電気抵抗の物理特性

オームの法則は電圧と電流の関係を関連付ける役割が抵抗と言う係数の数値だ。電池(エネルギー)の不思議 (2019/11/13) でLampのエネルギー変換機能について取り上げたので、その意味に以下で挑戦してみた。しかし解答には至らなかった。

電圧=R×電流

R = 電圧÷電流

抵抗の物理特性を電圧と電流で解釈しようとしても、何も納得できることにはならない。

抵抗の特性

抵抗は電気回路からエネルギーを吸収して、そのエネルギーを熱・光に変換し空間に放射する。何故抵抗はそのようなエネルギー変換作用ができるのだろうか。その物理的原理は如何なる事か。電気抵抗とエネルギーの間に繰り広げられる現象を論ぜよ。等と自分に問答を投げ掛ける。

抵抗の内部構造とエネルギー変換機能

到来エネルギーに対する3つの仕分け。①受け入れずに反射する。②一旦受け入れて後一部を反射して戻す。残りは貯蔵して熱化する。③受け入れて吸収し、熱化貯蔵すると共に、貯蔵密度が限界を超えれば光放射する。一応この3つに分けて考えよう。

①の受け入れずに反射する場合があるだろうか?これは抵抗と言う機能から無いとしてよかろう。高周波伝送の分布定数回路で、負荷終端短絡や無負荷開放ではすべて到来エネルギーは反射される。それは抵抗零と無限大に相当する。エネルギー波長に対して比較できる数千キロメートルの電線路なら、商用周波でも負荷短絡が意味を持つ現象を呈するかもしれない。この①の場合は考慮から外す。

次の②が悩ましい場合である。抵抗内部に入射するには受け入れに内部静電容量の機能が必要と考える。その受け入れたエネルギー量を貯蔵するにはインダクタンス機能が必要と解釈する。そこに抵抗内部構造のエネルギー貯蔵・熱化機能が無ければならない筈だ。一部を反射するには、静電容量で受け入れたエネルギーをインダクタンスが受け入れなければ当然元に反射することになる。

ここに③の抵抗体の基本機能だけで捉えてよいかの疑問が残る。即ち受け入れたエネルギーすべてが貯蔵・熱化変換されて線路に戻されない。その時に、基本的なエネルギー反射現象が起きる。線路特性インピーダンスとの関係で定格系統電圧保持への電源制御がなされる筈だ。抵抗体に到来した線路伝播エネルギーの内、抵抗体入射エネルギー分は線路特性インピーダンスとの関係で抵抗体の静電容量構造値に依って決まり、残りが線路側への反射エネルギーとなると考えたい。抵抗体への入射エネルギーはすべて電線路へは反射されず、熱化と光放射へのエネルギー変換機能としての抵抗体の物理現象を呈する。

まとめ

抵抗体のエネルギー変換機能としての物理現象を考察したが、未だ明確な論理的解釈には辿り着けなかった。抵抗体の種類、構造などの特性に対する実験による考察が必要となる。少し高周波での定在波などの特性観察が必要だろう。エネルギーの動静を感覚的に捉えるにはやはり実験的取り組みが必要のようだ。何方かの挑戦に期待する。あくまでも「電荷」や「電子」での概念に縛られていては無理であることだけ注意しておく。

過去にも同じような事を述べていた。重複しますが。https://hokakebune.blog/2019/03/21/電気抵抗の物理/ やhttps://hokakebune.blog/2016/06/15/電気抵抗のエネルギー論/

 

コメントを残す

以下に詳細を記入するか、アイコンをクリックしてログインしてください。

WordPress.com ロゴ

WordPress.com アカウントを使ってコメントしています。 ログアウト /  変更 )

Facebook の写真

Facebook アカウントを使ってコメントしています。 ログアウト /  変更 )

%s と連携中

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください