力の概念と電気物理

視点一つが世界を変える。

不図疑問が湧く。今までの認識に疑問が種となって、新たな世界が驚きの中に膨らむ。今回は『力』である。電気と言う目に見えない現象故に、その世界描写は数学的な表記によってとても抽象的に描かれる。多くの法則によって体系化された学術理論の世界である。科学理論の世界は長い歴史の重みを背負って、何百年の時に亘って専門家の追究の試練に曝されて生き残って来た学術理論である。その根幹を成している概念は『電荷』である。それはクーロンの法則と言う偉大な科学技術論を論ずる基幹法則として誰もが一度は聞いたことのある法則であろう。『電荷』間に働く『力』の意味を解釈する法則である。科学理論は社会的に認知された、学術機関の専門家が推奨する権威ある理論で、広く学校教育での標準教科書として取り上げられたものである。そんな理論の根幹の「電荷」を否定することは、社会的大きな混乱を引き起こすかもしれない畏れ多さを抱える事でもある。自分一人の科学技術感覚からの『電荷』否定の挑戦であった。クーロンの法則を斬る (2013/01/06) の記事から6年が過ぎた。今回その法則に関して、力学理論の『力』の概念から改めて『電荷』否定の論証視点が浮かび上がった。気付けば当たり前のことと思う様な『電荷』に潜む矛盾点である。

力学論の力の概念

運動力学の『力』とはどのようなものか。そんな疑問を抱くことに意味があるのかと思うかも知れない。力が働くという意味で感覚的に感じるのは力を掛ける対象に、力に逆らう反作用のような抵抗がそこにはある。それが慣性体としての質量の意味だと思う。運動力学で力が掛ると、その対象は力によって加速度運動に成る。もし力の対象が質量体で無かったなら、その対象はどのような運動に成るのだろうか。図の力の概念に示したように、質量M[kg]が力に逆らって速度の変化を受けないような作用があるから力を掛ける側に、対象に作用するという意味が生じるのだ。もし対象に質量がなかったら、加速度と言う概念は存在しない。加速度の存在しない『力』の概念は力にはなり得ない。

電荷と力

図1.電荷と電界と力

さて、電気物理学では『電荷』がすべての電気現象の理論的論拠となっている。電場に『電荷』が有れば、その『電荷』はその点の電界強度によって『力』を受けると成っている。(1)式のように、空間にある電荷集合体+Q[C]が有れば、その周りの空間は立体空間全体に電界強度E[V/m]で定義付けられると成っている。その空間に、他の『電荷』が存在するとその電界Eによって力を受ける。電荷が-q[C]とすれば、(2)、(3)式の力を『電荷』が受けると言う。(3)式が有名なクーロンの法則の式である。なお (r/r)は座標ベクトルrの方向を示す単位ベクトルの意味である。荷電粒子が電磁場で力を受けて運動する現象は実際にあるから、確かに間違いとは言えない。しかし、上に示したように、『力』の概念で述べたことも間違いではない。質量がなければ、『力』は掛からない。『電荷』に慣性は無いから、それは『力』の対象にはならない筈だ。もし力が掛れば慣性のない『電荷』は直ちに無限速度で飛んで消えて、運動論の対象にはならない。前にも、荷電粒子加速と電磁力 (2015/01/31)で問題にした。今回不図した思い付きで、『力』の概念について気付いたことが質量の慣性と言う意味であった。クーロンの法則を斬る (2013/01/06)で『電荷』とその上の(3)式の否定を論じた。今回はっきりと納得できたのが質量の慣性と言うものによって初めて『力』が意味を持つという事であった。それなら実際に電磁場と言う空間での荷電粒子加速現象はどのような意味なのかという自然世界の認識の課題である。実際の電磁場での粒子加速運動論には必ず質量を必要とするから、電子にも陽電子にもすべての粒子には必ず質量が付帯している。そこで一応運動力学論としての辻褄が合わせられている訳である。しかし電気回路の電流論に成ると、電流の単位アンペア[A]=[C/s]には決して質量は必要ないから、『電荷』だけで論じられることになる。この『電荷』と『力』の問題は、世界で実施されている荷電粒子加速実験の理論的根拠の問題でもあろうかと考える。

