月別アーカイブ: 2015年10月

電流計は電圧計だ

電流計は電圧計だと言えば、電圧計は電流計だと言うことになる。電圧計の意味は電気の眞相(3)-電圧と負荷ーで電圧計と内部回路に示した。電流や電圧はすべて空間に存在するエネルギーとその伝送現象を科学技術概念として規定した計測量である。エネルギーの発生と消費を科学技術の現代社会基盤に据えてその利用形態概念として確立して来た。電圧計も電流計も直流なら可動コイル型、交流なら可動コイル型にダイオードを組み合わせた整流器型あるいは可動鉄片型が汎用計器として使われている。それらの計器の測定技術は計器内のコイルの貯蔵エネルギーに依る磁気的力を利用している。

可動コイル型可動コイル型 電圧計も電流計も磁石の間のコイルに電流を流してフレミングの力を利用している。図の磁気の極性は内側と考えてください。コイル電流と言いますが、実際はコイルの周りの空間に貯蔵されるエネルギーの回転流だ。その様子を図示すれば、

可動コイル型電圧計とエネルギー流コイルエネルギー流と磁石エネルギー流間の近接作用力 電圧の説明の図であるが電流と同じ作用。そこで標題で電流計は電圧計だと言った意味を説明したい。

写真097負荷と電流計 可動コイル型計器で考える為直流電源とする。線路に多くの負荷が接続された中で、その回路の電流を知りたいところに電流計を繋ぐ。その接続した電流計は何を計測するのかと言うことを知らなければならない。その為には電流計の内部回路を理解しなければならない。電流計もその測定したい回路電流の流れる電線路に直列に接続する。或る物を計測するには、その現象の中の一部のエネルギーを取り込まなければ、計測することは出来ない。電流計が幾ら内部抵抗が無視出来るほどであるとしても、負荷に対して直列に電流計自身が負荷として加味されるのである。電流計の内部回路とその計測機能を考えて見よう。

写真099内部回路と電圧 一つの電流計Aが負荷Pの電流を計る為に接続されている。内部回路は抵抗とコイルの並列回路である。磁石内の可動コイルは微弱電流しか流せない。そこで、負荷電流ipの殆どを流す為の並列抵抗(抵抗値ほとんど零のシャント抵抗) r を組み込む。その抵抗の値を切り替えて、電流の測定範囲(レンジ)を変更する。それでも回路には負荷に直列に抵抗が繋がる。だから、電流計はその微弱抵抗に掛かる電圧を計測のエネルギー源としているのだ。さて、可動コイルLは細い電線のコイルであるから、必ず抵抗 r’ を含む。コイルは直流電圧に対して、電圧を受け付ける事は出来ないから、必ず抵抗が含まれなければならない。電流計に掛かる電圧値Vi は結局並列抵抗(r,r’)の合成抵抗として負荷電圧を取り込む。結局可動コイルには、直流電圧の積分値としての過渡現象分のエネルギーが貯蔵される訳である。それは、前に電気回路要素Lの機能とエネルギー感覚で述べた事である。コイルのエネルギーはコイル空間内に貯蔵されるのであって、決して電流がそのエネルギーを保持するのではない。貯蔵されるのはコイル空間内のエネルギー流である。電流計、電圧計の計測機能は磁石の磁極空間内に生じる磁場と言うエネルギー回転流と可動コイルのコイル内エネルギー流との相互近接作用によって、空間エネルギー力がコイルを制動バネとの釣り合いまで回転させるのである。電流計が指示する測定値 ip は

ip=K(2Wi/L)^(1/2)^

ただし、K=1+(r’/r) の分流定数で可動コイル内の貯蔵エネルギーWi[J]を計測値の基としているのである。全体の電流計の電圧も図のようになる訳だ。

まとめ この記事に電流計の機能をまとめようと考えた理由と意味を述べよう。2年前の2013年6月に、回路とエーネルギー流電流解剖論ーを書いた。その時は直流回路で、負荷供給エネルギーの流れが負側導線からの還流として捉えていた。しかし電圧の系統規模を決める線路間エネルギー分布の意味と統一的に捉えてはいなかった。その時は電圧と電流の二つのエネルギーの流れの曖昧な解釈に留まっていた。今年6月2日の変圧器の奇想天外診断から8月14日の 天晴れ(コイルと電圧とエネルギー) までの考究で確信を得た。それは線路間に分布する空間エネルギーが電圧と言う系統規模を決め、それが負荷供給のエネルギーとなるとの確信に到達した。今回それらの総合的取りまとめとして、直流電源の線路のプラス側であろうと、マイナス側であろうとどちら側に電流計を接続するかには無関係に電流計測が出来ると言うエネルギー流からの疑問解消の解答を得た。その意味を今回の記事として直流電源回路を取上げて解説した。

