はじめに
電気回路の要素に静電容量がある。それは電気回路の中に含まれるエネルギーの貯蔵要素の一つである。回路素子としてはコンデンサになる。静電容量という用語から、静電エネルギーと繋がりそれは「電荷」によって解釈される。しかし実際の電気回路の中の導線路の静電容量を求めるのは簡単ではない。
静電容量の算定式とその理論的根拠
静電容量の算定 Fig.1.のように、直径d[m] の導線2本が間隔D[m]で平行に張られた電線路の単位長さ当たりの静電容量C[F/m]を算定したい。さて、どのように算定式を求めるか。静電容量の定義は二枚の電極に挟まれた空間の形状で決まるとなっている。極版の面積Aとその間のギャップDと空間の誘電率ε[F/m]で算定される。しかし張られた導線路の導線の面積は計算できない。だから静電容量の定義に基づく理論的計算は本来できないのである。結局電荷分布を想定して、電圧と静電容量の関係から算定することになっている。その手法は参考文献 5.4 静電容量 p.103. 以降にその手法が述べられている。
算定とその論拠 図のFig.2. のように、半径r の導体a、 bが間隔Dで張られている。この電線路の単位長さ1[m]当たりの静電容量C[F/m]を算定する論拠は何か。文献には線路中点Oを電位零点と仮定して、導体aの中点Oに対する静電容量Ca[F/m]が算定されている。さて、この算定論拠はどのような意味か。導体aに電荷q[C/m]、同じくbにーq[C/m]の電荷を仮定。そこで、P点に生じる電界を算出。aによる電界Ea [V/m] 、bによる電界 Eb [V/m]とする。
Ea=q/(2πεoxa×1)=2q×9×10^-9^(1/xa) [V/m=(J/F)^1/2^/m]
となる。単位長さ1[m]の円筒状の表面積 2πxa×1[㎡] における電界強度として求まる。その電界は当然ベクトル量である。導体a 、bのそれぞれの電界ベクトルは図のようになる。電界ベクトルはその向きに電位が下がることを意味している。今導体aの導体中心に電荷を仮想する。もちろん本質的には「電荷」など実在しないのであるが、教科書の伝統理論に従って考える。しかし電荷に論拠を置いてもFig.2.の静電容量Caの算定式の論理性が見えない。この式は、導体aの表面rから導体bに向かって
電界ベクトル Ea=q/(2πεox)をrからDまで積分して得られる式
va=∫Eadx =2q×9×10^-9^ ln(D/r)
に等しい。故に、va=q/Ca より静電容量は
Ca=q/va=1/{2×9×10^9^ln(D/r)}
=0.02413×10^-9^/log(2D/d) [F/m]
となる。ただし、ln(2D/d)=2.306log(2D/d) 、d=2r である。
また導体bについてもその電荷 -q によってa、b間の電界Ebの積分によって、
Cb=0.0241310^-9^/log(2D/d) [F/m]
と同じ算定式となる。
この結果は、基本的なコンデンサの電極を導体aとbとした時の両電極の正、負電荷分布による電圧と静電容量の関係を表現している。しかし、参考文献の結果は導体間の中点Oに対する静電容量と算定されている。しかもその電線単導体当たりの中性点(アース)Oに対する値としての値が、実際の三相送電線路においてはその結果が適切な値となっているところが誠に不思議なことである。平行2線式電線路の場合も、図のFig.1.に示した通り線路静電容量Cは 算定式の値の半分で、C=Ca/2[F/m] とコンデンサの直列接続の値となって、実際の電線路の特性に合致するのである。
コンデンサと電荷。 電線路の静電容量もコンデンサもエネルギーの貯蔵機能要素である。その機能の理論的解釈になると、電荷が拠り所となり、電荷による電界強度が基になる。そこで改めて、コンデンサと電荷の関係を貯蔵エネルギーWc[J]によって Fig.3.に表した。コンデンサは電極版間の空間構造とその誘電体材料でその静電容量が決まる。電荷によって理論的解釈がなされるが、電極版間の寸法D[m]と電荷量q[C]と電界E[V/m]との関係で決まる。内部空間の電界はこの場合一様と考える。電界や電荷は貯蔵エネルギー量Wc[J]で解釈できる。電荷q= √(2CWc) [(FJ)^1/2^]を意味した概念と言える。このコンデンサの静電容量C[F]の算出に、電線路の静電容量算定手法のような中性点などは考えない。電線路の静電容量の算定手法はとても難しく、理解困難である意味をこの平板コンデンサを例に考えた。しかし、電線路の算定静電容量は電線路の1本当たりの値として実用的に優れた算定式であることも確かなことである。
むすび
この静電容量の算定に関わる理論で、導体周辺のエネルギー分布については全く考慮されない。電線路電圧がv[V]であれば、その分布エネルギーはw=Cv^2^[J/m]となる。その値は電線路周辺空間内の電界分布とは繋がらない。科学技術の応用においてはその概念は極めて有用・有効であるが、理論的に追及すると曖昧なことも多い。自然現象としての理学の問題と科学技術の手法との間には解明されなければならない基礎の問題が取り残されている。そこには『電荷』とは何か?『磁束』とは何か?『電流』とは何か?など科学技術用語の基礎概念の意義を問う哲学的論考が求められるはずだ。
参考文献:電気学会大学講座 送電工学(改訂版)第2編 送電 第5章 線路定数。