三相交流回路の電圧ー電気回路技術を越えて―

オームの法則や単相交流回路の学習を通して電気回路の基礎を理解する。その時電圧と電流という技術量の概念と意味に触れ、その指導内容に従順に従い理解に努める。はじめは伝統に慣れ親しむ事からその道の技術者としての自負を持つことに憧れて精進する。その技術者仲間ではそれで十分であろう。その学習の途上で、『電流』とは何かなどとは考えない。電子の逆の流れを電流と言うと説明されれば、それでその通りの解釈に従い、納得して進む。物理学が自然の真理を説き明かす科学理論の根幹を成して、その理論で『電流』とは何かとは問わないから、学習するに疑問を抱く訳にはいかないし、そんな余裕はない。電気回路解釈法は、結局電圧・電流という電気技術概念量の計測量に基づいて解釈する以外他に無いのだから。それだけ電圧・電流の計測技術が優れていると言えよう。しかし本当は電線の中を電子など流れてはいないのである。この事を理解し、認識するには深く電気回路現象に関わり、多くの経験と訓練を積むことに依って初めて分かることであろう。真の学習は覚え習得した知識を、その先で疑い、理解できないと疑問を抱くところから始まるものかも知れない。知識を超えて、捨てることで新しい領域の自分なりの学習が始るものであろう。そんなことで、一通り単相交流、三相交流回路について学習した方がもう一度学習内容の意味を確認する作業として考えて見てはどうかと思った。

『電圧』と極性 その辺を三相交流回路を通して考えてみたい。

図1瞬時ベクトルの極性 電圧、電流で回路現象を理解するに、その大きさだけでなく極性、その値がどの方向の値として捉えるかがベクトルとして解釈するには重要である。特に瞬時空間ベクトルに表現するには極性を決める必要がある。線間電圧が電線路電圧という場合の電圧であり、相電圧では言わない。三相交流回路には、線間電圧と相電圧がある。回路解析の理論では相電圧での取り扱いが一般的である。しかし、現場技術者の間では線間電圧での捉え方が普通である。電力系統の公称電圧として、その線間電圧が系統規模を認識する基準となっている。その電圧をベクトルとして捉える時、その極性を例えば図のように決めて考える。線間電圧の総和はゼロになる。しかしその極性の採り方に因ってゼロとは成らないことにもある。上の線路上に決めて表示したA相とC相間の線間電圧v_acの極性では代数和はゼロにならず、v_ca(= – v_ac )の極性でなければならない。なお図の方向・極性は二電力計法の方向性を考えて、C相基準にした極性である。さて線間電圧から相電圧ベクトルを算定するには、その線間電圧の瞬時値から算定した代数計算値に各相ベクトルの単位ベクトルn_a等を採ることで得られる。

線間電圧と瞬時空間ベクトル 瞬時電力理論による電力補償法等の実用に関しては十分研究されているだろう。しかし、瞬時空間ベクトルに因る回路解析法が新しい交流理論の手法として一般化されるだろうと思い、その基本的な意味を深めて見ようと考えた。一つの方法として、線間電圧を基準にした瞬時空間ベクトルがどのようになるかを検討した。その結果、従来の相電圧を基準にした三相ー二相変換の空間ベクトルe と位相関係は同じであった。

三相瞬時空間ベクトル  ベクトル円 三相交流電圧が平衡電圧の場合は相電圧の総和も、線間電圧の総和もゼロである。その時の電圧ベクトルは円周上を等速度で回転する回転ベクトルになる。線間電圧と相電圧のベクトル和v_s =v_ab+v_bc+v_cae_s =e_a+e_b+e_cの間の位相関係を示した。なお図の電流ベクトルiの位相φは負であることを理解願いたい。sin φ <0である。

電圧と位相(図2)の電圧瞬時値で、線間電圧v_ab=V_m sin ωt を基準電圧として、ωt=π/3 の位相の場合を取上げて、各電圧のベクトル関係を(図3)に示した。なおこの時、線間電圧v_ca=0である。(図2)の電圧の値を(図3)のベクトル円上にプロットすれば任意の時間における瞬時空間ベクトルが決まることが確認出来よう。三相電力系統の瞬時空間ベクトル解析の解釈の基本はこのベクトルを描く事から始まる。電圧基準を相電圧にするか、線間電圧にするかは自由である。結果はベクトルの総和は同じ位相の位置に得られることが分かった。

瞬時空間ベクトルのベクトルの意味 ベクトル円上におけるベクトルの意味には少し数学的なベクトル解析と異なる点がある。(図1)の電線路に表示した相電圧、線間電圧のベクトルの極性から勘違いしないように注意したい。

ベクトル相互間の関係 線間電圧と相電圧の間のベクトル関係についての留意すべき事。線間電圧ベクトルv_ab=(e_a-e_b)n_a であって、相電圧ベクトルの差e_ae_b ではない。

電圧は保有エネルギー技術評価量 電圧という電気技術評価量は結局電線路空間に保有されたエネルギー量の規模を認識する概念であると言える。その電圧は実に優れた技術概念であり、その電圧に因る回路現象を解析するにベクトル円が有効であろうと考えて、少しその瞬時空間ベクトルの意味を掘り下げて見た。

電圧は保有エネルギー技術評価量 電線路が無負荷の状態で考えて見る。電圧を印加すれば、電線路全体は静電容量の回路と等価と看做されよう。コンデンサ内に貯蔵されるエネルギーの電源周期に因る周期的変動の負荷回路である。電線路全体の線路間の総容量をC[F]とした時の貯蔵エネルギー量を示した。

『問題』 瞬時空間ベクトル図に関する簡単な問題を考えてみよう。

極端な例題かもしれない。発電所の同期発電機はStar結線である。Δ結線にすると、巻線間の僅かな電圧差で、内部循環電流が大きな過熱原因となるからであろう。そこで、Star結線のA相だけ電機子巻線を不平衡にした場合の例でベクトル円上の電圧ベクトルがどのような軌跡を描くかという問題である。当然一般の相電圧間の条件、e_a+e_b+e_c=0は成り立たないことになる。しかし線間電圧の総代数和はこの場合もゼロである。

まとめ 電気回路を考える時、電圧と電流がその回路解析の基礎概念である。しかし科学技術として確立した電力供給エネルギー機能設備も、その深い奥では自然現象の眞髄が根底にあることを理解すべきであろう。電圧という技術概念の意味を探れば、それも『エネルギー』の一つの人間の評価解釈量であると言う意味が観えてこよう。そのような深い自然の意味を考えるのが理科教育の目標ではなかろうか。

 

コメントを残す

以下に詳細を記入するか、アイコンをクリックしてログインしてください。

WordPress.com ロゴ

WordPress.com アカウントを使ってコメントしています。 ログアウト /  変更 )

Facebook の写真

Facebook アカウントを使ってコメントしています。 ログアウト /  変更 )

%s と連携中

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください