』である。光は存在していることは理解できるが、その『エネルギー』を見る事は決してできない。この記事は年末の12月20日のまま年を越してしまったので最初の公開になる。

不図気になった。『エネルギー』の日本語の訳語が何故ないか?
ほとんどの科学的専門用語には日本語の対訳語が有る。日本が明治維新に外国の科学技術の目覚ましい発展を知り、その導入に欠かせない科学技術用語の翻訳で、名訳の専門用語の体形が確立したのだろう。運動エネルギー、位置エネルギーと言うが、何故その『エネルギー』だけ日本語の訳語がないか。『エネルギー』だけは日本語訳が無い。その訳は何だろうか。先進諸国の科学技術用語の中に、『エネルギー』だけ確立した概念が無かったからではなかろうか。目に見える物体が持つものと言う認識が基本になっているからではなかろうか。敢えて『エネルギー』の日本語訳語を求めれば、『素原』としたい。最も小さな原子が水素である。その水素も『エネルギー』から成り立っている。だから『素原』がお似合いかと思う。

誰もが目にする水の波が有る。水の波と言うが、その水の波は何が原因で発生すると考えるのか?水の波を見れば、同心円で拡がって行くのが分かる。どうも物理学などの科学論は自然現象を観測し、あるいは実験で確認するが、何故そのような現象が起きるかに疑問を抱かないまま、その現象の存在を記憶する暗記の学習に終始しているように思える。水を波立たせる原因が水中に掛かる水圧の『エネルギー』であると言う、『エネルギー』の本質の認識が無いからであろう。水の水中を伝播する、ボイルの法則の体積と水圧の積pV[J]の『エネルギー』の縦波が原因なのだ。電気回路のコイルの『エネルギー』が導線で囲まれたコイルの中の空間に存在することをどの程度認識しているかが心配でもある。その『エネルギー』は目には見えない物理的実在量である。『エネルギー』の空間像が認識されていないところに、大きな問題が有るのだ。だから「津波」の物理現象も分からないのだ。光の『エネルギー』とはどの様なものと理解しているのだろうか。光の『エネルギー』は振動などしていない。空間の『エネルギー』の密度分布波が光速度で伝播する現象が光なのである。その『エネルギー』を観測する方法が無い。だから目で見ることはできない。光によって世界を見ることはできても、その光の『エネルギー』を観測することはできない。

世界・生命は『エネルギー』の賜物である。世界の存在を認識するのは光エネルギーに依っている。人が生きて行けるのも細胞の活動を支える熱エネルギー(体温)に依っている。体温も体温中枢機能によると言われるが、その熱エネルギーは細胞の分解によって保有エネルギーの差が放出されることに依っている筈だ。決して脳が支配する程複雑ではないと思う。細胞自身が周辺環境を整える自律的機能を持っているからであろう。常にエネルギーを放射する必要があり、それが体温を保つ仕組みになっている筈だ。そんな素人の感覚的捉え方も、体温の熱エネルギーの解説が専門的に示されていないから考える自己流の認識でしかない。体温と身体活動エネルギー「理科基礎(仮称)」を想定して (2016/04/08) を読み返して思った。やはりアデノシン三リン酸では全く意味が理解できない生物学的理解力欠如の脳にお手上げで考えた。その原因をやはり理論物理学の『エネルギー』の認識が曖昧であるからと考えざるを得ない現在である。

水の電気分解と燃料電池

とても不思議な科学的現象である。普通の生活環境では起きない現象と理解する。直流電源によって水の中に電極で電圧を掛ければ、水分子の酸素と水素が分離してそれぞれの気体に分かれる。一方水素ガスを酸素と反応させれば、水分子に化合反応して電気エネルギーを作り出す燃料電池となる。化学反応式では、

O2 + 2H2 = 2H2O + E (電気エネルギー)     :燃料発電電池

2H2O + E (電気エネルギー) = O2 + 2H2 :水の電気分解

と燃料電池と電気分解は電気エネルギーを介して水素と酸素および水の間の化学反応現象の逆の関係になっている。ただし、一般の教科書の化学反応式では電気エネルギー E[J] という解説には成っていない。すべて電子の『電荷』が現象を司っているとなっている。それも不思議な科学理論である。決して『電子』では『エネルギー』の関りを説明できないにも拘らず、すべて『電子』で完璧であるが如くの解釈に終わっている。燃料電池でも何故『電子』が通過すると『エネルギー』を負荷に供給できると考えるのか。『電子』が電気エネルギーを背負い籠にでも入れて負荷に届ける役目を担うとでも考えるのだろうか。『電子』は『エネルギー』を運べるのか?このような最も基本的な科学論の根本で論理性のない矛盾を抱え込んでいることを放置して居て良いのだろうか。物理学理論に『エネルギー』の認識が欠如していることが全ての科学論の混乱の基になっているのだ。理学の生物学については全くの素人でしかないが、少なくとも電気回路の物理的な現象については少しは分かっているつもりだ。『電子』はその矛盾のために、論理的な科学論に堪えない概念であると思う。『電子』を論題にするには『エネルギー』との関係で解説できなければならないのではないか。水の電気分解については、前の記事水の電気分解 (2019/12/20) にファラディーの「ロウソクの科学」を読んで考えたことを述べた。過去にも水と水素とエネルギー流の図で水の妖精七変化(エネルギー) (2017/11/02) に記してあった。

 