電荷と電磁場

もう一度電荷とその電界の意味を取上げて考えて置きたい。『電荷』の意味を考える時、とても不思議に思うことがある。或るプラスの正電荷の集合体が空間にあると設定されて解説される。クーロンの法則に直接関係する電磁場の論考に於いて、どのような原理で同一の符号の『電荷』が集合し得ると考えるのか。同一符号の『電荷』は離隔距離の2乗に反比例して強力に接近は拒否される筈である。子供達に教える教育の場で、クーロンの法則が取上げられて、説明される時には同一『電荷』の集合は排除されると教える筈である。しかし、図2.のようにいとも簡単に『電荷』の集合体で理論の解説が成される。これも科学論の不思議と言わなければならない。その時の集合電荷の離隔距離はおそらくゼロの意識で論理展開しているのだろう。ゼロの2乗分の1は無限大の排斥力となる。この事は教育者側の科学論の論理性の問題としても無視できない矛盾論の筈であろう。それはさて置き、問題は電荷周りの電磁場の意味である。図2.電荷とエネルギー のように空間の誘電率がεo[F/m]とすると、その空間のエネルギーをどのように理論的に解釈しているかという問題である。係数が(1/2)の問題はさて置くとして、一応wr=(1/2)εE^2^ [J/㎥]のような電界のエネルギーが空間にあると解釈する筈である。『電荷』からの空間距離rの関数として、『電荷』周りにはエネルギーが分布していると解釈してよかろう。しかし、物理学理論で空間の解釈をする時はこのようにエネルギーを認識している筈であるが、荷電粒子加速などの場合には、この空間エネルギーをどのように解釈しているのかはハッキリしていないようだ。このエネルギーの問題は理論物理学における『電荷』の概念の捉え方に関わる問題であるから。と言うのは、このエネルギーが空間に存在していると解釈するかどうかが最初に問わなければならない問題なのである。そのエネルギーは電界がある限り、空間の無限遠までも希薄になっても存在することになるからである。空間に存在すると解釈するなら、そのエネルギーを理論物理学ではどんな物理量と考えるのか。即ち『電荷』の一部なのか、『電荷』と無関係のエネルギーなのかと言うことを問う問答なのである。この解釈・考え方は至極幼稚な素人的素朴な疑問なのである。しかしこのような考え方が、理科教育・自然科学論に求められて居る易しさの科学論の姿勢であると考える。高度な数学的理論展開では、市民が理解し、納得する自然科学論にはならないから。本当の自然科学論は日常用語で解説できなければそれは正しいとは言えないのだ。何故このように『電荷』とその周辺空間のエネルギーの問題を論じるかは、高度な理論を展開されている専門の方々こそお分かりの筈であるから。ついでにもう一つ図2-1.電荷と力とエネルギーとして、単位電荷が空間に分布していたとする。この場合は、『電荷』間には複雑な力が掛ることに成り、その空間のエネルギー分布も正と負の電荷によって、種類の違うエネルギーが存在すると解釈するべきなのかなど理論的に決まりの付け難い問題が残るようだ。本来エネルギーには『正』と『負』は無く、ただ『エネルギー』が存在するかどうかの問題であるから。そういう意味で、物理学理論の易しい解釈を求めての論考である。易しい理論的解説は難しい数学や数式は必要がない筈だ。『電荷』が『エネルギー』を持っているか、いないかを答える事ぐらい難しい事ではなかろう。結局『電荷』とは何かを問うことである。電気磁気学、電気回路論あるいは電気工学のそれぞれの解釈の場で、『電荷』が如何なる実在量かの描像を示す事が求められていることと思う。それは次の謎解きの話になろう。

