月別アーカイブ: 2013年3月

『静電界は磁界を伴う』の解説

『瞬時電磁界理論』とはは『静電界は磁界を伴う』と言う標題で、東北大学での発表(電気学会全国大会 昭和62年4月1日)内容を取り上げた記事である。口頭発表予稿論文を訂正・修正して載せた。そこにその『解説記事』がファイルで纏めてあった。そのファイルが参考になると考えて、公開する。少し多い5ページになる。(2020/08/31) 追記、訂正。ファイル②の終段に間違いがある。誠に申し訳ありませんでした。陰極線発見のついて、J.J.Thomson (1856-1940) をエジソンと間違って書いた。なお、ファイルを読み返せば、お恥かしい幼稚な記述が多く赤面の至りと反省させられます。しかし、『電荷』否定の根幹は間違いでなかった。

静電界解説(1)

静電界解説(2)

静電界解説(3)

静電界解説(4)静電界解説(5)以上の解説として、『静電界は磁界を伴う』の実験結果の発表に至った論理的根拠や、その道筋の説明には成っているだろうと考える。

天眼鏡の屈折司令官

IMG_0653窓際で『天眼鏡(こんな呼び名があった)』を陽射しに置いた。太陽光は、そのエネルギーの強烈さを秘めている。オリンピックの採火も鏡で太陽のエネルギーを使う。陽射しの中に居れば、ポカポカと暖かい。その熱エネルギーは光が持っている。レンズを使えば、すぐに火起こしができる。平行光線の太陽光をレンズで屈折させて、焦点に集めれば木材は燃え上がる。理科や物理学で光を解釈すると、とても複雑な意味付けがされる。難しくなる。波長、振動数あるいは周波数などの言葉で説明されると、光の温かみも消えてしまう。

温かみの基は何だろう 物理学的、教科書的解釈には、日常生活で感じる感覚に応えて欲しい。温かみや温度の意味が説明できるだろうか。『エネルギー』とは何か?

屈折の司令官 レンズ、天眼鏡あるいはプリズムは光の性質を理解する大切な意味を示してくれる。『屈折』と言う現象である。光の進行方向が変化する現象である。光は基本的に曲がらず、直進する。この光の直進と言う意味一つをとっても、それは難しい意味を含んでいる。余談になるので避けたいが、光の進む空間と言う意味は惑わされ易いので、その進む空間の意味を明確に定義しておかなければ、論議が成り立たないのである。例えば、今真上の頭上に向かって、光を点滅させたとすれば、その光は頭上を真っ直ぐ進みはしないのである。地球は自転、公転しているから、光の進む空間に対して常に方向を変化させているからである。以上が余談である。ここで取り上げる光の話は、手元の狭い範囲の話であるので光の直線進行の意味は光の相対速度まで考える必要はない。屈折と光路

(2016/11/22)追記。上の図で、レンズ軸に平行な光線が焦点Fを通過すると言う解釈は間違いである。教科書の誤りを信じていた結果の間違いでした。間違いで済みませんでした。焦点距離がもしFの位置であれば、その位置にスクリーンを置けば、A点からの光はそのスクリーンの面の一点にすべて集中し、像がはっきりと映し出されることになる訳です。従って上の図は間違いであります。以上訂正させて頂きます。(2017/12/04)再追記。間違いと言うのはFと言う焦点の概念だけであり、観測対象の一点Aからの光とレンズの屈折現象の角度の説明は良く出来ていて、正しい。平行光線が焦点を通ると言う意味が無意味である。図では眼で観測する時どの位置でも殆どAの文字は見える事を表現した。どの光路からの光であるかはレンズと眼と対象の間の関係で決まるだけである。しかし眼でなくて衝立などやフイルムに像を写すとなれば、Aからの光の様々な光路を通る光がフイルムの或る一点に全て集まる事により、Aと言う文字の像が鮮明に写る事になる。そのフイルムの位置とレンズの間の距離を焦点距離と表現しているのだ。焦点距離は観測対象のレンズからの距離で変わるのである。だからレンズが幾らの焦点距離かという表現は意味がない。無限遠の太陽の写像の距離を焦点距離と言うように定義すれば、レンズ一つに一つの焦点が決まるから混乱は避けられるだろう。そのような定義にすれば、衝立、フイルムに写す写像の位置は写像距離となり、焦点距離とは異なる事になる。しかしカメラなどの実際の焦点距離が写像距離を意味しているから、レンズの無限遠の定義を使うのは困難ではある。しかし、レンズの焦点と言う概念が平行光線からの教科書の解釈である限り、レンズと光の関係は混乱し続ける問題である。