質量とMassの間に

はじめに(2019/12/22)
文字は心の表現文化だ。世界を知り、その意味を読み解き、その捉えた象形・認識を広く共通理解するための表現手段が文字になる。科学の世界を語ろうとすれば、そこにはその専門用語が揃っている。電気工学から電気磁気学の『エネルギー』概念に思いが移り、その中に見え隠れする自然の神髄に辿り着こうとしても、『エネルギー』からの隔たりに長く戸惑いを覚えてきた。電気と言えば、『エネルギー』より大昔から『電荷』がその中心に居座っていたように思うが、最近はその『電荷』での科学論が虚しくさえ思える。伝統的科学理論を支えて来た基礎概念と用語が余りにも狭い専門領域内でしかその役割を果たせなくなっていると思うようになった。質量も科学論・物理学はじめすべての分野の基礎概念と理解されている。しかしその質量と言う用語で捉える物も、原子、分子あるいは電子から構成されていると言われまたそこから光が放射される現象を考えれば、質量から光のエネルギーが何故放射されるかと考えてしまう。天空にきらめく星の光は何故放たれるのか。質量から放射されるのかと?そんなとりとめもない不思議から質量とMassに思いが移った。

自然と科学概念

自然はそこに表現する姿象が余りにも豊穣で、科学論で語り掛けて近付こうとしても、なかなか寄せ付けてくれない。数式でその意味を表現しようと試みても、きっと巨像の尻尾程度しか理解できないのだろう。

質量とMass 質量と言う日本語訳の原語はMassであろう。日本語と言っても、それは中国文明の恩恵を受けたものである。Massを質量と翻訳した明治時代(?)の先人の叡智には感嘆せざるを得ない。この点について筆者は、この訳語『質量』が元々中国で翻訳されていたのか、あるいは中国では他の訳語が使われているのかどうかも知らない。さて、科学技術文明は基本的には西洋思想の叡智が育んだものであると言えよう。あらゆる科学技術用語もその思想の中から生まれたものである。その西洋世界の文明の姿の基本はやはりその表現用語の文字に在ろう。アルファベットと言う26文字の組み合わせから表現され、構築された概念である。古代中国の生み出した漢字文化とは大きく異なったものである。グローバル化の時代に取り残された筆者には、過去の宝探しに現を抜かせば『質量とMass』の関係性の不思議に思い当たる。やはり漢字の『質量』にその意味を尋ねてみたくなる。そこには東洋思想の匂いがする。物には言葉が付きそう。言葉は人の心を表す。心は人の日常意識の在処である。文字は心の表現手段。中国文明の流れる東洋思想には物の空間における具象認識がその根底に在ると観る。象形で理解する。それは具象性を求める。それに対してMass には具象性に変わって抽象性の心が見える。26文字での表現には、科学技術文明を生み育てた抽象概念構築の途轍もない叡智が感じられる。『エネルギー』の流れる現象を『電圧・電流』と言うとても高度な抽象概念に依って捉える手法を生み出したのだから。

漢字の意味に遊び心を重ねてみよう。古代の隷書体には漢字に込めた中国の哲人の思いが観える。物・世界を見る人の認識の象が表れている。

『質』の字:貝に鉞(マサカリ)が二つ。この隷書体と遊び心を繋げれば、貝塚までもなく、巨大な貝を食料としていた遥か彼方の人類の営みが想像されて来る。とても固くて巨大な貝との格闘が見えてくる。切り開く困難に鉞の字が当てはめられた心が読み取れる。

『量』の字:計る道具の現代のバネ秤の構造に似ている。量るという意味が良く表されている。

『質量』に翻訳した心。『質』と『量』の二文字を組み合わせた『Mass』の訳語をどのように決めたかを考えれば、その先人の文明開化への情熱の高まりまでも読み取れる気がする。道端の石ころ一つにも、その石は初めから石ではなかった。地上の石は遥か昔の太陽の光が創り上げた遺跡ともみられる。どんな変遷を経て石になったか知ることも出来ない。質量と言う用語の如何にも固い形の物の概念を言い表しているかを思えば、そこに有っただろう具象性が心に響く。

鉞。この漢字は鉄金属で出来た比較的新しい(紀元前の話であるが)マサカリ。右の旁(ツクリ)がマサカリの意味だ。「新」の字の偏(ヘン)は多分巨木の梢に立って新たな道を切り開く程度の意味で、その時には必ず「マサカリ」で邪魔な物を切り捨てる必要があり、それが旁の「マサカリ」であるのだろう。そして初めて漢字に込めた「新」の新しい意味となると考えて観たい。「断」の字も複雑に繋がる糸の偏の字を何かやはり「マサカリ」で絶つような意味なのかと考えたい。このように『質量』の用語を考えても、そこに込められた先人の思い、世界に対する心構えを思い描けるような気がする。その思想にはやはり世界観の特徴として「具象性」の際立ちが観える。それに対して『Mass』には「具象性」は見えない。

言語と東西文化。

日本語と西洋言語では同じ対象を表現するとき、当然その意識の根底には幾らかの対象への異なる心象が有るのだろう。西洋思想と文明に際立っていると思えることは、やはり26文字によって世界を理解する言語感覚にあり、その表現能力に抽象的な認識において卓越性が有ると言えよう。そこに観えるものは対象に具体的な漢字一文字を当てて認識する具象的な東洋との違いであろう。具象性より抽象性において優れた象形認識力が強いと考えたい。そこに科学技術による世界の自然開拓・開発の論理構築力が発揮されたのかと思えば、世界認識手法における文字の意味さえ不思議な対象となる。自然科学理論が自然を利用する活用技術の統一的構築に西洋思想の意識の基でこそ初めて成されたのかという思いがする。それに対して、無限の漢字数によって自然世界を具象的に認識する思想の中に『無』とか『道』あるいは『空』の概念で捉える統一的自然認識との意識の融合が東洋思想の特徴かもしれない。自然との一体感に「老子」の自然哲学が大きく影響してきたとも思える。