理論と電磁現象の間の謎解き

波形観測に欠かせない電気製品にオッシロスコープがある。電子銃からの電子ビームを平板電極間に通すと、その電極の電圧信号に従って、電子ビームの方向を制御できる。蛍光面にその制御されたビームの軌跡が波形を描く。その原理が電子電荷の空間電界による制御と解釈される。これが科学技術の電磁現象解釈原理となる。技術としてはその原理を理解することが必要であり、それだけで十分立派な電気技術者の仲間に入れる。教育もその意味で技術理論の習得への期待が国家の教育方針とされてきた。それはそれで良かった。『電荷』と言う概念を考え出して作り上げた意味はその為に有効であった。ところが、その科学技術用の理論を深く突き詰めると、とても曖昧で、論理性に絶えない矛盾が潜んでいることに気付く筈だ。科学技術教育ならそれでも良かった。しかし、自然現象を説き明かす物理学理論となれば、その矛盾を抱えて頬被(ホウカブリ)したままやり過ごす事はできない筈だ。ではそれはどんな矛盾で、何故理論が論理的で無いと言うかを説明しなければならないかも知れない。聡明な皆さんは既にお分かりの筈であろうが。その曖昧さを取り除くには、『電荷』が理論に絶えない概念であることを理解しなければならない。 f=q[v×B]+qE [N] の式で解釈するローレンツ力の力が掛る対象は電荷q[C]である。その式は質量が無い式だ。荷電粒子にこっそり質量が有ると条件付けられてはいるが、それは運動論を展開するには質量がなければ無理だからである。しかしあくまでも力の掛る対象は原理の式には『電荷』しかない。『電荷』には慣性がないから力が掛る対象にはなり得ないのである。しかし現実は、この式で解釈する通りの荷電粒子と認識する『電荷』のビームが制御される。この論理的不都合を解決する解釈法が一つあるのだ。それが『軸性エネルギー流』だ。電磁場空間内の空間電磁エネルギーの分布を理解する道である。『静電界は磁界を伴う』と言う奇妙な表現内容に鍵がある。電界と言う電場空間は、むしろ磁場空間なのである。磁場空間は磁束がある訳ではなく、軸性エネルギー流の場である。言ってみれば、『電子』も軸性エネルギー流子なのである。エネルギー流空間に電子と言う軸性エネルギー流子が通過すれば、エネルギー流同士の間の近接作用力が働くことになる。過去に載せた関連記事の図を挙げて置く。電子スピンとは?-その空間像-(2011/02/09)

 

 

 

 

 

 

 

素粒子-その実相-(2012/07/31)

 

 

 

 

 

エネルギー流と結合(2018/10/10)

 

 

むすび

問題の解決は『電荷』とは何かに答えることである。それはまた『電子』とは何かに答える事でもある。そこに未来の道が観えて来る筈だ。空間に実在するということは、その空間像を描くことでしか解決できない。抽象的な数式には姿が観えない。軸性エネルギー流は磁場と言う空間の物理的姿を示した空間像である。身近にあるマグネットのNSの磁極近傍の空間に在るエネルギーの流れの様子を示したものが軸性エネルギー流であり、それは磁極の表面空間を流れている回転エネルギー流である。その空間に実在するエネルギーを見ることはできない。それを計測することも、観測することも出来ない。その観えないものを『電子』などと捉えて、科学理論を構築して来たのである。『電荷』概念の矛盾に気づくなら、空間のエネルギーが(心にあるいは感覚的に)観えて来る筈だ。そのエネルギーに関する空間論は観測できないから科学論に成り得ないかもしれないが、そこに至らない限りは自然に心を添えないと言うことであろう。『エネルギー』を認識すれば、自然世界の本質が観えて来る筈だ。以上でクーロン力の矛盾についての論説は終わる。次の記事で、アンペアーの法則の回路電流における電子流の矛盾について述べたい。

蜘蛛の巣

蜘蛛(クモ)
漢字も珍しい。音読みはチチュで蜘蛛の他には使われない文字のようだ。それぞれの漢字の意味も良く分からない。昆虫の中でも蜘蛛は特別の物に思える。巣網を空間に張って獲物を捉える。その巣は幾何学で言う所謂平面の美学を醸し出している。支点が3点なら必ず平面に成る。その縦糸(?)は風の吹き方で決まる訳だが、蜘蛛はその支点の位置を風の流れから関知しているのだろうか。蜘蛛が巣を張る張り方を観察できれば良いのだが、暇でも中々その機会には巡り遭わない。蜘蛛 その神業 (2013/03/18) にも。

名も知らぬ蜘蛛

余り見かけない蜘蛛の巣が目に入った。中心に蜘蛛がいる。巣の中心に蜘蛛が居るが、何か擬態のカモフラージュの意味でか帯状の物がある。支点が3点と平面幾何学の蜘蛛の巣の張り方に納得していた。しかしこの巣をよく見ると、支点が4,5点ある。3点の1つが枝分かれして、支点が多い。それでもその支点がすべて平面上にあるようだから不思議だ。蜘蛛の足のさきで巣の張り具合が幾何学平面に成っていることを知って支点を決めているのかと不思議だ。

