月別アーカイブ: 2019年8月

分布定数回路と実験

はじめに

遥か昔の報告記事がある。1964年(昭和39年、新潟地震6月と日本でのオリンピック10月があった年)から、工業高等学校での初めての担当科目が電子工学であった。電子工学を担当するように告げられていたので、大学を卒業するまでに、電子工学の基礎Ⅰ,Ⅱ W.G.ダウ 著 森田清他訳 (共立出版)を購入し、勉強して何とか間に合わせた。当時を思い出すと、真空管の空間電荷効果2分の3乗則について話したことを覚えている。まだ半導体の話は教科書ではそれほど扱われていなかったと思う。特に分かりにくい内容と思ったのが分布定数回路の現象であった。教えるにも自分がよく分からない。それで、回路を組んで分布定数回路実験を生徒実習に取り入れた。その内容を、「分布定数線路実習に対する一考察」として、新潟県工業教育紀要、第3号、昭和42年(1967)に投稿した。初めて書いた記事である。内容は実験データなどあまり他にはない資料で、貴重と思うので、ここに掲載させてもらう。今、直流回路のエネルギー伝送特性 を書いている中で、分布定数の話を載せる関係から、良い参考資料と思った。(2021/07/02)追記。この「分布定数線路実習に対する一考察」記事についてお世話になった。図は何方かに、わざわざ奇麗に書き換えて頂いた。初めて記事を書いたので、論文の書き方も知らず、御迷惑をお掛けし、お手数の労をお掛けした事に感謝申し上げたい。

この発振回路は、双3極管2B29を使った回路である。筆者の作れる回路でなく、ある事業所の払い下げ通信機を手に入れ、その心臓部である発振回路を使わせて頂いた。

 

 

 

 

発振回路の陽極部に、実験用分布定数回路を結合する部分を作った。図4.のように実習室の端から端まで平行分布定数線路を張った。

この分布定数の構造は屋内配線用の軟導線1.6mmΦを線間間隔52.2mmとして、特性インピーダンス500Ωとした。

 

 

 

定在波の電圧、電流測定装置を第5図及び第6図として示してある。新版 無線工学 Ⅰ(伝送編) 宇田新太郎著 (丸善) を全面的に参考にさせていただいた。測定原理はp.85.に示されてある。しかし具体的な実験に取り入れた回路方式についてはどの様な理解のもとで決めたかは今は覚えがない。

 

定在波測定内容と実験結果。色々の測定結果のデータが示してある。実際の実験結果であるから、その意味では貴重な資料となろう。

 

 

 

 

【Ⅶ】検討 実験結果に対する検討結果が記してある。専門的には幼稚なものかも知れないが、結構真剣に取り組んでいたと感心する。

 

 

 

 

 

検討の続き。

 

 

 

 

 

以上の6ページ。

むすび

実験では、発振周波数が160MHz程度であった。その中でとても興味ある経験をした。この分布定数線路に直管蛍光灯40Wを挿入した。蛍光灯の発光原理は水銀ガスの励起波長数千Åの筈である。160MHzで蛍光灯が発光するとは信じられない。「量子力学」とは何か?と疑問が浮かんだ。

昔、1980年割愛人事と言われて、長岡技術科学大学に転勤するつもりでいたが、その春4月辞令をいただいた時には辞令の「前職欄」が空欄であった。その意味が分かった時には、正規の職業に採用された事がなかった事なのか。大学には研究実績と研究能力がなければならず、筆者のような者はまだ未熟と解釈して我慢してきた。今も、新潟県から転勤した履歴はないか?どう解釈しても、1939年12月01日生まれた翌年舞鶴鎮守府への戸籍転籍とその後の戦後の1949年4月戸籍戦後隠蔽処理(原戸籍抹消糊付け改竄)が根本原因であろう?だから、私は偽物か などの事件となるか。

実生の水楢

水楢の生命力に驚嘆。

いつの事であったか、どんぐりの実を拾った。恐らく15年以上は前のことだ。小さな土鉢に植えた。高さ80cm程で、それ以上伸びない。

 

 

 

 

 

植木鉢にセミを置いた。この蝉もここで生れて飛び立った3匹の一つだ。不思議に思うが、蝉も生まれた場所に戻って死ぬように思う。

水楢の生命力について。この小さな鉢で、一度の植え替えもしない。鉢の大きさに合わせて、高さも幹の太さもそのままで葉を茂らせて、生き続ける。普通の盆栽なら数年で根腐れして枯れてしまう。

光エネルギーと速度と時空

光の速度は何故決まる?