衛星放送の電磁波方程式を解剖する

1864年マックスウエル電磁場方程式が世に現れた。ファラディの電磁誘導の発見から30年程経った。1887年、ヘルツの実験(感応コイル間での火花放電信号の空間伝播)で証明されたのが、ヘルツは無線通信の可能性を否定していたという#文献#。イタリアのマルコーニが1896年3kmのモールス信号による無線送受信に成功。無線通信は海軍の軍事利用や、1912年タイタニック号沈没事件で、無線通信の義務化などの話が#参考文献に面白い#。

1930年半ば過ぎには、アメリカ全土にラジオ商業放送が行き渡ったと。テレビ放送から、衛星放送更には携帯通信器、IT通信と現代生活に電波通信は必須の科学技術となっている。その通信技術の理論的原理はマックスウエル電磁場方程式をその根拠にしている。学校教育ではその方程式が電波信号伝播の欠かせない知識として教えられている。結構難しい偏微分の数学的素養を要求されることになる。本当にその方程式しか電磁波の伝播現象を理解する方法が無いのだろうか。

マックスウエル電磁場方程式の意義 今まで、長い科学技術の理論的根幹として、歴史の中で学校教育を通して世界の模範であった。しかし、もうそんな難しい微分式を使わなくても、光の縦波の伝播現象と同じ見方で理解できる筈である。星の姿を捉えるのに、電界や磁界など全く関係ないのである。星の光は、何も星が放射信号を制御して放射している訳ではない。ただ光の量を歪みなく反射望遠鏡(パラボラ球面鏡か放物面鏡かは知らない)で多く取り入れるだけで鮮明な星の姿が見えるのだ。それは光がただエネルギーの縦波でしかないからである。光と電磁波は同じエネルギーの縦波でしかないのだ。

衛星放送電磁波衛星放送電波 衛星放送を例に、その電波送受信機能を電磁場伝播方程式の電気的概念でどのように理解できるかを考えて見よう。衛星放送の特徴はその電波送受信方式の基本にパラボラアンテナを使う事である。パラボラアンテナは反射望遠鏡の反射面と同じ放物線の曲線から成り立つ球面に成っている。その様子を図で上に描いてみた。衛星も電磁波の送受信にはパラボラアンテナが使われる。勿論衛星放送の受信にはみんなパラボラアンテナが必要である。

放射電磁波 衛星からの放射電磁波はパラボラアンテナの中心軸に対称な球面波として放出される。その電磁波の有る立体角の波面を受信パラボラアンテナで捉える。その僅かな球面波の部分で、もしマックスウエル電磁場方程式を考察対象として取り上げるとすれば、その面で変位電流、電界および磁界の空間ベクトルを決めなければならない。元々衛星からの電磁波の電界、磁界のベクトルを決めなければ、受信面の電磁波の電磁界ベクトルを決める訳にはいかない。衛星からの放射電磁波は先に言ったように、軸対称の球面波である。放射源からの立体角内ならどこからも同じ電磁波を受信できる。従って、電界、磁界および変位電流のベクトルが軸対称に描けなければならない筈だ。衛星のパラボラアンテナから放射された電磁波の球面に、その電磁波の変位電流、電界および磁界を描けるだろうか。中心軸上の電磁波が一番強い筈だ。中心は軸に対称に電磁界は分布している。その最も強い中心軸の変位電流が描ければ、マックスウエルの方程式の有用性も理解できる。電界、磁界の模様が空間に描けないと私は理解できないのである。難しい数式よりも、目の前に空間を仮想して、そこに電磁界などの様子を描く事から始めて、それを数式に表現する手順を踏むのが日頃の思考方法である。だから抽象的な数式表現は能力不足で、不可能なのである。

電磁波の形 放射された電磁波は要するに縦波のエネルギー密度波でしかないのだ。そのエネルギー密度は軸対称の電球の配光曲線の球面の分布面と同じでしかない。ただデジタル信号波によるエネルギー波の縦波である。だからどこで受信しようとそのエネルギーを捉えれば同じ放送が見られる。何も電界,磁界など理論は要らないのだ。エネルギーの強さだけである。放送技術はその中に想像もできない技術革新の積み重ねによって可能になっている事は忘れてはいけない。その恩恵を受ける事に依って、現在の生活が成り立っているのだ。技術への感謝と、マックスウエル電磁場方程式の意義は全く違うのである。光のエネルギーの縦波伝播を理解すればそれで十分である。空間エネルギー波は数式に表現できないから、理論式化としては難しいかも知れない。空間分布波形は厳密には、正弦波形とは異なるだろうから。

#文献#電気の技術史 オーム社(山崎俊雄、木本忠昭共著)。

アンペアの法則を解剖する

(2020/06/10) 追記。現在思う。いくら電流の物理的意味を考察しても、それは技術概念としての価値の論議にしかならない。電線の導体金属内には何も流れていないのだから。関連記事として、Friction heat and Compass (2020/03/22) ,The electron did not exist in the world.(2020/05/15) および電気エネルギーの測定法(電流と電力) (2020/05/03) 。

もう一度初めの原点を見直そうと思った。今から30年前、昭和60年に初めて電気磁気学を教える羽目に成った。div,rot,grad等の微分計算も計算した経験が無いのに突然のことだ。考えれば、偏微分も3次元空間の中での微分計算だから、計算してみれば難しい事ではないのだった。おそらくその授業の中で、アンペアの法則の意味に何か疑問を抱いたのだと思う。学生にそんな事を言う訳にはいかないから、自分の中で疑問を膨らましたと思う。元々、ファラディの法則の教科書の解釈に矛盾を抱いていたから、アンペアの法則も疑問を持って当然なのかもしれないとの認識にはあっただろう。ファラディの法則で、励磁電流で磁束を解釈すること自体がおかしな論理だから。所謂パワーエレクトロニクスの電気技術論では、ファラディの法則は微分形式を積分形式に変換して、磁束は電圧時間積分で決まるという観方で解釈するのが常識であった。そんなところにも人間の思考の面白さ(教科書的常識の滑稽さ)が隠されているようだ。

電流と磁束と人間思考性。 常識の滑稽さの意味を説明すれば、数学では微分と積分は表裏一体の関係に在る事は誰でも知っている。ファラディの法則は磁束の時間微分で示される。それなら磁束は積分形式に書き直せば、励磁電流などが式の中に出て来る訳が無いにも拘らず、アンペアの法則で、磁束は電流によって発生するとの解釈が法則化されているから、その原則・常識から抜け出せない人間の思考性により、磁束が電圧の時間積分で決まるという意識には成り難いのだろうと思う。それが人間の思考形態の滑稽さと看做せよう。アンペアの法則がファラディの法則より10年程先に提起されている。古いほうが新しいものより強く保守的に残る傾向なのかもしれない。その辺の科学に潜む保守性が科学理論の特殊性かもしれない。これから議題のアンペアの法則を解剖する訳であるが、その電流と磁束と電圧の関係について、前以って意識して置いて頂く為の準備として触れた。

電流の遠隔作用電流の遠隔作用? 法則は空間ベクトルの意味を持って表現される。電流と考察点までの距離とその点の磁界の強度の3つは空間ベクトルの意味を持つ。共に他に対して直交したベクトル方向を意味する。それぞれのベクトルの方向を示す単位ベクトルn_in_rおよびn_h=[n_i×n_r](ベクトル積)使って示した。

直線状電流の意味と周辺空間。 アンペアの法則は電流周りの磁界に意味がある。直線状電流の矛盾を指摘したい。img278

電流の周辺。

電流の役割とその周辺空間。電流は一本の直線導体には流れ得ない。電流とは往復導線で初めて意味をなす。電流をベクトル計算で解釈するとき、その電流の周りの磁界で解釈するのが一般的である。その電流 i(t) を取り上げて、図に基いて考えてみよう。この電流による磁界 H(r,t) は実際には意味が無い筈である。しかし、殆どこの図の解釈で説明する。ここに、アンペアの法則の捉え方に誤りがあると気付いた。