巣の新装改築

何日かで、新しく巣を改築している。古い巣に付着したゴミは綺麗に片づけられている。支点に張られた縦糸はそのままに残されて、横の網糸(?)だけが貼り替えられているようだ。お釈迦さまも蜘蛛には特別の使いをさせると古い話にある。1月15日には地獄の釜の蓋が開き、罪人を救うために蜘蛛が糸を釜に垂らす。しかし罪人が我先にとその糸に縋り、大勢が我が強欲に走り、結局誰も助からずに終わるというお話。と言う様に、古くから特別視されるだけの神秘を備えた生き物に思える。こんな小さな命の姿にも、その生き方には自然の不思議が沢山詰まっているようだ。蜘蛛よ万歳。

初夏の花

さわやかな季節の花。花の姿は易しくても、名前を漢字で書けば厳めしい。漢字にはその意味が現れていて、大切にしたい。

躑躅(ツツジ)・アザレア 

赤みがかった花がアザレア。

 

 

 

 

宝鐸草(ホウチャクソウ)

釣鐘に因んだ名か?普通は「たく」と読む。

 

 

 

 

 

海老根(エビネ) 

海老に形が似ていると解説があるが、そうかな?確かに土の中の根を見たら、白い根元が太くて曲がっている。独特の根で、球根のようだ。

 

 

 

 

苧環(オダマキ) 

この漢字の意味は分からない。何か平安朝時代の高貴な女性が被る傘の姿を連想する。

 

 

 

名前を忘れてしまった。

雑草に近く繁殖力がある。紫色が好きだ。

光速度一定とは

はじめに
光とその伝播現象について、過去1世紀に亘って『特殊相対性理論』がその社会現象とも見做せるほど華やかな話題の中心を成してきた。世界は『電荷』と『質量』を持った素粒子から構成されているという基本認識にある。その中の『電子』も電気回路での役割を突き詰めれば、それは『エネルギー』の流れでしかない。エネルギーの塊を粒子と看做せば、それはあたかも質量を持った粒子とも見做せる特性を示すであろう。電磁波もエネルギー粗密分布の縦波であるから、光速度一定と言うことが示す意味を明確にするには、その速度の主体である電磁波と言う光を空間像として認識する必要がある。物理学理論で光の実相を空間認識として示すべき問題が残されている筈だ。光の粒子性と波動性と言う二つの解釈の間の曖昧さを統一して、その訳を明らかにしてこそ物理学の筈である。どんなに数式で論じても、光の実相を説明したことにはならない。『光速度一定』と言う事の中には、とても多くの問題を統一して論じなければならない意味が含まれている。一世紀前の電気磁気学論では対応できない筈だ。光が伝播するという空間をどのように定義するかも問われている。

