電気回路を学ぶ時の最初に学習する法則が『オームの法則』であろう。今まで様々な観点から、電気磁気学を論じて来た。ここで、最も基本の法則について考えて見ようと思う。ただ、『オームの法則』の教科書的解説をするつもりはない。大学受験や、電気回路の教室授業の参考には成らないであろうことをお断りしておく。簡単な基本ほどその奥に隠れた意味は深い事を伝えたいのである。出来たら大学の電気磁気学を教えている方々にも見て頂いて、批判をして欲しいのである。
最初に先ず『オームの法則』とはどんな事かを述べたい。
実際に、どれ程の解釈で論じられるかは、自分の能力の無さから先行き不透明なままである。①のファイルの意味で、抵抗に係る電圧と電流の関係が瞬時値で成り立つと考えている。その関係は、直流回路も交流回路も成り立つ。例えば、抵抗にコイルが繋がれている回路を採り上げよう。

直流回路で、電源電圧Eが少しでも変化すれば、電流が変動するから、コイルの電圧elも0ではなくなる。しかし抵抗の電圧erはどんなに電流 i が変動しても、抵抗の電圧は電流の瞬時値に対して、er=R×i が常に成立する。交流回路の場合も、抵抗の電圧値er は電流瞬時値 i のR倍になる。抵抗の回路要素としての意味は電圧と電流に対して、極めて単純な式が成り立つ事を示している。コイルなどの場合は、インダクタンスLがエネルギーの処理に時間的遅れを伴う為、実に面倒な式の取り扱いの計算が必要になる。(一言お断りしておかなければならない事がある。電流、電圧の概念を明確に出来ずに使用している点である。電流は流れずと論じている事に対する責任を感じて。)(2019/05/12)追記。当時は未だ、電線路内空間の電気エネルギーの分布について今ほど明確ではなかった。技術概念『電流』とその測定などのようにエネルギー流として解釈できるようになった。
瞬時値と言う事に関して、一般的な電気回路でのオームの法則をもう一つ挙げておこう。
どんな回路でも、抵抗に流れる電流が決まれば、a のようにその電圧は必ず電流に比例する。もう一つb のように、電力pも電流瞬時値で決まることになる。しかし、この電力pに関しては、エネルギーの時間的消費率ワット[W]で、電流概念(i=dq/dt[C/s] の電荷qの時間tに対する変化率の意味において)とエネルギー量との関係から、自分は理解できていない面がある。
何が光に 抵抗の意味を考える時、身近な電気器具の電灯が目に入る。エジソンが発明した白熱電球である。最近は「LED」にとって代わられそうで、さびしい思いもする。蒸気機関車の力強さ、竿秤のてこの原理あるいはLPレコード、真空管ラジオなど見て分かる科学技術が懐かしい。携帯電話、IT情報網などの最先端技術は感覚的理解との不協和の世界に彷徨うような思いだ。日常の科学技術が学校教育で教えるべき目標の筈だ。科学技術と人間の感覚との乖離が学校教育の目的・目標をも失う時代になっている。こんな時代に、白熱電球を取り上げる意味も無かろうと言われそうだ。しかし、白熱電球の物理的意味さえ、その本質を理解できていない事実を明らかにしたい。単純な科学技術だからこそ、そこに隠れた自然科学としての真理を説き明かせると思う。日本では「理科教育」と言うが、「科学教育」と言う用語の方が適切かもしれない。何が光になるか?こんな単純な質問なら、誰でもが簡単に答えられなければならないだろう。その答には、電気理論など必要ない筈だ。「理科教育」と言う範疇に縛られた教育の硬直化が、「科学リテラシー」と言う問題をも引き起こしていると観る。電気理論で解釈しようとすると、『電子』が抵抗体の中で「大暴れ」でもして、摩擦熱を発生するか、「量子力学理論」を引きずり出して解釈するかの「迷走論」に陥るのが関の山である。最近は薪を燃やす事も環境の問題で、制限される。迷惑は犯罪の気風にある。薪を燃やして、発光するのと、白熱電球の発光現象と大した違いがある訳ではない。停電時に蝋燭で明かりを灯す。どれも原理は同じである。さて、もう一度「何が光になるか」と考えてみよう。
電球定格:100ボルト、40ワット。透明白熱電球(内面つや消し電球が一般的)は中のフィラメントの構造も良く見えて、技術の粋が理解できよう。このフィラメントの構造は二重コイルである。その二重巻は、自動二重巻製造の智慧の、その巧さに感心する。
白熱電球の二重コイル(何故か消されたので載せ直す)。
何で二重巻の難しい製造技術のコイルにするか?それは効率を高める為の工夫であり、エネルギー局所空間の高温度化のためであり、そんな所に難しい理論など不要であろう。理論の為の『電子』など不要だ。技術革新で、単純な科学技術の製品が捨てられてしまうと、自然科学の本質をも見失う危険がある。難しい理論だけが取り残され、科学無関心の社会構造になるから。何が光になるか?この問いにどう答えるかが科学技術に対する市民社会の未来志向の道標を示すことになると思う。理科教育で果たすべき学校がその責務を果たせないのだ。教育の行政の問題であり、理科教育を担ってきた大学および教育関係者の問題である。光は、薪も、蝋燭も電気炉も同じく光を放つ事を共通に持っている原因は何かと考えれば、手の指を差し込めない『何か』が原因で放射されると思うでしょう。それを普通は『熱』という。『熱』とは何か?『熱』と『光』は同じものである。その共通に持っている原因はたった一つの『エネルギー』である。関連する用語に『温度』も有る。『温度』とは何か?と物理的意味を問えば、「理科教育」の気体分子運動論が幅を利かす。理科教育が自然科学の学校教育を踏みにじっているのだ。何が光になるか?は雷が水蒸気の熱エネルギーが原因である事と、その本質は同じものなのである(2013/04/20)に追記。御参考に 雷の正体。
