月別アーカイブ: 2020年2月

マグネット 摩訶不思議-ハルバッハ配列-

はじめに(2020/02/21) 久しぶりに楽しい時間を過ごさせて頂いた。ものづくり・科学フェアinアオーレ長岡、2月1日。普段は全く科学や伝統技術に触れる機会がなく、ひきこもりのブログ投稿で過ごす。今回の催しに参加し、科学の雰囲気に触れられ、話ができる満足を楽しませて頂いた。その科学技術で、少し勝手に質問等させて頂いた展示部門に「ハルバッハ磁場」がある。お相手頂いた方(学生さん?)にはありがとう。久しぶりに『磁気』の専門的な部門の不思議を味わった。展示された先生には感謝です。改めて、今回もう一度「磁力」の物理的現象の意味を考えてみたくなった。自然現象、物理現象の解釈を学問とした物理学は、ややもすると簡便な伝統的解釈手法に拘泥したまま、その理論に不思議とか疑問とかを抱かなくなっている。所謂「考えない」伝統論が支配してしまった。筆者が取り上げる内容は、それらの伝統論の矛盾を拾い出し、新たな市民が理解できる易しい科学論(数式を使わない日常用語あるいは空間図形表現で解説する科学論)を目指すため、専門家の皆さんからは顰蹙を買う内容となろう。教科書批判ともなる訳だからなお更ややこしいことになる。ご容赦の程お願い仕ります。今日ダッシュボードに、関連した古い記事が読まれて、コイルの電圧時間積分と角周波数 (2016/03/21) が挙がっていた。この記事を書きながら、もう一度磁束の意味を、その概念に自然現象としての物理的な論理性が有るかどうかと自身で確認した。それが電流と磁気と空間の哲学 (2020/02/24) である。

摩訶不思議(2020/02/20) 非常に不思議だという意味で魔訶が付く。解けそうもない永遠の謎に思えるのがマグネットの磁気エネルギーの保存原理だ。電気器具の電池が切れるような、マグネットのエネルギーが切れることに遭遇する経験がない。何故マグネットは幾ら力によってエネルギー消費の物理現象を辿ってもマグネットの機能がなくなることが無いのか。エネルギーの永久保存則など有るのだろうか。それは地球が自転・公転する原理が理解できないと同じ位不思議だ。

マグネット 

今回会場で頂いたマグネットの寸法と形状を示す。

「ハルバッハ配列」と言うマグネットの利用技術が有ることを教えて頂いた。リニアモーターカーの浮揚磁石として使われるとか?のお話であった。

そのマグネットを磁気力で、側面接合させたら、図のようにズレて接合した。このマグネットの磁極は赤丸のN極と青色のS極が図のような側面にある。図のように接合面がズレた珍しい向きになっている。図のように半分ずれた位置で安定する。その位置で安定する訳は何故か?マグネットの一つの現象の表れである。その意味をどう解釈するかが物理学の意味であろう。磁束や磁界の物理学概念でどう解釈するかである。このズレを無理に押し付けて平板型の一体マグネット構造にすると、下側のマグネット面が NSSSN の磁気の並びの磁場構造面となり、この下側面が「ハルバッハ配列磁場」となる。上面は NSNSN の磁気配列で、「ハルバッハ」とは無関係だ。「ハルバッハ配列磁場」は強烈な磁場面となる。何故そのような磁場となるのか?「磁束」概念で解釈できるのかを論じてみたい。それは電気磁気学の全貌に関わる内容になる筈だ。『静電界は磁界を伴う』の実験結果が示した『磁針・マグネット』の静電界中の磁界検出の意味の確認ともなるから。

マグネットが呈する現象は電気磁気学の神髄を秘めている。マグネットのことが理解できれば、それは電気磁気学の学理を習得したと見做してもよかろう。こう断言する訳をここで論じてみようというのである。それは『電荷』と同じく『磁荷』及び『磁束』も自然世界にはないという基本的立脚点に立っている事からの断言でもある。電気磁気学という科学技術に欠かせない科学論の根幹が、今こそその深い基本で検証されなければならないところにある。