光と電磁波とエネルギー
光とは何か?光の振動数とは何か?光の粒子性とは何か?その答えは空間のエネルギー分布として認識出来るかに掛っている。光は電磁波だと解説される。それなら電磁波とはどのようなものと捉えているのか。電磁波のエネルギーをどのように理解しているのか。放送局などの電波送信は大電力の放射設備である。エネルギーの送信なのである。電磁波をどのようなエネルギー空間像で捉えているのか。まさか振動数でエネルギーを計算出来る訳がなかろう。放送電波の半波長もエネルギー空間分布波なのである。電界・磁界の方程式で評価するだけで、その波が電界・磁界から算定される空間に実在するエネルギーの分布波だと何故捉えないのかが人の思考の科学論の不思議なのである。放送電波も横波でなく、エネルギーの縦波の電波である。その認識が有って初めて光の意味が分かるはずだ。光の振動数ν[Hz]とプランク定数h[Js]から、光あるいは光量子のエネルギーをε=hν[J]と解釈する。1秒間の振動数がどのような意味で光のエネルギーを評価出来ると考えるのか。そのエネルギーとはどんなエネルギーを評価したものか。その式の持つエネルギー量はただその周波数スペクトラムの構成基本粒子・光量子の一つの波の単位エネルギー量の意味を表現したものである。その作用性を評価する同一周波数の光の群の一粒のエネルギー量なのである。電気回路で解釈すれば、1サイクルは二つのエネルギーの山から成る。電力の場合は、周波数が決まっているからスペクトルは単一周波数だけである。そこでは基本エネルギー量を規定はできない。電線路一回線に一つのエネルギー流波しかないから。また、電力に負の解釈が有っても、エネルギーに負は無い。1秒間ではエネルギー総量はその山の2倍周波数を掛けた分になる。周波数f[Hz]の電力p[W]であれば、エネルギーの単位となる一山分はp/(2f)[J]のエネルギー量である。例えばf=50[Hz]の電力線なら、一山のエネルギーは3000[km]の長さに分布したエネルギー波となる。そんな長い送電線はなかろう。だから一般の電線路のエネルギー分布は、その線路全体に亘って殆ど直流分布と看做せるエネルギー空間分布が時間的に変動しているようなものとなる。電線路のエネルギーはそのように空間的に捉えられる。そこには電線導体内の電子流などと言う解釈は意味を成さない。さて、そこで光のエネルギーはどのように捉えるかとなる。光が電磁波だと言うなら、電磁波は空間を電線路無しに伝播する訳だから、電線路伝送エネルギーと同じく空間に分布したエネルギー伝播現象である。電磁波と同じと言う光も当然空間を伝播するエネルギー波の筈である。 ε=hν[J]  この式にどんなエネルギーが見えますか?空間エネルギー像が描けますか。光の空間エネルギー像をプランク定数と振動数でどのように認識できるかの物理の問題である。この式による光量子のエネルギーと言う意味はその振動数の光の量子的効果を認識できる点にある。その波長の光は物質に作用する時、他の波長の光と異なることを認識できるという点で有効な捉え方が出来る式である。その理由、訳を知るには何故振動数がどのようなエネルギーの意味を生み出すかを説明しなければならない筈だが、それは困難であろう。何故その振動数が重要な意味を持つかを理解するには、光の作用性としての空間的特徴を知らなければ分からない筈だ。その意味で、前の記事光量子空間像(D線)が参考になれば良いと思う。末尾にマックスウエルの電波伝播方程式に関係して、電磁波の伝播現象の図を載せた。一般には電界と磁界とに因った、基本的な結ぶ付きで論じられるが、電界は必要がないとした。その訳は、今までの長い電磁気現象の総合的な考察によって、空間エネルギーの形態は二つに分けられると解釈する。空間伝播の直線的流れのエネルギーと磁気的と解釈する軸性エネルギー回転流の二つに大別出来よう。空間を光速度で伝播するエネルギー流が、光を含めて電線路エネルギー流などにも見られる、その基本的姿である。それに対して直線的に伝送しないエネルギー流即ちある空間に留まったエネルギーの形態がある。それがマグネットのような軸性回転エネルギー流になる。地磁気のようなものも地球表面上に沿って回転している軸性エネルギー流と看做せる。少し解釈を広げれば、そのエネルギー流が基本的には地球の回転の原因となっているエネルギー流と解釈したい。そのような磁気と看做す局所的(地球表面と言う広さではあるがやはり局所的である)軸性エネルギー流を基礎に置けば、その直交方向を電界と解釈しているに過ぎないのだ。『電荷』がない以上電界が存在する根拠も無くなる。「少し述べて置きたい。無負荷電線路のエネルギー分布は電圧と言う概念に対応した電線路コンデンサの空間貯蔵エネルギーの様相で認識するが、電源電圧の時間的変動に対応してエネルギーの流れはあるから、単なるコンデンサ回路とは異なる。しかし無負荷で有れば、長い電線路コンデンサ負荷とも見做せる。その場合、コンデンサ充電の伝送エネルギー流と電線路空間の一点に生じるエネルギー流は電線路導体に直交した軸性エネルギー流の形態を取るかとも思われる。もし電源が一定直流電圧なら、その電圧・電界の様相は軸性エネルギー流となろう。」空間の磁界をマグネットのコンパスでその存在を検出できるが、電界を検出する器具は無い。電磁現象を示す『エネルギー』に静止状態は無く、光速度流にあると観て良かろう。『エネルギー』の静止とは原子内のマグネットの軸性エネルギー流となる、質量化された状態と看做せよう。

光の伝播空間と速度
光は観測者の為に伝播する訳ではない。光は空間に放射された瞬間からその空間の特性に従って伝播する。水の中、空気の密度、ガラスの中あるいは障壁の存在などその伝播媒体の特性や空間構造に従った速度、方向で伝播する。光速度の基準は理想的な真空空間と考える。観測者が光の伝播にどのような相対速度で観測しようと、それには一切無関係に光は伝播空間の特性で決まる速度で伝播する。その基準空間座標を「光規定空間」と定義する。所謂『絶対空間』である。『特殊相対性理論』とは全く違う。観測者が『光規定空間』に対してどのような速度にであるかによって、光との関係はすべて普通の『相対速度』として観測される。何も特殊な関係は無い。例えば仮の話であるが、絶対空間に対して光速度のロケットから光を放射したとする。光は光源から離れた瞬間に、放射方向に一定の光速度で伝播する。ロケットの速度には全く関係しない。ロケットの進行方向の前方に放射すれば、ロケットの観測者から見れば光の速度即ち相対速度はゼロとなる。エネルギーの塊と一緒に進むことになり、どんどん高密度エネルギーの中に進むことになり、高熱に焼かれるだろう。決して特殊な現象は起きない。光は空間エネルギー分布の縦波であるから。半波長でもエネルギー密度分布波であるから。振動数がエネルギーとなる訳ではないから。その絶対空間がどのような座標と看做せばよいかは分からない。太陽がその絶対空間に対してどのような運航をしているかも分からない。光が真空の空間で『光速度一定』で伝播する空間を『光規定空間』と定義するだけである。何者にも支配されないで光が伝播する空間、それが『光規定空間』である。その空間を人は認識できないかもしれない。当然地球表面では空気の影響も受け、地球の自転・公転によって天空からの光はすべて相対的なものとなる。

『光速度一定』と相対速度

光と言う物理的評価対象はエネルギーの自由空間での光速度伝播現象として認識出来る。その空間での伝播速度が『一定光速度』だと解釈する。宇宙からの到達光を速度を持って運動している地球上から観測すれば、光の一定速度での伝播に対して必ず観測は相対速度になる。しかも空気が有れば、真空とは異なり或る意味空気も誘電体と看做せる。それは観測に掛らない程の真空との差であるかも知れないが。しかし『特殊相対性理論』での『光速度一定』と言う意味は、光が主体的ではなく、人間の解釈が主体的になる捉え方になっている。人から見て光は一定と解釈してよいという意味である。日住生活で、朝日が山の端に顔を出す時、その太陽光は金色に輝く。日が沈む夕日になれば、赤方偏移で赤い夕焼けになる。同じ太陽光線が地球の回転との関係で観測は必ず相対速度で観測されるからの現象である。ドップラー効果と言いながら、光の空間エネルギー密度波の解釈がない為に、いろいろ解釈が混乱しているようだ。日常の感覚的認識が高度の数式解釈の物理学理論より自然を理解するには重要である。相対速度は光を観測するその光のエネルギー分布の波頭値が観測波長の短縮・伸長により変化することに表れる。それがドップラー効果と言う現象である。朝日と夕日の意味も波頭値の変化が原因である。光の空間エネルギー分布の認識が基本に無ければ、『光速度一定』の意味も理解できない筈だ。

(参考) 電磁波の伝播現象の図

アンテナから放射される直前は電気回路のエネルギーである。そこでは閉じた軸性エネルギー流の状態と解釈した。断面は閉じた円環のNS極となっている。図のようなエネルギー流が電波として放射された時点で、光速度のエネルギーの縦波となり、ただ空間エネルギー分布密度波となると解釈した。障害やアンテナによって電波が光速度伝播を止められた時点で、軸性エネルギー流になると解釈する。エネルギーの静止と言う状態は、『静電界は磁界を伴う』の実験でのロゴウスキー電極間の環状軸性エネルギー流の磁場としての流れになると考える。要するに電界と言うのは軸性エネルギー流に対して直交した方向を評価した概念でしかない。それが『電荷』を必要としない解釈である。

 

光量子空間像(D線)

光量子と波の概念
現代物理学理論における光量子、光子はその基礎認識で、必ず振動数あるいは周波数に基づいている。物質から光が放射される時、そのエネルギーは連続的な周期性を持って放出される。単発で放射されることはなかろう。だから光量子の検出には周波数、振動数を伴うことになる。振動数を一粒の光が持ち得る訳は無いのだ。振動する一粒の光量子など無い。エネルギー放出時における一群の光がそれぞれの周期的な時間差で起こるだけである。どんな波も横に振れる波動性は本質的に持たないのである。水の水面波も、進行方向への縦のエネルギー流でしかないのである。表面の水面を見れば、確かに横の上下に波打つのが観察される。しかしそれを「横波」と解釈するのが誤りなのである。波は表面だけではなく、水中深く底まで伝達するのである。水底に向かう波をどのように解釈しようとも横に振れるものなどない筈である。みんな『エネルギー』の縦波なのである。シュレーディンガーの有名な波動方程式も横波が基本になっている。それは筆者には受け入れ難い方程式である。