アンペアの法則の原型は上の図の q点において、電流 i'(t) が受ける力を電流 i(t) による磁力と考えた事ではなかろうか。(ここまでは前のファイル①の文章である。)(2020/07/09)追記。結局電流は往復二本の電線で囲まれた空間でしか、その技術概念『電流』は意味が無いのであり、一本の導線を流れるとものと言う認識は論理的に矛盾である。

磁界と偏微分。

(ファイル②の書き換え。)ところが、アンペアの法則の解釈は無限長導線の電流 i(t)に対して論じられ、その周りの磁界 H(r,t) が電流に対する垂直平面上の距離 r  だけによって決まるという事になっている。その磁界ベクトル H(r,t) は

と表される。ただし、p 点座標ベクトル rr=xi+yj  である。

さて、上の図が何故使われるかと言うと、マックスウエルの電磁場方程式の解釈からの要請とみる。電磁波伝播方向に対する直交の変位電流を磁界の発生源として捉えた。

その磁界に対する偏微分がその p点の電流密度 J(t)k で、

として関係付ける為であろう。

このようなアンペアの法則を、一本の直線状の導線で解釈する事は電流の概念と相容れない解釈である。

(ファイル③の書き換え。) (参考) 磁界はベクトル成分に分解すると、

この回転の偏微分計算は

 

で、周辺空間の電流密度は0となる。

なお、電流 i(t) が交流のような場合でも、空間的な広がりには時間的遅延の意味は表現されていない。電流と磁界の関係は、瞬時的無限遠への光速度を超えた遠隔作用の式である。

遠隔作用の矛盾。 電流の時間的変化が有っても、法則ではその伝達に無限遠まで時間は不要だ。この関係が次につながる。

電流が流れるという意味は? 水は一本の管の中を流せる。電流は一本の電線の中は流せない。必ず往復の電線が必要である。一本の電線に電子を流し込んで、負荷まで届けられ、その電子の質量と電荷をエネルギーとして消費できれば有り難い。しかし残念ながらそれは無理な話である。空から空間を伝播させる高密度電磁エネルギー伝送の話があるが、それは電線が無く、光の高密度エネルギーと同じものであろう。電流概念には往復導線が必要である。その電流はエネルギー源と負荷との間の進行方向で定義される。電磁波がマックスウエルの方程式で、アンペアの電流・ファラディの磁界法則を統合し、更に「変位電流」を加えてようやく磁界発生原因を方程式に纏めた。やはり『電流』が電気現象の基本に据えられ、磁界発生の原因とした方程式である。しかし、その電流はエネルギー伝播方向に対して横方法に流れるベクトルである。電気回路の電流方向とは90度異なる概念である。この事は電流とエネルギー伝送方向とに関して相当意味が異なるようである。その点は別の機会に論じよう。ここではその変位電流について考えて見よう。電流と磁界の時間的関係は原因と結果の因果律の基で論じられるが、その時間的関係は同時性か遅延を伴うかをどう理解するべきかは判別しかねる。因果律には「同時性」はあり得ず、原因が時間的に早くなければならないと思う。『変位電流』について、その電流の意味は誘電体内の電荷移動で解釈されるようだ。真空内には電荷を定義できる対象物はない筈だ。その時も変位するのは電荷(電子質量の付帯概念電荷と言うようだ)だけではなかろうから電子の質量も伴う筈だ。質量は時間微分するのに不要だから電荷だけで良いのだが、質量を伴うとなると真空内のその存在を納得できない。その質量不要は電線内でも同じことだ。電子の質量は邪魔だ。話を遠隔作用の論に戻す。アンペアの法則は瞬時性で光速度を超えた概念と認識する。それは電気力線の描像でも同じ事であろう。一本の電気力線も空間的に光速度を超える意味だ。その横波電気量(電束、磁束)の描像の発生の起点から終点の時間的関係は、瞬時に広がった閉ループとして描かないと電磁波の縦方向への光速度伝播を説明できない。横に広がる瞬時の描像は論理に矛盾する。光速度を超える瞬時現象は認められない。