質量とエネルギー

質量が如何にも固い物に思えても、質量が世界構成の根源でないことはみんな知っていよう。また質量が原子・分子から構成されているという意味も理解し、みんな納得しているだろう。その原子は周期律表にまとめられているように、とても多くの特徴を持ったものに分類されている。原子には核と言う中心領域がその周辺とは異なる存在になっているようでもある。周りが電子で取り囲まれているように言われている。原子の特性は核分裂以外はその周辺の電子が担っているような原子構造論で常識化されているような印象を受けている。そこで、『質量』や『電子』あるいは『電荷』と日本語によって認識する科学基礎概念は西洋思想によって構築された概念であることを再確認したとき、その概念に対峙する対象の捉え方が同じものなのだろうかと考えさせられるものがある。そう思うのは筆者だけなのだろうか。今まで科学概念は世界共通の理解にあった。『電子』や『電荷』の物理概念や物理量が何故具象性によって認識する東洋思想の中にすんなりと受け入れられてきたのか不思議である。それ等の空間像をどのように描くのか。空間に存在するものならば、その空間の占有像が描かれなければ存在するとは認識できないのが東洋的具象意識ではなかったのか。其処に欠けていたのが『エネルギー』だったのではないか。熱も光も『質量』もみんな『エネルギー』の具象像ではないか。『エネルギー』を構成する、それ以上の根源量はない。物理学理論における『エネルギー』が的確に認識されていると思えないところに現代的科学論の課題が有ると思う。水の波を『エネルギー』で理解することが日常生活に根差した理科教育の要である。

 

水の電気分解

はじめに(2019/11/19)

有名な本「ロウソクの科学」を読んだ(まだ最初の何章かであるが)。なかなか理解するのに基礎知識がなく、困難である。年代は1860年ごろの出版書である。現代科学論と比べれば相当昔の話の内容である。しかし乍ら、有名なファラディーの公開実験講座の講演記録で、とても内容は高度なものに思える。実験器具や化学薬品など基礎的なものでありながら、深い内容として筆者には有意義な著書になる。その中に水の電気分解の実験記事がある。J.J.トムソンの陰極線より前の話である。『電子』概念がない頃の実験である。それでも直流電源は立派に働いていた。その本を読んで、水の電気分解がよく理解できない筆者自身を自覚させて頂いた意味でも貴重な内容の本である。電気分解は化学の話になるかと思うが、電気との関係で『電子』の意味を考える話としてとても重要な物理的内容を含んでいると思う。今取り上げている、電池とイオン化傾向そして『エネルギー』との関係の物理現象が物理学基礎理論として大変意味が有ると考える。そんな筆者の理解できない内容を自己問答として取り上げてみる。その取り上げる内容が科学知識としては本当に基礎的な知識であるから、専門家がどのように評価されるかにも関心がある。読者にも参考になろうから、ご指導をコメント頂ければ有り難い。理科教育の科学常識に関わる意味であり、特に『電子』概念の論理性の問題でもある。なお時代として「ロウソクの科学」ではまだ電子論は採られていない。

水の電気分解

現象と意味。 水の電気分解の現象を考えると、とても難しいことに思える。幾つかの場合に分けて、分からない意味をハッキリさせてみたい。自分の分からない事を明らかにするには、その分からないという意味の内容を明確に認識し、自覚することが先ず大事である。そこから研究の第一歩が始まり、より深い理解に辿り着く可能性が見えてくるかもしれない。と考える。

水とは何か?

検索すれば簡単に解説がされているが、筆者にはとても理解できない事ばかりである。水の分子一つを取り上げても、何故酸素と水素が結合して命の水に形態変化をするのか。朝露を観れば、踏み付ける草の命に愛おしさを覚える。目立たない草が水を作っているように見えるから。コンクリートの中に居ては決して見えない世界であるかも知れない。天然の精水 (2012/06/14) 。化学結合論として H2O を学習しても、何故そのように結合するかの原理は原子物理学の解明するべき内容である。自然界に存在しない電子で結合論を論じても、一般の市民が真に納得するだけの解説にならないだろうと思う(?)。クーロンの法則を電荷論の基礎に据えながら、負の電荷同士の電子が手を繋ぎあう共有結合等と言う結合力を認める合理的解釈が生まれる訳などどこにもない。そんな基本的矛盾を抱えたまま、科学コミュニケーションなど採れる訳がないと思うが如何でしょうか。

実験回路

回路①。 基本的な実験回路は①の場合である。まず図の直流電源の電池をエネルギー源としてみた時、エネルギーは電池の負極から電線近傍を伝播して、負荷対象に届く。この場合の負荷対象は水で、 H2O という分子の集合空間である。今の教科書の解釈は電子で説明されている。筆者は、その『電子』が実在するなどとは考えられない。「ロウソクの科学」でも未だ電子での解釈はない。電気のプラスとマイナスという説明もなされてはいないで、電気の力という言い方である。水に電圧を掛けると、酸素と水素に電気分解されるという実験的事実である。その実験的水の電気分解はさて、この①の場合で、筆者はここでも電池から『エネルギー』E[J]が水分子一つ H2O に供給されると解釈する。その時水の空間が負荷インピーダンスとなる。水分子に『エネルギー』がどのように印加されるかという問答になる。水中に?マークを印した。しかし、その水の空間にどのように電圧が印加されると考えればよいか良く分からない。分子式で書き表せば、次のようになろう。電源からの供給エネルギーをE[J]とする。なお、水の電気分解と水素燃料電池は丁度逆の化学反応になっている。ついでに、燃料電池の場合も併せて示す。