磁気・磁束とは
マグネットの解釈では、必ず磁束や磁界が専門用語として使われる。磁気、磁束の関係した科学技術の代表は変圧器であろう。二つのコイルを鉄心と言う構造体に巻き付けると、その巻き数の比率に従って、二つのコイルの電圧が決まる。その電圧は鉄心内の磁束によって決まる。ファラディーの法則の式には励磁電流など一つもない。電圧と磁束の関係しかないのだ。励磁電流など流れなくても、理想の変圧器は立派に動作する。鉄心の物理的特性に依るのであり、励磁電流など不要なのだ。理科教育・物理学はもっと技術の意味を学習し、考えてほしい。旧い伝統踏襲の「考えない教育」から脱却してほしい。教える方も法則や基礎概念のその意味に疑問を抱く程深く認識し、自己問答をしてほしい。と『磁束』の概念が電圧時間積分によると言いながら、その『磁束』はこの自然世界にある訳ではなく、それも科学技術の一つの解釈概念でしかないと言わなければならない切ない論法になる。

磁力、その解説。
マグネット間には「磁気のクーロン力」と言う式で表される力があると解説される。式は磁束φでなく、存在しない磁荷+m 、-m[Wb] で表現されている。その理論式に論理性があるとは考えられないにも拘わらず、見過ごされている。実際にはマグネットの磁力の特徴、意味を図解では磁束φで表現される。そこには残念ながら、磁束で磁力を納得させる説得力は見当たらないからであろう。

上のマグネット接合の訳。それはマグネットがエネルギー流による現象だから。

図3.エネルギー流と反発力 図のような配置にマグネットを持ってくると、平板状に並ばず、図のようにズレる。それはマグネット間に力が働くからである。マグネットの不思議な磁力は磁極近傍の空間のエネルギー流の為せる業であるからだ。エネルギー流が接合面で、逆流によって反発の近接作用力となるからである。実験的な証明ができない解釈である。空間に実在する『エネルギー流』など計測できない物理量であるから。それは光と同じものである。

ハルバッハ配列の磁場 図3.のマグネットのズレを強く押して、平板状にすると磁極がNSSSNのハルバッハ配列面が得られる。裏面は磁極配列がNSNSNとなり、その面はハルバッハ配列ではない。その磁場の磁力は強くはない。

図4.ハルバッハ磁場 とても強力な磁場が発生する。その訳は何故か?(1)磁束描像 と(2)エネルギー流描像で表した。磁束描像では特に磁力が強くなる物理的意味が説明できない。磁力発生原理になる磁束量の式が無いから。

(2)エネルギー流描像 中心の広いS極面のエネルギー流が存在し、その側面配列のS磁極とのエネルギー流が強め合う方向に合流すると解釈できる。残念ながら、この解釈も空間エネルギー流を観測する実験的手法を筆者は知らない。表式化するだけの科学的根拠を示せない。

磁場の砂鉄模様

図5.砂鉄模様。磁場の様子は砂鉄では観測できる。マグネットの上に紙を載せ、そこに砂鉄を振りかけた。(1)はハルバッハ配列面の模様。(2)はその裏面の模様。

(1)ハルバッハ面。砂鉄模様からは特別磁場が強いという様子が見える訳ではない。ただ、全体が一つの磁極の磁場模様を呈していると見える。(2)ハルバッハの裏面模様。明らかに磁気N極とS極の間に断裂が有る。

図6.ハルバッハ配列砂鉄模様。もう一度砂鉄量を増やして、模様を取った。指で砂鉄表面を均した結果の模様である。この模様は磁極S面の大きな磁場模様で、周辺部に強い磁気が集中した広い磁場の様子を呈しているとみられる。単独の磁極の磁場ではこのような広い模様は得にくいと思う。

むすび。

側面に張り付けたマグネットの磁気エネルギー流も中心の磁場と同じ方向の流れとして、それを強める方向に流れる。図6.はその結果によって生まれた磁場模様と解釈する。それが「ハルバッハ配列」の磁気の強度をなす原因と解釈する。

 f = rot S/c [N/㎥] の磁気力の意味について。模様の外周部が広く一様であるので、磁気周辺部におけるエネルギー流の急峻な分布模様とは異なる。しかし、中心のS極周辺部ではゼロから急峻なエネルギー分布量に立ち上がっているとも観られることから、そこにおいて表式の意味が成り立つと解釈することは出来よう。

【附】ハルバッハ裏面砂鉄模様。

①の模様は砂鉄を撫でた結果のもので、砂鉄の分布が4列にハッキリと分かれている。中心の2列は磁極Nの幅の模様である。また、両端の2列は側面のSN磁極の幅に模様である。中心の磁場Nと隣の磁極Sの間は磁束表現で捉えれば、砂鉄模様に断裂が発生する理由はない筈で、ここにも磁束評価解釈の矛盾が表されていると考える。電磁界解釈の基本理論で、磁場はNS極間では磁束を通して強くつながる筈である。この付図のような磁極間に断裂は発生しない筈だ。どのように解釈すべきか付議したい。

参考記事。磁界・磁気概念の本質 (2010/11/16) 。から始まって、既に9年が過ぎた。新世界―科学の要ー (2015/03/05) に磁界とか電界とかの概念も一つの『エネルギー流』の下で理解したいとしてまとめた。

電流と磁気と空間の哲学

哲学とは(2020/02/23)。「明解 国語辞典 改訂版 金田一京助監修 (三省堂)昭和29年4月5日。これは高校1年生の時から、今でも大切に使っている大事な辞書だ。そこに哲学:あらゆる仮定を排して根本原理を扱う学。とある。

電流とは何か?『電荷』とは何か?電子とは何か?磁気とは何か?その空間事象は如何なるものと解釈すべきか?それは自然科学の最も根源的即ち哲学的課題だ。電気工学理論では自然の真相は説明できないのだ。電子は流れず (2019/06/06) 。

科学への不信。 最近こんな言葉が有るようだ。誠に我ながら情けない。初めは電気工学の勉学の役に立てればとの思いもあって、己の認識を確認しながら時を重ねてきた。日本物理学会に参画させていただき、日頃の思いも発表させて頂いた。しかし辿り着いてみたら、そこには初めの思いと異なる結果に次々と遭遇し、己自身を題材にして知らず知らずに「哲学」の深みにはまってしまったかも知れない。何か深く考究を積み重ねているうちに、科学への不信などと言う風潮を生み出すような結果になってしまったのかと申し訳ない思いもする。筆者本人が信じられない程、物理学理論の矛盾の多さに困惑している。それも電気回路現象の本質が見えた結果としての結末でもあった。実は今ある磁場の意味を考えて、新しい磁気現象・マグネット磁場の記事を書き始めた。しかしどうしても、電気磁気学理論の根本法則である「アンペアの法則」についてもう一度その根本原理の意味をかみ砕いで自身で整理しておこうと思った。科学への真の信頼を取り戻すためにも。

アンペアの法則と磁気の概念

図1.直線電流と磁界 アンペアの法則を直線電流 I[A] によって表現してみた。電流ベクトルを直交座標 r = xi+yj+zk  で表現する。単位ベクトルをそれぞれ ij および k とした。p 点の座標 r の方向単位ベクトルは r/r となる。無限長直線電流による電流周辺空間に磁場が生じる現象を数式によって評価する基本概念として、アンペアの法則を捉えて良かろう。実際の技術的認識には極めて理解しやすい表現の法則である。その現象の物理的意味を考えるとき、何故電流の位置から離れた空間に磁界が発生するのかと言う疑問が浮かぶ。なお、電流は少なくとも往復2本の電線で囲まれた空間回路でなければ、電流概念も成り立たないことを付け加えておく。実はまたこの電流と磁界のことを考えると昔を思い起こす。昭和61年春のこと、高専の電気科4年生の電気磁気学の授業中に、電流の磁界Hの空間磁場模様を rot H [A/㎡] = J の電流密度空間として計算例題に選んでいた。と記憶している。その時廊下の窓から黒板の板書内容を写真に撮って行かれた。それは中曽根臨教審の関係の出来事と後で理解した。