磁界・磁束の意味は? 磁界とか磁束と言う用語は今はある程度電気に関心がある人はみんな馴染みの有る言葉だ。精々200年ほど前に、電磁誘導と言う電気現象の存在が分かって、電気技術の根幹を支える概念となるまで歴史を重ね、現在の常識の電気用語となった。人間は偉いと思う。その概念を自然現象の中から有用な科学技術の基礎知識にまで高めて来たのだから。しかし、自然世界にはそんなものはないのである。人間が造り出した技術用語であり、概念である。人間が偉いというのは、たった一つのエネルギーを利用するための解釈法として、実に巧妙に利用し易く、考えやすく分析して、科学技術として育て上げて来たという意味での偉さである。その分析思考能力においては、西洋文明の特徴として称えるべき事であろう。そこには東洋哲学的方向性とは異なる思考形式があると観たい。磁界・磁気概念の本質にエネルギーとの関係の意味を示した。

磁束と電圧の関係。 初めにファラディの法則の電圧時間積分の関係で、磁束を理解するべきだと触れた。電流で磁束が出来るというのも感覚的には違和感を持つが、電圧を掛けてその時間との積分で磁束が出来るというのもやはり同じく違和感を持つ。電圧もエネルギーの一面的評価量である事を知れば、その時間積分が磁束量と言う評価量になるとの解釈は納得できる。同じエネルギーに対する科学技術量としての観方であるから。コイルの中の近傍空間にエネルギーが局所的に蓄積されるのであるから。

電流も電圧もエネルギー空間分布に照らして。 自然世界の包容力は何とその不思議の世界観を楽しませてくれるありがたさに在るとも思う。自然界の真理はこれほど基本が単純であるのかと驚嘆する到達点に在るのかもしれない。新世界ー科学の要ーで、科学技術概念の根源を問う『静電界は磁界を伴う』の意味を解いて、偶然の思い付きからその延長としての天晴れ(コイルと電圧とエネルギー)に到達した。

結び。 アンペアの法則の意味を少し分析的に解剖して、考えを述べた。自然世界の単純性と人間の思考の複雑性の対比として、科学技術概念の意味を電流とその法則を例に考えた。未来の科学技術教育の重要性と共に、理科教育の課題も示したかった。

(研究の余禄)。 『電流は流れず』の持つ意義はとても大きい。太陽光発電設備で、送電線が盗難にあった。電圧が低いから、高電流密度での計算から特に電線断面積は太く要求される。高価な電気銅はその設備管理にも影響が大きかろう。電流は、その本質が電線内などに流れているものでない事を理解すれば、電線は太さだけで中空電線で十分なのだ。その経済効果は技術革新に大きく貢献する筈だ。この特許権者は?

(*)電気の技術史 山崎俊雄、木本忠昭 共著(オーム社) p.31

コンデンサ型配線のエネルギー伝送

また技術的価値の無い事を考える。科学技術はその利用価値によって評価され、新しい生活の豊かさを獲得して来た。何故か考える事がその思考方向と逆の事にばかり向くようで、実に不甲斐ない。これが梲(ウダツ)が上がらないという事なのかも知れない。その点エジソンは偉かったと。
時代が進み、経済競争の激化の中で、研究も短期的な効率が求められる傾向が強まっている。何十年の先行きの見えない、失敗も許される余裕の有る研究は時代の中に消えてしまった。

コンデンサ型配電線路 電気エネルギーが電線路近傍空間を通して伝送されるという意味を理解するのに抵抗を感じるかも知れない。電気理論は電圧と電流で解釈される訳であったから、導線内を電子が通ると解釈する論理が常識となっているから。電線路間の空間をエネルギーが伝送されるとなれば、物理的な論理に電流は不要となる筈だ。その意味を電線でなく平行板のコンデンサでエネルギー伝送路を構成したら、理解の助けに成るかと考えた。

コンデンサ型配線コンデンサ型配線

電気回路で、コンデンサの機能は2枚の金属板間の空間にエネルギーを貯蔵する働きであろう。空間を誘電率の高い絶縁材料で満たすことで、その機能を高める。そのコンデンサを電源から負荷端まで、引き延ばして配電線を構成したら、その電線路はどんな機能の電線路と解釈すれば良いだろうか。それが思い付いた電気回路の問答である。上の図の回路は全く科学技術としては役立たない事この上ないものであろう。自然現象解析論の為の思考回路である。経済的利益を求める現代科学研究の社会的意識とは、真逆の思考実験回路である。目的は人間の思考の意味を問う問答と言えるかもしれない。上の図の回路を見て、電気エネルギー伝送の意味をどのように考えますか?これが電気の眞相(3)-電圧と負荷ーの追加説明でもある。