光の屈折は光が進む空間の媒質(空気、水あるいはプラスチックなどの進行空間の材質)の特性の違いで起きる境界面の現象である。上に示した図はレンズに観測対象のA点から光が入ると、そのレンズへの入射角が様々であるから、それぞれの入射光線で屈折の方向も変化する。従って、レンズから出る光の方向もばらばらの方向性を持っている。手元に天眼鏡があれば、物を見て欲しい。人の目とレンズからの像と言う意味には、余り焦点には関係ない事が分かる筈である。どんなに位置を変えても眼には物がほぼ良く見える筈だ。どの方向の光路を辿って来た光かは分からなくても、対象物はよく見える。ある一筋の光があれば、他の光路の光は無関係なのである。目での観測に、レンズの焦点など余り関係ないと言いたい。写真機、カメラでのレンズの組み合わせは、とても技術的にも工夫されていて、その場合の光の光路はもっと複雑ではある。それは写真の撮影画面の広さに全面で鮮明な像が写らなければならないからである。画面に他の対象点の光が混じれば、ボケの像になるから。フォカスの調整と言う事になる。さて屈折の司令官とは?屈折は媒質の境界面で起きる。光の進行方向が変わるのである。何故変わるのだろうか?この理由を説明するのが物理学の専門領域になるのだろう。ここで『問答』をしたい。物理学では、このような現象になると言う結論を説明しているが、その原因までの「何故か」と言う事には答えていない。ある程度詳しく媒質について明らかにされていよう。角度に関して、『スネルの屈折の法則』がある。屈折率が詳しく分かっているようだ。光の屈折で『色収差』と言うプリズムの光分散の問題がある。波長に関係ない屈折の問題に話題を絞るとしても、屈折の問題を預ける司令官の采配を論じるには、光の物理学的特性の振動数を採り上げざるを得ない。司令官と光の振動数の取り組みを論じたいのが主題ではある。レンズに入射する光が何故進行方向を曲げて、屈折しなければならないのだろうか。レンズの中に入れば光の進行方向は直進すると観る。媒質の変化する境界だけで変化する。その進行方向を変化させる仕組みを決める基準を司令官と名付けた。物理学では光は振動数で解釈される。光の一粒も光子というhν[J]と言う振動数ν[1/s]で解釈される。屈折はレンズ面への入射角を検知して、その到来の光路から進行方向を司令官が判断すると観よう。司令官は入射光の何を検知してその入射角を判断するのだろうか。司令官がもし、可視光線の振動数を判断基準にするとしたら、光の横に(物理学理論では、縦の振動数ではないと思う)振動すると言う何を検知して入射角を計量・判断するだろうか。次に、何を基準に屈折角度を決めるだろうか。そこには光の速度での時間的余裕は与えられず、瞬時性が求められる。瞬時性とは振動数を検知する余裕は与えられないと言う事である。光速度で入射する光の入射角度および屈折角度は何を持って瞬時に判断するだろうか。光の本質を振動数で捉えている限りは、この『問答』は成立しないと思う。光一粒のエネルギー分布で、その波頭値の入射瞬時ですべての方向性が決まると解釈しなければならない。光のエネルギーが暖かさそのものであり、その波頭値のエネルギー分布が光の特質を決める司令官の判断基準である。光とは何か?-光量子像ーがその意味を示している。この記事は前のレンズと光路の追加説明でもある。

レンズと光路

(2020/5/19)追記。今少し反省と後悔を感じている。この記事は、初めてレンズの特性を考えて、教科書の解釈を図にして見た。しかしその像は余りにも歪んでいた。その驚きで、書いたものである。科学理論の根幹で、『電荷』概念の怪しさから始まって、多くの疑問で理論を信じられなくなった。教科書の解釈を信じられなくなった。その思いがレンズにまで誤りがあるかとの怒りにも似た気持ちでつい行き過ぎて、「一筋の光路」などの誤りを犯したことを大いに反省し、申し訳ないと思っている。2016年頃に漸くレンズの意味は理解できたかと思う。電気工学から電気回路の電線路空間を『エネルギー』が伝送する現象が、その自然の深い意味であったとやっと理解できた。『電子』概念は間違いであると。一言この記事を書いたころの思いも併せて、追記させて頂いた。