電流はアンペアで、電荷の時間微分の概念である。それはあくまでも『電荷』の流れが離れた空間点の『磁束』即ち磁束密度(μH[Wb/㎡])の発生原因となる意味である。「クーロン[C]」が「ウエーバー[Wb]」を発生することになる、基本的に「次元変換」の自然現象解釈となる。『電荷』が『磁束』の意味を内包しているとは定義されていない。『電荷』は、その存在空間に如何なる物理的空間像で表現されるのかと言う疑問に答えていない。それは空間に描く『磁束』の空間像と結び付く『電荷』概念像でなければならない筈だ。物理的な基本概念で、その理解し易い物理的空間像が明示されなければならない筈である。それが論理性を基礎にした科学論を展開する場合の基本姿勢でなければならない。離れた空間座標点に何故『電荷』の運動で、『磁束』が発生するのか?磁束密度B=μH[Wb/㎡] は電流が磁界を発生すれば、自動的にそれは磁束と解釈する。空間は透磁率μ[H/m]の場と捉えている。何故か?と疑問を抱くこと、その疑問を子供たちに伝えることが教育の姿勢であるべきだろう。そんなに自然のことが解っている事ばかりではない筈だ。殆ど分からないと考えるべきじゃなかろうか。

電子と磁気。 

図2.電子と磁気 いろいろの解説記事で磁束の発生に電子スピンと言う用語が現れる。磁束の発生原因に電子スピンを唱える方は、電子のスピンと言う現象をどの様な空間像で捉えておられるのか?電子がスピンすると何故磁気が生じるのか。電子は空間的にどのような像で捉えているのか?電子は『電荷』と『質量』を備えた基本粒子となっている。『電荷』がどのような速度 v[m/s] の運動をするとそれが『磁束』に変換されると言うのか。

マグネット磁気。

図3.マグネット。マグネットの機能は磁束で解釈される。磁束は磁力の機能を何故発揮できると考えるか。実際マグネットはとても強力な磁力を発揮する。

 

図4.磁束と磁力 F(φ)?

何故磁束が磁力の基になると考えるのか?磁気のクーロン力には磁束は関係していない。磁気のクーロン力に表現される変数の『磁荷』は存在しないことで一般に解釈されている。マグネットは近付けると磁力が増す。磁束が変化するのか?磁束が磁力の機能を発揮するとの解釈はどこにも示されていない。それなのに何故磁束が磁力の重要な基の如くに考えるのか。

磁力の原因は何か?

何故マグネットは磁気を保持したまま、その磁力が弱まらないのか?磁性材料の代表が鉄である。何故鉄が強磁性体の特性を持っているのか。周期律表で、傍の銅は磁気特性を持っていない。原子構造の違いは電子の配列で解釈する。そんな違いが鉄と銅で生れる訳を、周回電子が発揮する程の物理的役割を持っていると考えられるだろうか?図2.の(2)鉄の磁気とは?で示したのは、鉄の電子スピンが磁束発生源だというような解説が有る。マグネットの磁気は本当に電子スピンによると解釈できるのだろうか。磁束が発生しても、何故その磁束が磁力を生じると考えるのか。昨年の記事 物理学理論と磁束 (2019/04/22) に重ねて、電子スピンを唱える方が、その具象像を御提示をされることを願い、求めて取り上げた。