電気分解    H2O + E[J](電気エネルギー) =(1/2) O2 + H2

燃料電池   (1/2)O2 + H2 = H2O + E[J](発電エネルギー)

電気分解は水(実際は純水ではなく、不純物が含まれている)に電気エネルギーを供給して、金属電極と水分子の間に掛かる電圧(エネルギーギャップ)に因って分子分解をすると考えたい。電子、電荷を物理量から排除すれば、残るはエネルギーによって解釈する以外ない。その『エネルギー』と言う概念が物理学理論で明確に捉えられていないと、残念ながら考えざるを得ない。それは『電荷』や『電子』が水の電気分解はじめ、電気現象の基本的論拠となっているのが現実であるから。『電子』での解釈は原子構造論からの『イオン』と『電子』の関係で如何にも分かり易いように思えて、科学常識として受け入れられてきたものであろうが、そこには『エネルギー』の意識が抜けた、大きな矛盾を抱えたものとなっている。電源からの供給エネルギーと言う解釈が無い。『電子』では『エネルギー』の役割を担えない。そこに物理学理論の基本的欠陥が隠されている。

針状電極

『電荷』を否定すれば、イオンと言う解釈が採れない。しかし電極には確かにプラス、マイナスという違いがある。(プラス、マイナス)という表現自体が『電荷』を否定したら使えないのであるが、エネルギー供給側(マイナス側)とその対称極側(プラス)などと区別しても、もっと分かり難くなるから,やむなくプラス、マイナスで表現する。さてそのプラス側とマイナス側の電極と水の接触点で、どの様な電気的ストレスが発生するのか?一つ電極が針状の尖ったものの場合を考えてみたい。電極が尖った場合は、空気中では明らかに火花、グローコロナの形状が異なる。負極側では勢いよくコロナビームが放射するように発生するが、プラス極側では先端に固まった小さなコロナとなる違いがある。それは水の中でもおそらく同じ傾向の現象に成ると考えて良かろう。電極が針状の場合は分解効率が良くなるのではないかと考えたい。

印加電圧の極性が両電極で異なる。水と電極金属の間の極性(エネルギーギャップの電圧極性)が逆になる。電源のエネルギー供給は負極側からなされる。負電極と水の間のエネルギーギャップは電極金属側がエネルギー密度の高い状態を呈する。それに対して、陽極側の電極と水の間のエネルギーギャップは水が高エネルギー密度分布となると考えられる。陽極電極にはエネルギーはない。

プラスとマイナスの電極間にエネルギーギャップが掛かる。水分子と電極金属面間に大きな電圧(エネルギーギャップ)が分担されて印加される。学術的解釈論は水分子のイオン化が基本になっている。『電荷』が存在しないから、残念ながらイオン化論以外の解釈で理解したい。解釈の基準に、エネルギーと結合 (2018/10/10) および水の妖精七変化 (2017/11/02) さらに結合エネルギー:不思議の砦 (2018/12/02) を参照したい。水素分子と酸素分子が2対1の体積比に水が分離される。この実験的事実は科学論の基本として、紛れもなく自然の本質を表している。この科学的常識が『電荷』に因る、あるいは『電子』に因るイオンの解釈になると途端に論理性が欠落してしまう。

回路②。

①の集気は酸素と水素が別々の試験官に採取される。だから酸素と水素が別々にプラス電極とマイナス電極で分解分離されると分かる。「ロウソクの科学」でも、この②のように一つの試験管内にプラスとマイナスの電極によって、酸素と水素を電気分解しながら混合気体として採集している。その混合気体がやはり酸素と水素から成り立っていることを実験的に証明して見せているところが素晴らしいと感じた。その混合気体を燃焼させれば元の水になることを実験で示している。ファラディーのその実験では「電荷」も『電子』も説明には出ていない。ファラディーは“電気の力”や“エネルギー”と言う用語で解説している。そこには違和感はない。ー強力なヴォルタの電池、その二つの電極ーなどと表現しているが。20世紀初頭からの数理的理論偏重の構築された物理学によって、生活科学からの乖離が始まったのが原因ではないかと危惧する。そこに分かり難い曖昧さが忍び込んできた。

回路③。

この回路は①の回路の水(?)の部分を分離したらどうなるかと不図疑問に思ったものである。実験してみないと分からない。回路①の水(?)で繋がった部分の、所謂イオン(?)の移動ができない場合に水が電気分解されるだろうかと試したくなった。この回路はただそれだけの意味を示した。

水素爆発現象が有る。福島原子力発電所崩壊での実際の様子にもあった。大気圧の7倍の高圧破壊になるという。太陽の原理は水素の連続定常核融合現象と専門家は指摘している。水素核融合は水素がヘリウムに変換する現象で、その時エネルギーを放射する核融合反応と言う。ウラン原子の核分裂と逆の核反応現象であると。素人の感覚からすると、太陽の水素原子核融合反応が継続的にほぼ定常の水素原子消費で起きるという状況が信じられない理解力の無さを抱え込んでいる。クーロンの法則との関係で、原子共有結合原理の理解ができない悩みと同じく。「ロウソクの科学」で水素の燃焼実験を公開している。筆者は残念ながらそのような水素燃焼実験を見たことが無い。高圧水素ボンベでの燃料電池の発電方式は水の電気分解と丁度逆の化学反応だ。水とエネルギーの間の有り触れた不思議が考える一コマを運ぶ。

 

 

 