光学レンズは天体観測や顕微鏡など古くからの貴重な道具である。その光学的解釈も万全と思っていた。しかし、ふと思った。レンズの解釈が間違いではないかと。観測する対象からの光をレンズを通して、屈折現象からの光の光路の変化を利用する器具である。焦点と光路?

上に示した凸レンズには焦点Fがある。簡単に作図で焦点を基に、『実像』と言はれる結像の位置を描いてみた。教科書の説明では、平行光線がレンズで屈折して、必ず焦点を通る。この説明は正しい(2016/11/21 追記。この説明が間違いだったのだ。焦点などに光が集まる解釈こそ間違った説明であったのだ)。

(2020/5/19)追記。この記事は上に示した図で、観察対象からの光路(平行光線とレンズの中心を通る二つの)による写像の解釈が間違っていると指摘した点で意味が有る。しかしその他の記述部分については今になると曖昧であったと反省する。問題は、もう一つの光路であるレンズの中心を通る軌跡が使われる。その中心の光路と焦点を通る光路との二つの軌跡の交点で、『実像』の位置を規定する。この『実像』そのものの実在的意味が何もないと断言したい。上の絵図で、赤Rと緑Gおよび青Bの各対象がどこに所謂『実像』を結ぶかを調べてみた。それは、rgおよびbに結ぶ事になる。その位置関係は元の対象から見れば、相当に乱れている。こんな実像は求める物とは違うであろう。

(2020/5/19)追記。以下の内容では、「一筋の光路」など誤りも多く、削除とする。何がこの奇妙な結果を導いたのだろうか。また物議の基になりそうだが、『実像』概念は不要である。レンズを通して物を観測してみる。レンズと目の位置で像が観測できる範囲がどのようであるかを調べてみれば分かる事である。焦点距離と目の位置との関係は殆ど無関係と思う。『実像』など有る訳ではない。目に入る対象からの光は一筋の光が観測できればそれで十分であろう。

(2017/12/04)追記。以下の記事(レンズの光路と屈折のカッコ内)はまだ十分レンズの焦点について考えが纏まっていなかった状態で、平行光線の焦点と写像の意味の焦点距離とを理解し切れずに書いたものであり、「像なし」も無意味な説明である。実際は虫眼鏡を通して観測した文字などの場合に、眼で観測して「像なし」の位置は衝立に写像される焦点距離に当たると勘違いした思い込みであった。レンズを通して見えなくなる位置がいわゆる焦点距離(図の焦点ではない)・写像距離に当たるので、その位置と勘違いした事により、そこに眼を置けば、何も観測出来なくなる事を示したものである。しかし削除せずに、早合点で書いた過程も残しておきたい。

早合点の説明として残しておく。(レンズの光路と屈折 レンズについては今回初めて考えて見た。一例に二つの球面からなるレンズを取り上げ、その光の光路と像について考えてみた。焦点と光路早合点の間違った図である。教科書の焦点の説明を図に示したものである。平行光線が図の様な焦点になど集光しない。レンズと空気との境界での光の屈折率で、光路が決まる。レンズの球面の中心がO1とO2 である。光の方向、光路1と光路2の二通り示した。球面S1とS2の境界で屈折するから、それぞれの光の光路の収束点が焦点になると見做した。光路1の場合の、焦点はF2と見做した。そこには、光路の先に『実像』などどこにもない。ただ光が一筋の道を進むだけである。観測する光は平行光線だけではないから、角度により、観測眼に入射する光の筋道、光路は様々な通り道からの光になる。レンズの焦点とその前後で、観測する像の状況は正立像から反転像まで変化する。丁度観測眼と観測対象の位置が焦点の前か、後ろで変化し、像も茫洋としたものから鮮明な状況までさまざまに変化する。観測眼あるいは観測対象物が焦点に在ると、すべての光路の光が混在して、物の形を示す光模様からずれた状態になる為、対象物の像は無い状況になる。)

観測対象物からの各部の光はただ一筋の光だけが観測眼に入射する。道草問答(6)-球面鏡の像ーにその関係の問題を示した。この屈折の問題を少し掘り下げてみた。天眼鏡の屈折司令官

今朝の新聞科学記事に驚いたー相対論と隕石ー

朝日新聞には、土曜日に発行されるbe版がある。今朝(2013/03/09)のbe版に、e6ページの教育関係の科学記事が載っている。1:今さら聞けない+で、光速になると時間が止まる不思議の見出し記事。2:Do科学 落ちてくる隕石はなぜ光る?(高1年生からの質問) の解答見出しに 摩擦より、空気の圧縮で光るの とある。

1:『光速になると時間が止まる』と言う文言は古くからの『特殊相対性理論』の解説に必ず出て来る常套句である。こんな理解できない解説が罷り通る所に、科学論の欺瞞性がある。『光速度』と言う意味をよく考えている解説かといつも悩まされる。私がアインシュタインの相対性理論の不可思議さで、混乱し悩まされた原点の一つがこの言葉の意味であった。光が光速度で進むと言う空間の意味と定義、更に光の放射現象の放射瞬時以降の伝播経路(どのような経路に向かって伝播するかと言う道の方向)をどのように理解した結果であるか、その深みの信憑性を疑わざるを得ない。新聞の記事の宇宙船が速度、毎秒18万㎞で空間を飛行している(この宇宙船の速度がどんな空間を定義して決めた速度かが明確であるか?と言う疑問はアインシュタインが言うところの光の速度の定義空間が明確かと言う疑問と同じものである。)と言う設定である。船内で、船側から宇宙船の進行方向に直角に光を放射したら、舟の横幅30万㎞ありながら、1秒後に光は舟の反対側に到達しない。と言う論である。それは、船外に居る人から見ると、光の速度30万キロメートルであるのに、光の速度が遅いように観測される。しかし、船内に居る人にとっては、1秒後には光速度通りに反対側の壁に届いていると見える。と言う解説だ。この論説には大きな誤りがある。それは光が放射された瞬間に、放射光の一粒と舟の光源との位置関係は全く無関係になるのである。舟がどんな速度であろうが、放射光の一粒ごとに独立して光の速度で定義される空間を独立に『光速度』で伝播するのである。舟の動向や舟の内外の観測者の関係に無関係に『光速度』一定で、光で定義される空間を伝播するのである。光の速度一定と言う意味は、どんな観測者から見ても光との間には『相対速度』としての観測結果が得られるのである。『光速度一定』は観測者にとって、光は殆ど『相対速度』として観測されるのである。光の速度と観測者の速度の空間的方向ベクトルとの関係から、観測光の波長は基本的に変動すると考えるべきである。光の相対速度に関して、光の速度と空間特性相対速度とは?に考え方を述べた。

空間の定義 光の速度や観測者の速度と言う『速度』を定義する空間を論議の前提として明確にしておかなければならない。その空間が論者間で共通でなければ論議は迷走するだけである。光の速度は、空間の物理的特性で、透磁率と誘電率に基づくと解釈する。光速度は c=√(1/(με)) [m/s]と空間定数が規定すると解釈する。その空間は、アインシュタインが否定した『絶対空間』と言える光が決める長さと時間の比率の空間をその空間と定義する。天体も太陽も全てが同一の絶対空間を基準にして『速度』を定義する。逆に速度は光が決める空間でのみ、定義される。その点を述べた記事がある。太陽の寸法測定と光空間 更に空間の誘電率と透磁率がどんな『次元解析』に重要であるかを御理解いただきたい。エネルギー[J(ジュール)]とJHFM単位系 更に蛇足かも知れないが、『光規定空間』と光の関係を述べた。空を見上げて

2:隕石が光る訳が摩擦でなく、空気の圧縮と言う科学解説記事を本当に誰もが信じるのだろうか。とても恐ろしい教育問題に思える。隕石突入の衝撃波に摩擦熱としての解釈を採り上げた。

パラボラアンテナと正反射

放物線と焦点

パラボラアンテナの放物線を描いた。ITで検索すると、パラボラアンテナの説明が載っている。特に書き足す事もないが、放物線特有の特徴があるので、それを示した。2次方程式の係数aで、y=ax^2  の場合に、その焦点座標の y=d の座標点 (0,d) に対して、準線と言う特有の y=-d の基準線がある。上に焦点 d と係数 a の間に、4ad=1の関係で、焦点が得られる事を付記した。

正反射 放物面の正反射勘違いの為、上の図面を一度削除して、検討し直した。しかし間違っていなかった。再度復元した(2013/03/08/追記)。単純な幾何の問題でもある。二等辺三角形ABCが放物線の軌跡のB点の定義である事から、当然の正反射現象の説明になる。再度IT検索したが、この正反射の説明は見当たらなかった。

放物面の焦点と入反射光あるいは入反射電波が平行光線あるいは平行電磁波に変換される原理は、反射面での正反射現象によるのである。それを図解で示した。もし焦点Aに放射源があれば、放物面のB点で正反射により、準線FCに垂直な放射に変換される。その訳は、三角形ABEにおいて、∡ABEが二等分される。反射面の法線に対して入射角と反射角が等しい光の反射現象を正反射と言うのだろう。球面のB点で、入反射角は等しい。光は一粒の光が入射し、反射面で正反射して方向が変化する。その光の通り道を光路と言う事にする。電磁波も同じ事である。一波長のエネルギー波は縦波である。その通り道も光路と言えよう。

パラボラアンテナ BS衛星放送はパラボラアンテナで受信する。焦点dに衛星放送電波がアンテナの放物面で反射して、焦点d(上の正反射図のA点に当たる)に集まり、受信電波の強度が得られる。天体望遠鏡と同じ原理である。衛星から放射された、縦波電波(教科書は勿論横波と解説する。何が縦波かと言えば、流れる光速度流はエネルギーの流れであり、それは進行方向への縦波である。音波が空気に乗ったエネルギーの粗密の縦波であるのと同じ事である。と言う意味での縦波電波だ。横に振動する電界や磁界などは不要な概念だと言う意味でパラボラアンテナを採り上げている。)の僅かな一部の立体角成分の平面波をパラボラアンテナで捕えて、球面状の縦波に変換する方式である。この電波変換原理に対して、即ち平面波を球面波に変換する前後の電磁波に対して、マックスウエルの電磁波方程式の電界と磁界のベクトル的解釈が出来るだろうかと言う問題の提起である。電磁波を横波で解釈する意味があるだろうかと言う『問答』の提起である。ただエネルギーの縦波で原理は十分と考える。日本物理学会 2011年秋季大会 波はエネルギー流 日本物理学会講演概要集 第66巻第2号第2分冊 p.368 の意味を上に示した。