光は空間のエネルギー分布密度波の縦波である。その速度が何故、秒速30万キロメートルなのか?それも『疑問』の宝物。空間には空間定数という真空透磁率と真空誘電率の二つが定義されている。

単位系・JHFM自然系 も光と空間定数の関係から導き出したものである。光速度 c[m/s] は

c=(μo εo)^-1/2^ [m/s]

と真空透磁率μo[H/m]と真空誘電率εo[F/m]の空間定数との関係で捉えられる。そこに時間の次元秒[s]とヘンリー[H]とファラッド[F]の関係が生まれる。[(HF)^1/2^] = [s] と関係付けられる。その訳が理解できた。

人はモノの速度を目で追うことで感覚的に理解する。それが視覚感覚の機能でもあるのだろう。同じ現象でも、1[m] を通過する時間何[s]という捉え方はしない。しない訳ではない。100mの競争で10秒切るかどうかが注目される。それでも1mの距離の通過時間を気にかけることは普段はない。

エネルギーの伝播実験 光速度を超える信号伝送手段はないから、伝送速度を計ることは困難なため無理ではあるが。(次の実験で、電源スイッチを投入した時刻を負荷端で瞬時に知ることは無理であるから。)

エネルギー伝播 電気回路のエネルギー伝播現象を考えてみよう。電気回路の伝送路は基本的にインダクタンスと静電容量の分布定数回路になっている。その様子を図に示した。実際には2本の電線が張ってあるだけで、外見的にはそこにインダクタンスやコンデンサがつながっている訳ではない。

(2021/12/08) 追記、修正。上の図と以下の記事について修正させて頂く。電線路定数はその空間構造で決まる。図のLおよびCはLaおよびCaと修正し、線路定数はL=2La C=Ca/2 とする。分布定数回路空間の世界 (2019/10/14) 等を参照ください。

図では単位長さ当たりL[H/m](一区間に上下二つのLが有るが、等価的には一つのLと考えてほしい)とC[F/m]の分布定数回路となっている。実験的にエネルギー伝送現象を確認するには、実際にある値の LやCを変化させた分布回路として、原理的には可能であろう。負荷終端には電線路の特性インピーダンスと等価な抵抗負荷とする。負荷で到来波のエネルギーを消費し、反射波を防ぐための条件である。電源は十分大きなエネルギー量を貯蔵したコンデンサとする。スイッチSをオンする。瞬時にエネルギーは伝送路に流れ込む。そのエネルギー波が負荷に到達する、その波形を電圧vで観測する。恐らくその波形は雷の衝撃波形に似たものになろう。負荷端のエネルギーは電圧vの2乗で波形を理解できる。その電源からのエネルギー伝送現象は回路定数を大きくすれば、エネルギー伝送時間は長くかかる。定数が小さければ伝送速度は速くなる。その意味は誰もが理解できよう。電線路の静電容量やインダクタンスが大きければ、エネルギーが静電容量に貯蔵される余裕が大きく、インダクタンスが大きければ、そこを通過するのを阻止する反発が強くなる。だから分布定数が大きい程エネルギーの伝送に長い時間がかかることになる。即ち回路定数によって、エネルギーの伝播速度、光エネルギーの速度が変化する訳である。この辺の現象は電力系統の管理技術者には当たり前の感覚的認識になっていることであろう。電気エネルギーはエネルギーの空間分布波としてみれば、光のエネルギー分布波と同じ訳で、光の真空空間の伝播速度即ち光速度がその空間定数で決まるのが当たり前と理解できよう。空間の長さ1m当たりの静電容量とインダクタンスがその空間を通過する光エネルギーの「時間」を規定する訳である。だから、JHFM自然単位系で、時間の秒[s]が空間定数の[√(HF)]になる訳である。ここには速度という見方と逆の、1mを通過する時間は幾らかという [s/m]の見方になっている。それも速度と意味は同じである。

エネルギー[J(ジュール)]とJHFM単位系

不思議の極み 空間定数の「真空透磁率」を誰が何時決めたかが分からない。μo=4π×10^-7^ [H/m] はあらゆる計量単位の基準として定められた筈だ。誠に不思議な数値である。4πは球の全立体角 ステラジアン [㏛]と解釈する。すべての実用計量単位MKSAがこの空間定数の真空透磁率μo[H/m] が基準になった事によって決まる。そこに選ばれた単位が電気回路のコイルが持つ電気的空間構造の特性機能の評価量を表す意味のインダクタンスの単位ヘンリー[H]である。この定数を決めた時点で、真空空間が持つ空間のエネルギーに対する誘導性という物理的定数だという認識の下で決めたのだろうか。空間が誘導性のインダクタンスの機能を備えていると認識して確定したのだろうか。この基準を決めたことに因って、空間にはもう一つの真空誘電率εoという定数が確定されたと考える。その単位もやはり電気回路の静電容量という機能要素の物理的評価量の単位ファラッド[F] で示される。それがεo[F/m] である。この意味もまことに不思議な単位である。決めた時点で、空間が電気回路の静電容量の次元を持っていると認識して決定したのだろうか。それなら誠にその確定については慧眼の至りと驚かざるを得ない。しかし、それらの空間定数が何処で、どのような機関又は人に決められたかが分からない。しかしその空間定数があった事のお陰で、現在幸運であったと確信して使っている、自然単位系JHFMを闇の中で、1990年春に見つけた。

その夏7月に何の説明もなしに、大学職員が大勢で我が家に御出でになられて、玄関で白紙に拇印を押させてお帰りになられた。後でそれは筆者に対する分限免職の承認と見做す捺印のようだった。その拇印も誠に不鮮明であったようで、後には他の機会の、たぶん庶務課での茶碗から採取の鮮明なものに変わっていたようだ。誠に国家公務員の人事行政の意味も知らない筆者の無知のために、多くの皆さまに御迷惑をお掛けし、それが原因で招いた当時の過ぎてしまいましたが、失礼をお詫びいたします。と言っても今でも全く理解不可のまま、無知の上塗りでぼーっと日々が過ぎ、流され続けております。

真空誘電率 εo=(1/36π)×10^-9^[F/m] とこれまた誠に気持ち良い数値である。そこに自然空間における光のエネルギーの伝播速度が決め手となっていることが、これまた自然の美を意識せざるを得ない。

光速度をc[m/s]とすれば、

c^2^μoεo=1

である。不思議は美しさでもあるのか。

逃げ水現象の解剖

逃げ水と言う現象があることを初めて知った。今年8月15日台風10号の影響で、フーン現象が発生した。県内の胎内地区で国内最高の猛暑となり、40.8°を記録したと新聞にあった。そこに逃げ水の写真が載っていた。アスファルトが高熱になったのが原因とある。筆者も考えてみた。こんなことがその現象の訳ではないかと一つの納得をした。

 

 

高温度により地表面に、水蒸気のような何かガス状の高エネルギー密度薄膜層を発生していることで、地表が水面鏡(図に疑似水面鏡とした)のような効果を生むためと解釈した。遠方のある角度の範囲の一部の写像が反転して、その水面鏡に映っているように見える現象。アスファルトのような熱を吸収しやすい場合に発生するのだろう。アスファルトが特別に高温に熱せられた結果、その表面の接触気体が異常なエネルギー密度を含んだ結果と考えた。

 

電圧・電流とエネルギーと時空

(2022/02/27)追記。電圧-その意味と正体-(2016/05/15) 。

(2020/4/27)追記。既に、電圧と電流の正体 (2013/5/16) 「(2021/07/13)追記。この記事は回路技術にこだわって居て物理現象としての意味に有効性が見えないのでリンクを外した。」 にその意味を捉えていた。

今、電気回路のエネルギー問答 を書き始めた。その途中で、一つまとめておきたいと思った。その問答の中の一つの答えでもある。物理学理論では、エネルギーは主役ではなく、何か端役あるいは誘導量という捉え方で理解されているように思う。しかし、電気技術から見た場合、電気回路現象を考えると回路内を伝播するのは光と同じエネルギーしか見えない。それでは電圧とか電流という電気量は何を表現したものかと、そこに戻ってしまう。また物理学理論では、あまり重要視されていない空間概念がある。それが誘電率と透磁率である。世界を支配している物理量の代表が光エネルギーであるとの認識に立った時、その光速度を規定する原因がその伝播する空間特性にあると考えざるを得ない。

光速度=(透磁率×誘電率)^-1/2^ =  1/√(με) [m/s]

ただし、μ[H/m] 、ε[F/m] から、[(HF)^1/2^]=[s] である。

空間の誘電率は空間長1m当たりの静電容量[F]、空間の透磁率は空間長1m当たりの誘導値(インダクタンス)[H] で、その空間を伝播する光エネルギーの空間共鳴現象としての伝播特性を呈すると解釈する。光を世界基準の物理量と見做した時、その伝播する空間の長さと時間を規定する「時空」概念として時間[s]と長さ[m]の時空基準を光エネルギーと速度が決めていると見做せる。この何もない空間が電気回路のインダクタンスやコンデンサの回路定数の単位ヘンリー[H] やファラッド[F] との関係で解釈できることの中には、そこに物理量『エネルギー』という空間伝播実体である光の『エネルギー』が空間分布として存在するからと理解する必要がある。光には振動する実体はないのだ。観測技術としての評価概念が振動数である。

上の解釈で電気量を解釈したとき、

電圧の2乗、電流の2乗と次元

その2乗値の単位はエネルギー[J] との関係で図のように認識できる。

次の問答の記事の答えともなるが、電線路には回路特性として単位長さ当たりの静電容量と誘導インダクタンスを備えている。その電線路単位長当たりの静電容量をε[F/m]とすれば、その電線路には1m当たり εv^2^[J/m] のエネルギーが線路空間に存在するとなる(係数1/2は省いた)。このように考えた元に、例えば電流を取り上げて考えた時、アンペアの単位が[C/s]と言う電荷の時間微分値であるということである。電線路の電荷の時間微分とはどんな意味か分かりますか。電流計で測る点で、その電線内の電荷がどんな意味と捉えるのですか。電流波形で描く時間軸のある時刻の電流値とはその電線の中に電荷が時間的にどのように存在し、変化していると考えたら、その電流の意味を納得して理解できるのか?その辺の電流概念への疑問から、どう考えても電流概念棄却の結論にならざるを得なかった過去がある。1987年8月に決断した研究会資料:電気学会、電磁界理論研究会資料 EMT-87-106 である。その5.むすび に・・・電磁気学の基本概念である電荷や電流までも疑い、棄却さえしなければならなくなってしまった。云々と記した。

次に電流 i^2^[J/H] は線路定数の誘導量インダクタンス[H]との関係で、流れるエネルギー量に関係した捉え方ができないかと考えたが、今のところ答えに到達していない。(2019/08/19)追記。電線路にはその単位長さ当たりのインダクタンスという流れを制限する回路要素がある。μ[H/m]の分布定数があるとすれば、電線路の単位長さ当たりμi^2^[J/m]の流れる伝送エネルギーが分布していると考えることはできる。同じく負荷のインダクタンスL[H]とは当然の関係で、Li^2^[J] の貯蔵エネルギーとなる(1/2は省く)。

負荷抵抗R[Ω]の次元も[(H/F)^1/2^]である。抵抗も空間特性は誘電容量と誘導容量の意味を持っているものと見做せる。この見方をとれば、i^2^Rの単位は

[J/H][(H/F)^2]=[J/(HF)^2]=[J/s]=[W]

という意味で納得できよう。

JHFM単位系 1990年(平成2年)春にまとめた単位系である。マイケルソン・モーレーの実験とマックスウエル電磁場方程式の関係から得られた。色々あって、1998年4月2日に初めて日本物理学会で発表させて頂いた。物理的概念とその次元 日本物理学会講演概要集 第53巻、1号、1分冊、p.13.  関係記事 エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18) 。

まとめ 電圧及び電流という電気量はその根底には深い知恵が潜んでいる。その科学技術量を理解するには、自然との間の深いつながりを紐解かなければならないだろう。その辺に考えるということの意味があるのだろう。単に法則や原理ということで、それを鵜呑みにしていては本当の自然の深い意味を知ることはできなかろう。電圧と電流もその2乗に意味があるのであって、その平方を電気量の概念として実用化しているのだった。電圧、電流はその測定器があるということとの関係で、如何に優れた量であるかということになる。しかし負の電荷の電子が電線の中を流れているという解釈は誤っている。

深山クワガタ

クワガタの来訪 

どこかで飼われていたのか、珍しい来訪者。暑さを避けてかコンクリートブロックに入る。胡瓜を与えて、翌日見たらいなくなっていた。

 

ところが昼過ぎにまた戻っていた。今度スイカを与えた。スイカが気に入ったらしく、口を刺して吸っていた。

 

 

 

 

 

蟻とスイカ  しばらくして様子を見たら、小さなアリが集まってクワガタにも群がり、振り払いながら辟易しているようだった。その後にはもう居なかった。アリはどこから来たのかスイカに群がっていた。アリには不思議な習性がある、スイカなどに土をかけて覆いつくしてしまう。土で覆うのは保存する意味と他のものから守り独占する意味かと思える。しかしナメクジは被った土を気にせず食する。