霰の中に咲くサツキ

今年も師走に入って間もなく暮れる。霰が降る中にサツキが咲く。

このサツキは今咲いてほしくない。狂い咲きだから。植物は地球環境の生命存続の可否を示すバロメーターだから。日本の季節感の四季もなくなり、里山の棚田の日本の風景も消え去る予感が重なってくる。科学技術の経済競争が人をして都市型の過酷な労働環境と生活苦に押しやる。今年の夏に、紅葉の葉が太陽光線で焼け焦げて、枯葉となって哀れな姿をさらしていた。しかし来年の春にはまたその枝先にも新芽の葉が生い茂ることだろう。

振り返れば、今年の夏は猛暑であった。水害被害で生活の危機を認識した。今年は日中も耐えられずにクーラーを使った。去年までは田畑からの風を頼りに、何とか我慢して夕食時ぐらいに使って済ませた。今年は田の稲も酷暑(フェーン現象:水蒸気の水分だけ除いた高温度の熱エネルギーの山越えの風)で実りが悪かったようだ。クーラーは科学技術の賜物と酷暑を避ける電気製品の代表格である。クーラーに関わる『エネルギー』論はほとんど科学者からは発せられない。巨大なビルの中で酷暑の夏を過ごすにはもうクーラーが欠かせない。気温が高まれば、気中の水蒸気量はどんどん増加する。室内から外に水分と熱エネルギーを吐き出し、外気温度を高める。人も熱中症状で危機にさらされる。どんなに貧しくてもクーラーを使わないで過ごす人の生活環境を取り戻すべく、その役割が政治の基本目標でなければならない。雷が水蒸気の保有熱量(それが『エネルギー』だ)によって起きる現象だという科学認識が無ければならない。水蒸気が太陽光線に対して「レンズ効果」を果す。地球環境は命の水が支配している。原子力発電は生存の危機をもたらす人の制御能力を超えた巨大科学技術システムだ。避難訓練を人に強要する科学技術はそれだけで制御不可能を証明している。そんな化け物が生活の場に有ってはならない。そんな科学技術は地震・津波の自然現象とは次元の異なる話だ。

原子力発電の熱の行方 (2011/04/17) 、雷は熱爆発 (2014/05/23) 、フェーン現象の解剖 (2018/06/17)。

イオン化傾向とは?

はじめに

イオン化傾向と言う用語は高等学校の化学で学んだと思う。化学が不得意でなかなか理解できない。化学知識は今でも高校生のレベルが遥か遠くに思える状況だ。しかし電気回路と電磁気現象については特別に深く理解していると思う。『電荷』や『電子』が如何に曖昧な概念であるかを解説できるから。そこに当然のこととして、『イオン』と言う用語の概念が関係してくる。イオン化傾向という化学の用語の意味が理解できないことに悩む。原子の周りを周回する「電子」の存在が科学理論の根幹をなす常識であろう。それを否定すれば、科学の世界では所謂「話にならない門外漢」と無視される。それでもイオン化傾向の物理的意味を理解したい。

周期律表とイオン化傾向

周期律表の中にどのような配置で順番が決まっているかを描いてみた。赤い番号がイオン化傾向の順番だ。昔と少し違うのは、リチュウムはなかったと思う。カリウムの次がナトリュウムだったと記憶している。中に水H2Oと酸素Oも書き込ませていただいた。化学反応で水は重要な意味を持っていると考えるから。

水の電気分解

水の電気分解が何故可能かが理解できない。基礎の基礎が分からないので、水の電気分解について別に改めて考えたい。エネルギーと結合 (2018/10/10)。

電池とイオン化傾向

電池は化学物質の分解と結合の反応によって、エネルギーが生まれたり(発電)、加えられたり(充電)の機能製品である。そこにはアルカリ金属元素のイオン化傾向などでの『イオン』が重要な原理として関わってくる。『イオン』と『電子』は同等な役割を担って解釈されている。電解質内の移動などは『イオン』が主体である。それは『電荷』概念に依るクーロンの法則が支配する科学認識世界である。本当に科学者はそのクーロン則で、論理的科学理論が成り立つとお考えなのだろうか。電解質の場は真空の空間とは違う。化学物質の誘電特性などで『イオン』の移動力学方程式がどのように影響されるか等ほとんど論理的な考察もなく、伝統的な曖昧な論理で結論を付けているだけではないのか?原子構造が電子の周回軌道論で本当に成り立つと考えているのだろうか。『イオン』に如何なる力が働くというのか?決して自然界に存在しない『電荷』などで論理的な解釈ができる訳が無いのだ。そこに「イオン化傾向」という言葉で特徴付けられる厳然たる元素間の化学結合活性化力の差があることの意味が何に依るのかという、真の自然の原理を解き明かさなければならない課題が突き付けられている。それは少しも経済的利益を生むとは限らない本当の「基礎科学研究」の筈である。それは科学者の教育に関わる社会的責任でもあろう。ナトリュウムNaとカルシュウムCaの間に生じる活性化力の違いは何が原因で生じるのだろうか。その差の発生する訳は何だろうか。それは原子物理学の課題かもしれない。周期律表に関係して、周期律表と抵抗率 (2016/06/09) 。

むすび

『電荷』あるいは『電子』がどのような物理的実体を定義しているかを、科学技術の広い分野に亘ってその論理性の確認をすべき時代にあると考える。全体に矛盾の無い統合された論理性を。次代を担う子供たちへの教育の責務として、あらゆる疑問に答えるべき基礎の確立が望まれる。