『エネルギー』はどこにある。

図5.エネルギー流と磁力

マグネットや磁針の磁極 N 、Sの近傍空間にはエネルギーが流れている。そのエネルギーの回転流の方向は図5.の磁極間のようになる。この空間のエネルギー流の流速がどの様であるかは検証できない。空間のエネルギーは光速度に近いと考えるしかない。電線路の伝送エネルギー流からの推測である。そのエネルギー流が磁極NとS間で接近すると近接作用力として、周辺部に高密度の急勾配分布をきたす。磁力 f = rot (S/c) [N/㎥]はギャップ空間の周辺部単位体積当たりの力密度の解釈である。電気学会 電磁界理論研究会資料「資料番号 EMT-87-106」(1982) p.152 の(29)式である。

むすび

二つのマグネット間の砂鉄模様を観測すれば、ギャップを狭くするにつれ、砂鉄はマグネットの外周辺に集中し、マグネット中心部には砂鉄は無くなる。マグネットの磁力は周辺部のエネルギー流分布勾配の空間微分によって決まると解釈する。 電気磁気学の要-Axial energy flow- (2019/03/03) がある。また、コンパスと砂鉄の心 (2015/12/03) で砂鉄模様からエネルギー流を調べる意味を述べた。

視界と光の科学(屈折)

はじめに(2020/02/11)
視界は人が見る光の世界である。すべての生き物はその命の保全を図るに周辺外界の安全を常に注意しなければならない。その感覚器官の中心に視界認識が有ろう。視界の意味を知るには光の物理現象を知る必要が有る。その上で更に、人や動物は水平二眼によって視界を構成認識しているという意味を考える必要が有ろう。そこには、上下と左右の視界構成の機能的意味の違いが有るように解釈する。それが次回の記事(視界論)になろう。その為の予備知識を整理しておきたい。

光の科学(物理特性) 光とは何か?と考えた時、思い浮かぶ現象・知識の基礎は次のようなもの(高校生の学習項目程度)になろう。しかしその解釈は物理学での教科書の内容とは同じくないかも知れない。あくまでも筆者の電気回路技術感覚を基にした『エネルギー』を基準にした解釈になる。光も空間エネルギーの振る舞いとして捉えたいから。科学実験で観測不可能な『エネルギー』であるところにその科学論としての認識の困難さが有ろうが。

①光は毎秒30万キロメートルもの超高速度で直進する。自然現象を理解することが大切である。光の速度を知ることで、さらに何故その速度なのかあるいは直進とはどの様な空間に対する意味なのかなどに疑問を抱くことが物理学の大切な視点と考える。それは哲学にもなろう。

②屈折現象が有る。空気と水、空気とガラス、空気と角膜などの境界面で、垂直でない角度で入射するとその媒体の特性によって屈折が起きる。それはその伝播空間媒体での光の速度が異なるからである。境界面に垂直で入射する光は屈折はしないが、入射媒体内で波長によっても速度は異なる。それが色収差あるいはプリズムの原因と考える。上のような意味が屈折現象の起きる原因の基と考える。

③望遠鏡、顕微鏡あるいはカメラなどはレンズの表面の曲率によって、主に空気との間の屈折現象を利用する光学機械・器具である。

④反射現象。光は鏡、放物面鏡あるいは水面などで反射する。木炭のような完全吸収体以外の物体はすべて反射体である。物が見えることはその対象が反射体であるからだ。確かに太陽光や焚火あるいはホタルの光は反射光ではない。それは質量のエネルギー変換(化学物質反応)光と見做してよかろう。それらの発光源からの光以外の視界に入る風景の万物はそれぞれの色彩と形を持っている。その景色の基になる光は同じ光でありながら、対象はそれぞれの色彩をもって反射光を放っている。

⑤電波と同じ特性である。パラボラアンテナでの反射現象は光と電波で全く同じである。

⑥光はエネルギーである。その現代物理学理論での表現は ε=hν [J]  である。プランク定数 h[Js] と振動数 ν[1/s =(Hz)]で評価した表現式である。しかし、光の実体は空間分布エネルギーの縦波と考える。光には教科書の解説のような振動などする物理的実体は何もないだろう。光のエネルギー量と振動数の概念を具体的に解説することが市民感覚と物理学理論との乖離をなくする大事な現代的課題と考える。

