電圧・電流の物理的正体(2020/09/29)。
長い電気回路の解釈を通して、感覚的に納得できたかと思う。『電荷』概念を捨てて、電気磁気学の科学論の常識から離れて遠い道を辿ってきた。パワーエレクトロニクスと言う新しい電力制御技術に出会い、その回路制御技術を通して『エネルギー』の実在性を感覚的に身に深く刻むことが出来た。様々な過程を経て、理論と『エネルギー』の間の不協和を謎として追究してきたように思う。電気回路は電圧と電流なしには解釈できない。その電圧と電流が回路の線路空間を流れる『エネルギー』の流れとして捉えて良いとの結論を得た。
電池などの電源からランプを点灯する回路。それは最も基本となる直流回路だ。その電気回路は二本の電線で囲まれた空間を『エネルギー』がほぼ光速度で伝送される機能設備と言えよう。電線路はその空間が電気的特性、コンデンサとコイルによって特徴付けられる機能回路である。電線路の単位長さ当たりの持つ静電容量 C[F/m] とインダクタンス L[H/m] によってその空間の特性が特徴づけられる。その C L によって電気『エネルギー』の電線路特性が決まる。電源の特性は電線路に供給する『エネルギー』の供給能力で評価できる。電源端子の線路容量 C で供給する『エネルギー』の分布が決まる。それがそのまま電圧と言う技術量を表すことになる。電源の電池やその他の直流電源は技術的な電圧規定値、定格値でその能力を評価できる。電源から送出される『エネルギー』は線路特性に因る伝送速度 c で次の式で決まる。
c=1/√(LC) [m/s]
電線路の分布した『エネルギー』がδ[J/m] なら、その伝送速度が c となる。この伝送特性は、高周波伝送であろうと商用電源であろうと全く違いはない。直流回路も同じ基本特性にある。
直流回路の反射現象。
直流回路のエネルギー反射現象と言う認識は無いと思う。ここで述べる解釈は、おそらく科学論としては評価されないかも知れない。何故なら、全く科学的手法の原則である実験的検証による説得力のある論ではないから。しかし、電気現象が全て『エネルギー』の光速度伝播であるとの認識に立てば、その伝播空間と『エネルギー』の関係から電磁波の周波数に因る差異がある筈が無いとしか考えられない。となれば、伝送回路の空間特性により、特性インピーダンスの意味も負荷の整合性で直流回路においても全く同じ筈と考える。伝送エネルギーが負荷に到来しても、整合性の執れていない負荷では、その内のある分の反射現象が起きる筈だ。
反射現象で、反射エネルギーはどの電線路側を戻るか?ここにその判断の鍵があるようだ。プラス側を戻るか、マイナス側を戻るかに判断を下さなければならない。
反射エネルギーは負側の伝送エネルギーの到来側をそのまま反転して戻る。そう結論を付けた。
負荷の反射は回路の特性インピーダンスZoと負荷抵抗Rとの関係で整合が採れているかどうかに因る。今負荷抵抗が回路のZoのα倍とする。図のように負荷で伝送エネルギーδpの内のδrが反射するとする。負側電線路のエネルギー分布量δは二つの合成となる。負荷で反射して、電源に到来する『エネルギー』分布波δr分だけ電源から送出する『エネルギー』δpは少なくなる。電線路エネルギーギャップはδ=δp+δrと、電圧保持分布量に成っているから。
負荷が整合に在れば、α=1である。『エネルギー』の反射は無く、電源供給の『エネルギー』δ分布で、そのまま負荷に吸収・変換される。
【実験的課題】α<1の時。特性インピーダンスZo より負荷抵抗が小さい場合に当たる。この時、電源の供給能力があれば、あくまでも電圧を規定値に保つべくδpを増加するかと言う問題になる。一つの実験的検証の課題が浮かぶ。プラス側を反射波δrが電源に戻る。その分多く電線路エネルギーギャップがδ=δp-δr、V=√(δ/C) となるように、δpが多く送出されれば解決となる。実験的に確認したい未解決問題。
関連記事。
電流と電圧の正体 (2013/05/16) 。電気の真相(3)-電圧と負荷-(2015/09/25) 。電圧-その意味と正体- (2016/05/15) 。エネルギー伝播現象 (2020/06/27) 。『電圧』という意味 (2020/07/04) 。電圧とエネルギー (2020/07/10) 。技術概念『電流』とその測定 (2018/09/24) 。などの解釈を経てきた。