サヨウナラ『電荷』

(2019/11/27)追記。実験的検証法の電圧測定について。電圧の測定に普通の電圧計では巧くゆかない。一般に測定は必ず測定対象からエネルギーを取り込む。どのようにエネルギー量を失わずに測定するかの技術的工夫が必要だ。静電容量の小さいコンデンサで、電圧値が低ければ、実験の精度は得難いかも知れない。測定器の入力インピーダンスの大きなものが欲しい。あるいは減衰特性の写真判定など。電圧測定について一言ご注意申し上げたい。

電気理論の根幹をなす概念は『電荷』である。また電力技術・工学では『エネルギー』が根幹をなす概念でもある。『電荷保存則』と『エネルギー保存則』がともに重要な基礎をなしている。電池電圧や分布定数回路現象を最近考えた。急に気付いたことがある。やはり『電荷保存則』は論理的に矛盾している。コンデンサとエネルギーと電荷 (2017/08/31) で満足に答えられなかった問題があった。高校生からの質問のようだった。電池と電圧(エネルギーの基礎研究) (2019/11/13) に答えが出ていた。

実験的検証法

回路はいたって簡単である。コンデンサが電圧V0に充電されている。同じコンデンサをスイッチでつなぐ。電圧は幾らになるか?結果は図のように、『エネルギー保存則』に従った電圧になる。だだ、スイッチオンでの追加コンデンサの充電時に突入電流(電流ではなくエネルギーの突入ではあるが)で、エネルギー消散が起きる分の誤差はあろう。小さなコイルでの突入制限を抑える方法はあろう。兎に角、『電荷保存則』は否定され、『エネルギー保存則』に軍配が上がる筈だ。実験確認が可能と考える。以上急な思い付きの報告。

 

電池と電圧(エネルギーの実験)

大人のおもちゃのような実験をしてみた(2019/11/13)。専門家の決して考えない実験かも知れない。乾電池の乾電池による充電実験。変圧器の奇想天外診断 (2015/06/03) に似た思い付きの実験だ。

実験の目的と結果

乾電池のエネルギーの意味を電流や電荷概念に依らずに、空間伝送の意味でランプへのエネルギー供給を確認したかったのが本当の目的であった。乾電池はエネルギーの充電ができないだろうという思惑があった。残念ながら思惑外れで乾電池も充電されることが分かって、一寸がっかり。

実験の概要

先ず、電池と電圧(エネルギーの基礎研究) (2019/11/14)で電気回路エネルギーと電圧との関係を具体例で解説しようと考えた。その過程で不図乾電池は充電できるのかと心配になった。早速実験で確かめることにした。初めに書いた通り充電可能であった結果で、思惑外れの失敗である。電荷概念否定あるいは電流否定の実験的検証にはならなかった。

実験回路と思惑

図1.に示した回路は電気回路の実験としては全く意味の分からないものであろう。同じ乾電池4個を3個と1個に分けて、差の電圧を豆電球にかける回路である。この回路を取り上げた訳は乾電池に充電作用が有るかどうかに疑問を抱いたからである。この回路構成で、一つの電池V1が充電せずにランプが点灯することを期待したのである。エネルギーが直接空間を伝送して、電池充電なしにランプだけ点灯となれば回路電流の解釈を否定できるかと思った。

 

図2.実験装置

図1.の回路構成を単3乾電池4個入りの電池ホルダーで作った。アルカリ乾電池4個と3V用豆電球(購入経費の費用891円也)で実験装置とした。

 

実験結果と考察

アルカリ乾電池はみんな同じかと思うが、どうも特性が同じくないように思った。V1用として使う電池で充電特性が異なるようだ。比較的早く電圧が高くなるものと、遅いものがある。充電の特性が異なる。

最初の実験。装置組み立て後すぐに回路でランプを点灯した。V1の電圧を計ったら、2.2[V]まで上がっていた。真逆(マサカ)とは思うが、破裂するかもしれないと少し危険を感じて中止した。数日後にまた同じ実験で電圧を計り、確認した。もうV1 の電圧が2.2[V]になるようなことはなかった。せいぜい1.7[V] 程度にしか充電しなかった。少しずつV1電池が充電され、電圧が上がっている様子は見られる。

スイッチSのon off による回路状態の違いの解釈。

スイッチoff

乾電池の負極側はエネルギーレベルが高い。スイッチと電池にそれぞれエネルギーギャップがある。負荷ランプにはそれが無く、電圧ゼロである。

スイッチ on

スイッチオンでランプにもエネルギーギャップが生じる。それが負荷端子電圧である。ここで、乾電池に充電はないかと予想したが、間違いであった。乾電池から乾電池にも充電でエネルギーが入射することが分かった。電池電圧V2のある割合でランプと電池V1 にエネルギーギャップが印加され、消費と充電が進行する。

考察

各電圧値はテスターで測定した。測定中にゆっくりと電圧値が変って行く。エネルギーの消費と同時に電池 V1 への充電が進む。総体的にはエネルギーが減少する。アルカリ乾電池の充電機能は電池の放電機能と同じく負電極亜鉛と電解質の間のエネルギーギャップの化学物質的エネルギーレベルの解釈に掛かっている。

構造と電池の原理

アルカリ乾電池

アルカリ乾電池の内部構造はマンガン乾電池とは相当違うようだ。しかし基本的には陰極の亜鉛Zn粉末が水酸化カリウムKOH電解質の中でエネルギーギャップを構成していると解釈できる。陽極は二酸化マンガンで構成されている。両極間は一応セパレータ(耐アルカリ性ビニロン)で分けられている。電解質は透過するとある。

アルカリ乾電池の原理

Wikipediaに示されている化学反応式

(負極) Zn(s)   +  2OH⁻(aq) → ZnO(s) + H2O(s) + H2O(l) + 2e⁻

(正極) 2ZnO2(s) + H2O(l) + 2e⁻ → Mn2O3(s) + 2OH⁻ (aq)