参考記事。球と立体角 照明と配光曲線 道草問答(6)-球面鏡の像ー

照明と配光曲線

古代人の松明や燈明に比べ、電灯照明は人の生活領域に時間・空間で革新をもたらした。しかし、白熱電球が懐かしくなる程技術の生活環境変化が激しい。

照明には独特の計測用の単位が定められている。その単位の意味が捉えにくいものであっても、その光の放射特性に関する法則や解釈法は、電波伝播特性の解釈に極めて重要な考え方が含まれている。マックスウエルの電磁方程式が光の伝播特性を説き明かした式である事から、照明の配光曲線と電磁波特性はほとんど同じ意味で取り扱えるのである。ただ違いは、照明が人の視感度のフィルターを通した波長成分に対してであるのに、電波はすべての波長成分に対して成り立つ点であろう。写真772照明の量的表示単位が特殊である原因は、人の目の感度が光の波長によって大きく異なる事に因る為である。いわゆる「可視光線」と言う見える波長に限界がある為である。380㎜μ(ミリミクロン)から760㎜μの範囲しか見えない事になっている。その人の視感度を比視感度曲線で解釈する。上の単位の関係を『比視感度曲線』との関係で図解しておく。写真7733つのグラフで示した。σ(λ)で表現したのが『比視感度曲線』である。人は紫外線も赤外線も眼には見えない。しかし電灯などの光源の放射光の波長は様々な成分の分布光線から成り立っている。その放射光束は単位ワットW(=J/s)で解釈する。Φ(λ)[W]で仮想的に図のようなものと仮定してみた。人が明かりとして認識出来るのはその光の内の或る一部しか感じないのである。その人の感じる光の量の大きさを図にしてみれば、σ(λ)・Φ(λ)の積のような大きさと考えられる。その各波長成分を積分すると、光束Fとして解釈できようと言うものである。しかしこれらの単位やその解釈もいろいろ問題があり、上の図のように簡単な捉え方で正しいとは思えない。一応教科書的説明を示しただけである。
配光曲線とは?配光曲線一つの例として、笠付き白熱電球の場合の光の放射分布の強さを表現してみた。蛍光灯の平板天井灯などでは完全拡散光源と看做せて、配光曲線は球状分布で解釈できる。その光の強さを表す用語を光度と言い、その単位はカンデラでI [cd]で表す。光度は光源からある方向に放射される立体角当たりの光束量の意味である。立体角については球と立体角をご参照ください。ある角度θの光度をI_θとして、それを全空間立体角4πステラジアンで積分すれば、光源の総放射光束Fルーメンとなる。しかし、この総光束量は光の最小仕事当量Mによりエネルギーのジュールに換算可能のように定義されているが、それは厳密な意味を持たないと言わなければならない。ジュールとルーメンの間には光の波長と人の感覚との関係ゆえに、光束ルーメンをエネルギーのジュールで換算する事は出来ないのである。そこに照明計測量の評価の問題が存在する。配光指向特性指向特性 配光曲線の形状で、その光の放射強度の指向性が照明範囲や雰囲気に関わってくる点で重要である。その例で、三角関数の余弦のべき乗 (cos θ)^n^ の数例を示す。反射面で、平行光線を放射する探照灯(昔戦時中の夜空を何本もの探照灯が敵航空機を捉えるために交錯していた場面が目に浮かぶ)などは I_0 一本の軸線がそのまま特性となる。それはパラボラアンテナ(放物面鏡)の電波反射特性と同じものである。この配光曲線の光度I_θの値はその方向に拡散進行する光の道筋をも示す。その道筋を『光路』と言う事にする。如何にも光の直進性も兼ねた言葉として有効と思う。パラボラアンテナと正反射に光路の例がある。

白熱電球

二重コイル電球と点灯古い電球が見つかった。白熱電球と言う。白いと言うより赤褐色の光である。温かみを感じる。この電球のフィラメントは二重コイルになっている。もうこの白熱電球は製造中止の憂き目に在る。エジソンが1879年炭素電球を発明してから、130年以上経った。電気の技術史の本を見たら、白熱電球の『エジソン効果』の発見から真空二極管が生まれ、電信通信が生まれたらしい。そんな技術にとても深い愛着を感じる。長い人類の生活に電灯と言う光明をもたらした偉人エジソンに感謝したい。このような誰もがその技術に親しみを抱き、見て分かる生活の技術であった。今は情報機器の中味を理解できない不安の時代に生きている。幸福と技術の哲学的問題が今の時代の象徴になっているように思う。

(2014/09/27)追記。白熱電球は光の放射現象に関連付けたくて取り上げた物でもある。前後の記事に、球と立体角及び照明と配光曲線がある。この白熱電球は二重コイルになっている。オームの法則の応用技術の代表に挙げても良かろう。『オームの法則』-物理学解剖論ーでこの白熱電球を例に取上げた。その中でも二重コイルの意味を考えている。科学理論の基本で量子力学論が支配的になり、光放射現象を原子の外殻電子の周回運動論から解釈する様な論調になったしまった。そのような量子論では、二重コイルの技術的工夫はどのような意義で捉えるのかと異議を差し挟みたくなる。白熱電球の発光現象の論理的解釈の有り様を問うのである。二重コイルの意味はエネルギーをコイル内に有効に高密度で貯蔵できるかで、高エネルギー密度の程度が高ければ高温度になり発光量も白熱光に高輝度化出来るからである。フィラメントのタングステンWがその高温度に対する耐熱性を備えているから、有効なフィラメント材料となっているのである。要するにフィラメントのコイル内にエネルギーを高密度で貯蔵できるかどうかの技術的工夫が二重コイルになったのである。全く量子論など何の意味も無いのである。