さて、この電球の抵抗値は幾らだろうか。テスターで計ると、20.3オーム位である。
点灯スイッチを入れてから、大体0.1~0.2秒程度でほぼ定常値になると言う。点灯時の抵抗値は250オーム位の筈である。抵抗の変化する様子を式で表現してみた。そのグラフを示す。
適当に数式にしてみたので、正確ではない。でもうまい式と思う。0.8秒で式の上では定常状態になっている。ついでに電流の値も参考に示した。この電流値には全く物理的意味は無い。電源が交流100ボルト(50ヘルツ)であるから、電圧は0.02秒ごとに最大値140ボルト正弦波の1サイクルで変化をする。厳密には、二重コイルもエネルギーに対して幾らかのインダクタンス機能を持ち、電流値もR-L回路の過渡現象の繰り返しとなろう。ただどのように減少するかの様子を示した。
抵抗とは何か 白熱電球も点灯初期から、定常状態まで、変化する。フィラメントのタングステンも温度特性がある。高温度で、高い抵抗値になる。点灯時はR=(100^2^)/40=250Ωの抵抗値になる。何故こんなに抵抗値が変化するのか余り考えなかった。何故だろうか?まさか『電子』が熱いフィラメントの中では、通り抜けに苦労するからだなどとは考えないでしょう。高温と逆の現象に絶対温度零度付近で、超伝導現象が起きる。言わば導体の抵抗値ゼロの状態である。最近は非金属の有機材の超伝導現象が研究されている。関連記事で、超伝導とは何か?と電気式木炭暖房の二つを挙げておく。木炭暖房は木炭の電子流などでは滑稽と思う記事である。ここで、改めて電流が導体の中を流れる『電子』の時間的変化率と言う概念に対して、どのようにその論理性を主張できるかの『問答』を提起しなければならない。超伝導現象の意味は正にそこの物理学理論の矛盾を問うのである。だから、抵抗とは何かと考えさせられる。
専門的学習は、用語から解釈の仕方まで特殊な壁を乗り越えなければならない性格を持っていると思う。抵抗の単位Ω(オーム)も人の名から付いた単位である。電圧のボルトと電流のアンペアの比が何故オームになるかの意味も分からない。それは電気の基礎の基本だから、覚えなさいとなる。覚えて習熟する内に、それが当然の原理と認識が深く脳に染みつく。脳の論理回路が形成される。それが専門家の専門的能力となる。電気技術者はその集団の共通用語で、互いに共通の認識で、便利で有効な言語体系を構成できる。しかし、抵抗とは何かと改めて考えてみると、どう言う意味なのかと悩む自分がいる。
この⑧のファイルの内容には馴染が無いであろう。自然科学では、その共通理解のために、基本的な事項を定義している。共通な取引単位でエネルギー量に対して、ジュール[J]、電力量キロワットアワー[kWh](これもエネルギー量のジュールと同じ意味。1[kWh]=1000[J/s]×3600[s]=3.6×10^6^[J] だから。)等がある。物理的単位系の基本定数に真空空間の透磁率μo=4π×10^-7^[H/m] が決められている。エネルギー量ジュールに対して、この定数に基づいてすべての単位系が構築されている。高度な科学論、宇宙論や素粒子論など空間と時間の関係を論じる領域で、殆どこの空間定数の論議が入り込まない論理を理解できない。『時空論』は正にこの定数の話になると思う。だから、基本の電気法則の『オームの法則』で抵抗と空間論の話題を取り上げようと思う。以後どのような事になるか自分にも分からない。参考に、エネルギー[J(ジュール)]とJHFM単位系をご覧ください。
空間と抵抗 ここで一つ空間の意味を電気現象から考えてみよう。空間はそこに無数の科学技術の扱う『電波』が溢れている。ドイツ人ハインリッヒ・ヘルツが19世紀末に空間を電気信号が伝わることを実験的に実証した。そこから電気通信が進展して、現在の情報化社会に成っている。
伝送線路導体も無い空間が電気信号を送れる意味は大変な事なのである。携帯端末もアンテナから電波を放っているのだ。その空間は電気信号を送るに、特性インピーダンスという抵抗値を持っていると考えられている。その抵抗値はほぼ337オームである。その値は丁度、光の光速度cに真空透磁率μo倍で、120πオームとなる。光速度もc=(μoεo)^-1/2^と、空間定数から決まるものである。この空間での電波伝播に於いて、抵抗[Ω]でありながら、損失は殆どない。だから抵抗オームとは何かと考える必要があろう。それがファイル⑧で示した次元を理解しなければならない事なのである。抵抗は電気ロスを生むと考えがちであるが、エネルギーの変換器と観る解釈がよりその物理的認識には重要である。
(2013/5/18追記) 電流と電圧の正体でオームの法則に関連記事を書いた。負荷抵抗をR[Ω](=[(H/F)^1/2^])、負荷電力をP[W]とすれば、電流はI=√(P/R) [(J/H)^1/2^]、電圧はV=√(PR)[(J/F)^1/2^]の電力と抵抗との関係である事を示している。