この化学式が示す原理は『電子』が負極から外部回路を通って正極に戻り、電荷の収支が整って電池の役割が成り立つという意味である。電子が『エネルギー』を負荷に供給する論理的な解説が全く示されていない。だから化学方程式は電池の『エネルギー』供給の説明には成っていない。物理学にも、化学にも『エネルギー』の概念が定義されていないところに大きな科学論の矛盾がある。『電荷』や『電子』の『エネルギー』との関係性が示されなければ科学理論の矛盾は解消しない。

エネルギーギャップによる原理解釈。

亜鉛Znと水酸化カリウムKOH の化学物質の間における接触エネルギーギャップEg[V]が電池エネルギー供給原理をなしているはずだ。上の化学方程式には水酸化カリウムの役割が示されていない。アルカリ電池であるから、カリウムK がエネルギー源としての主役をなしているはずだ。亜鉛 Zn とカリウム K の間のイオン化傾向の特性差が基本的意味を持っていると解釈する。

まとめ

電池がアルカリ電池であった。アルカリ電池は充電機能も少しは持っているようだ。まだ、マンガン乾電池での確認をしていない。マンガン乾電池も充電するか?

(2020/01/03)追記。元旦に単一乾電池で、マンガン乾電池2本とアルカリ乾電池2本が有ったので、マンガン乾電池1本を3Vランプと直列にして、アルカリ乾電池2本とマンガン乾電池1本の直列電圧4.5Vほどの電圧を掛けた。マンガン乾電池の電圧は徐々に充電され 1.7V以上に高くなった。破裂しないかと気味が悪くてそれ以上続けなかった。マンガン乾電池もアルカリ乾電池と同じく『エネルギー』の充電ができることだけは確認できた。その充電がどの様な化学的反応で成されるのか理由を知らない。

電池と電圧(エネルギーの基礎研究)

自然の本質(2019/11/13)。科学の世界はとても大きい。しかし、その本質は極めて単純にして純粋である。『エネルギー』一つの世界が自然の本質である。水素原子もその根源はただ一つの『エネルギー』の集合体でしかない。それなら『エネルギー』とは何かと問答になる。今日はハヤブサ2がリュウグウの岩石を採取して地球への帰還の途に就いたと報じられた。目出度い事です。地球の岩石の分析と合わせて研究が進むことお祈りします。

電池はエネルギーの供給源

電池のエネルギーとはどんなものか?その『エネルギー』をどのように認識するか。そんな意味を考えて、明確な解釈ができるような考究も科学基礎研究になる筈だ。決して経済競争に資する話ではない。科研費を要求するような研究でもないが。その訳は、次のような意味でも大切であろう。科学的手法でその『エネルギー』を測定する方法がない。『エネルギー』は秤にかからない。ジュール量を測定できない。『エネルギー』の極限は一粒の光の空間分布エネルギーだ。決してそれを見たり感じたりはできない。しかしその『エネルギー』は目の前に無限に存在している。木も草も花も石も光の賜物である。光が無ければ地球も存在しない。そんな不思議な『エネルギー』を電池の中に関連付けて思い描いてみたい。

図1.電圧実験回路 電圧vsの電池がある。容量 C[F] のコンデンサがダイオードを通して図のように電池に繋がった回路を想定する。我々は『エネルギー量』を測定できないから、その量を電圧値によって解釈するしかない。電気回路の解釈において、電気技術では電圧値が重要な量となる。電線路には必ず静電容量がある。その容量C[F]が電線路の空間に在る『エネルギー量』を認識する大切な回路要素である。電圧値ではエネルギー量は分からない。静電容量の値で、同じ電圧値でもそのエネルギー量は変わる。図1.のような回路で電池の電圧という意味をコンデンサの静電容量を変化させて、考えてみたい。

可変コンデンサ。ラジオ放送電波の受信には周波数検波用にバリコンが使われる。

図2.可変コンデンサC(ωt)  たとえば図のような二組の円盤で、1つが周期ω[rad/s]で回転するとする。コンデンサ容量は周期関数で変化する筈である。

図3.容量 C=εkA[F] 回転電極がO-Poの軸からの角度θの位置で重なり面積Aが決まり、コンデンサ静電容量もほぼその位置の関数と考える。なお回転速度は一定でなく、任意でよい。ε[F/m] は極版間の誘電率で、kはギャップなどの構造による定数である。

電圧値v[V]は?電圧はどのように変化するか。コンデンサ電圧は電池電圧より下がらない筈。回路のスイッチがオフの場合を先ず考えよう。回転盤の重なり面積がAoの最大の時に、コンデンサには最大のエネルギーが貯蔵される。面積がそこから減少すると、コンデンサ端子電圧vは上昇する。貯蔵エネルギーの最大値をEm[J]とする。電圧はコンデンサ容量C[F]によって、

v=(Em/C)^1/2^ [V]        (1)

と変化する。重なり面積がゼロとなれば、相当高い電圧値になろう。電極版の回転によって、周期電圧波形となろう。この意味が電線路電圧の意味を理解するに基本となる。この『エネルギー』による解釈に対して、『電荷』論を主張するでしょう。もし『電荷』Qm[C]で解釈するなら、電圧は

v=Qm/C [V]                          (2)

と静電容量に反比例する筈だ。平方根で変化するか、反比例で変化するかで、答えは得られるはずだ。『電荷』概念矛盾の結果になる筈だ。

図1.でスイッチがオンの場合。今度はコンデンサの電圧vと電池電圧vsとの関係で電池にエネルギーが回収される。電池の種類により、電池充電の特性が異なるから、様々な結果になろう。