ここに挙げた6個ほどの認識について、そのような現象は何故起こるのだろうか?それらの現象の中で、今回は屈折について、その何故?について考えてみよう。

屈折とは?
屈折現象について物理学での解釈はホイヘンスの原理で成される。何故媒体が異なる境界面で屈折するのか。光の進行方向が曲がるのか?ホイヘンスの原理は良く分かり易い説明である。しかし、光の波長が違うとプリズムのように屈折角が何故違うのだろうか?ホイヘンスの原理で理解できるだろうか。波長が異なる光の違いをホイヘンスの原理でどのように捉えますか。波長とは何ですか?その辺の極めて日常的な生活感覚からの疑問が自然現象を理解するためにはとても大切な事と思う。物理学理論あるいは教科書での解説は、それは学術的な専門家集団の常識的統一解釈を取りまとめた共通認識論法である。決してそれが自然現象の本質を捉えた論理的な科学論であるとは限らないのだ。国家統一論と同じく、全体的な掌握手法としてとても有効ではあろう。自然現象を論理的に矛盾無く捉えようとすると、厳しい事象を乗り越えなければならない現実に突き当たる。屈折現象は光の物理学理論になるが、光の捉え方で、波動性と粒子性の統一し難い困難がその一つの例でもあろう。光が粒子でないことは分かると思うが?また波動性と言っても、どんな波動かと疑問が沸いて当然と思う。その波動性をすんなり現代物理学理論として理解するような能力を筆者は持っていない。学術論が理解できない劣等感は若い頃から抱いてきた。そんなことから今回も、素人的な感覚だけから、一つのレンズを取り上げて、その屈折現象を具体的な実験装置で考えてみたい。

屈折と媒体

こんな実験装置は時間を掛ければ手作りできそうである。特別予算を組むほどではない。透明プラスチック容器にレンズを取り付け、不透明版を張り付ければできそうだ。側面が透明であれば、半透明膜の写像は観測できよう。レンズを通した光はボックス内の焦点距離に像を結ぶ。半透明膜が焦点(写像距離)に在れば、像が写る。カメラはレンズの両面が空気だ。空気とレンズの境界面で「屈折」が起きる。その距離をXとする。次にボックスの中に水を満たして半透明膜を移動して写像距離を調べる。必ず長さXは長くなるはずだ。その距離Xは何で決まるかと言うと、レンズの表面の曲率半径とレンズとその接触媒体の物性(誘電率)によって決まる筈だ。当然レンズの光の入射面では反射も起きている。屈折で色収差(プリズム現象)も基本的にはある。また、水以外の透明なゼラチンなどではさらに距離Xは変わろう。レンズ表面の曲率と伝播媒体の特性差で距離は決まる筈だ。レンズ内部ではそれぞれの入射角によって方向が異なる直進光路を辿る。出口ではその媒体によって屈折角が違うため、Xが変る。Xが違っても鮮明な写像(媒体内でエネルギーが吸収されない限り)が映し出される。眼球内の硝子体のような媒体であれば透明であろう。媒体間の屈折の物理現象について、誰もが水中でゴーグルを外して水中視界を見ようとすれば、理屈抜きに感覚的に理解できよう。同じ目で空気中では見えても、水中では視界など歪ボケして見えないのだ。それでなくても元々人の角膜の曲率半径は小さく、小さな瞳からの僅かな光で視界を認識する。水中では角膜表面での屈折が弱く、水晶体の終端即ち硝子体管の入口に視界の像が結べないからだ。そんな意味も考える屈折の実験装置になればと提案した。

2016年にレンズに関する関連記事。

レンズと焦点距離 (2016/11/03) 。眼球の光路とカメラ機能 (2016/11/09) 。レンズの機能 (2016/11/27) 。

⑥の光はエネルギーである。その意味を 光とは何か?-光量子像- (2012/01/15) に述べた。