図4.コンデンサ容量とエネルギー(係数1/2はその意味が確認できないので省く) コンデンサ容量Cは図のように変化する。図の打点部分が静電容量ゼロに向かって変化するときの、コンデンサエネルギー放電(電池エネルギー回収)特性による電圧変化の様子を想像で記した。もしスイッチオフの場合なら、ωt=2πで静電容量ゼロ近くで電圧は最大値に跳ね上がる筈だ。

インダクタンスの場合の例。

ついでにインダクタンスのエネルギー量と電圧の関係を考えてみた。

図1-2.電圧実験(2)

L-r 負荷のスイッチSオフによってLのエネルギー処理の問題が起きる。Lの貯蔵エネルギーは必ず放出しなければ済まない。この場合も余分エネルギーの放出による電池充電動作に入る。Lの電圧とエネルギー量El[J]との関係は図のようになる。

(2019/12/27)追記。上の図1-2 電圧実験(2)に示した回路には不備がありました。修正して電池充電現象の回路を示す。

訂正回路

右のように負荷ランプとスイッチS’の回路とした。スイッチS とS’同時にオフとする回路に変更。コイルのエネルギーはコンデンサCの放電と同時に電源の電池へのエネルギー充電とランプ負荷消費の回路動作となる。なおコイルエネルギーの次元は[J]=[FV^2^]とも解釈できる。L/r^2^[F]だから。以上追記。

電池がマンガン電池の場合、どの様な現象になるか不明だ。アルカリ乾電池では電池でエネルギー回収が起きるようだ。それは 電池と電圧(エネルギーの実験)  で確認した。

まとめ

(エネルギーの基礎研究)というには内容が乏しい結果だ。しかし、電池についてその電気現象を理解するにはとても多くの基礎概念の関係を解きほぐさなければ成らない。次々と理解困難な問答に突き当たり、際限のなさに戸惑う。やはり、『エネルギー』という物理的実在量の意識化が是まで為されてこなかったところに大きな欠陥があるからと思える。電圧とはこの『エネルギー』の技術的評価量であることを認識してほしくて、静電容量との関係でこの記事にした。

電気抵抗の物理特性

オームの法則は電圧と電流の関係を関連付ける役割が抵抗と言う係数の数値だ。電池(エネルギー)の不思議 (2019/11/13) でLampのエネルギー変換機能について取り上げたので、その意味に以下で挑戦してみた。しかし解答には至らなかった。

電圧=R×電流

R = 電圧÷電流

抵抗の物理特性を電圧と電流で解釈しようとしても、何も納得できることにはならない。

抵抗の特性

抵抗は電気回路からエネルギーを吸収して、そのエネルギーを熱・光に変換し空間に放射する。何故抵抗はそのようなエネルギー変換作用ができるのだろうか。その物理的原理は如何なる事か。電気抵抗とエネルギーの間に繰り広げられる現象を論ぜよ。等と自分に問答を投げ掛ける。

抵抗の内部構造とエネルギー変換機能

到来エネルギーに対する3つの仕分け。①受け入れずに反射する。②一旦受け入れて後一部を反射して戻す。残りは貯蔵して熱化する。③受け入れて吸収し、熱化貯蔵すると共に、貯蔵密度が限界を超えれば光放射する。一応この3つに分けて考えよう。

①の受け入れずに反射する場合があるだろうか?これは抵抗と言う機能から無いとしてよかろう。高周波伝送の分布定数回路で、負荷終端短絡や無負荷開放ではすべて到来エネルギーは反射される。それは抵抗零と無限大に相当する。エネルギー波長に対して比較できる数千キロメートルの電線路なら、商用周波でも負荷短絡が意味を持つ現象を呈するかもしれない。この①の場合は考慮から外す。

次の②が悩ましい場合である。抵抗内部に入射するには受け入れに内部静電容量の機能が必要と考える。その受け入れたエネルギー量を貯蔵するにはインダクタンス機能が必要と解釈する。そこに抵抗内部構造のエネルギー貯蔵・熱化機能が無ければならない筈だ。一部を反射するには、静電容量で受け入れたエネルギーをインダクタンスが受け入れなければ当然元に反射することになる。

ここに③の抵抗体の基本機能だけで捉えてよいかの疑問が残る。即ち受け入れたエネルギーすべてが貯蔵・熱化変換されて線路に戻されない。その時に、基本的なエネルギー反射現象が起きる。線路特性インピーダンスとの関係で定格系統電圧保持への電源制御がなされる筈だ。抵抗体に到来した線路伝播エネルギーの内、抵抗体入射エネルギー分は線路特性インピーダンスとの関係で抵抗体の静電容量構造値に依って決まり、残りが線路側への反射エネルギーとなると考えたい。抵抗体への入射エネルギーはすべて電線路へは反射されず、熱化と光放射へのエネルギー変換機能としての抵抗体の物理現象を呈する。

まとめ

抵抗体のエネルギー変換機能としての物理現象を考察したが、未だ明確な論理的解釈には辿り着けなかった。抵抗体の種類、構造などの特性に対する実験による考察が必要となる。少し高周波での定在波などの特性観察が必要だろう。エネルギーの動静を感覚的に捉えるにはやはり実験的取り組みが必要のようだ。何方かの挑戦に期待する。あくまでも「電荷」や「電子」での概念に縛られていては無理であることだけ注意しておく。

過去にも同じような事を述べていた。重複しますが。https://hokakebune.blog/2019/03/21/電気抵抗の物理/ やhttps://hokakebune.blog/2016/06/15/電気抵抗のエネルギー論/