式の意味
光量子の空間像を「空間エネルギー密度流」として次式で表した。

このエネルギーの縦波と言う空間像の意味を少し考えてみる。この光量子の一粒は1辺が光の波長λの立方体として捉えている。そのエネルギーの内部分布が波頭値H[J/㎥]の衝撃波状の指数関数形である。(1)式のHζの積のζは丁度1波長で値がゼロの繰り返しとなる為のものである。0≦ζ≦1である。しかしこの波形は正弦波でない為、周期関数形としての取り扱いが困難である。周期波形でありながら、数式での周期関数表現が出来ない。数学の関数がない。この光量子の式の表現する事の意味で、重要な1点は光に質量がなく、エネルギーそのものが光速度で伝播するということである。光と言うエネルギーは空間での極限の現れである。

式の具体的例題
実際に空間像の意味を捉えるには、具体例で考えるのが良かろう。ここで、ナトリュウムの演色反応で有名な色のD線を取上げて、(1)式のエネルギー空間像を計算してみよう。波長スペクトラムの5889.97 Åと5895.93Åがそれらしい。そこで、波長λ=5890[Å]を具体例に選ぶ。その光量子一粒のエネルギー量εDは

 

 

 

 

となる。このD線の波頭値は

 

となる。しかし、この値ではその大きさの意味が分からない。光量子の寸法で考えてみる。下にその寸法を図示した。進行する波頭で、厚み1Åの微小体積dvの波頭エネルギー密度を算定してみよう。

 

 

 

 

 

 

 

 

 

 

(4)式の体積dv内でのエネルギー密度波頭値Hは(5)式のように計算され、数値的にも納得できよう。そこで、この波頭値Hから、このD線の光量子エネルギーを求めれば、(6)式として算定される。その値は(2)式の結果と同じのは当然である。波頭値Hと自然対数の底e=2.718との比がエネルギー分布の平均値に等価であることになる。その平均値(H/e)の光量子体積倍が丁度光量子1粒のエネルギー量になる。

結び 光速度一定とはの記事を書きながら、光量子空間像を認識しなければ、光速度の意味が分からないだろうと、その参考にと古い記事光とは何か?-光量子像-の中の一部のファイルを取上げって載せた。なお(1)式の意味についてはその記事に示してある。

光量子一粒の形状を1辺が波長λの立方体として解釈している。この体積の取り方が妥当であるかどうかは断定できない。他の形状がより実際に合うかも知れず、その場合はそのように取ればよかろう。一つの空間エネルギー像としての描像を具体例で提示したものである。兎に角、ε=hνではその空間像を認識できないだろうから、これなら誰でも理解し易かろうという空間像を図に表現したものである。勿論自分が納得することを求めて導きだした解釈である。今までこのような具体像は無かったと思い、これが一つの物理学の求める易しさの道ではないかと思って。

 

 

mc^2^ から物理学を問う

はじめに
E=mc^2^ [J] この式の意味を『質量-エネルギー等価則』として理解している。余りにも有名な表式である。これ程簡潔にして、自然世界を表現した数式は他にはなかろう。この式の意味を問うことは物理学理論の現在の姿を問うことになる。アインシュタインとその影響が現代物理学に大きく関わっていることは誰でも知っているだろう。それは物理学という科学論が20世紀の大きな社会現象としても捉えなければならない程時代を支配して来た。この表式の意味には自然の根源的「美意識」さえ込められていると思える。それはそれ程に素晴らしい表式だと思う。しかしそれに対して『特殊相対性理論』に関係した論が社会に与えた意味がとても気掛かりに思える。どうも理論が社会の中で勝手に弄ばれて、誤っていたのではないかと。様々な解釈が、様々な表現用語と共に明確な定義なしに論じられ、不可解な世界論を作り上げているように思える。そう思うことは個人の細やかな思いでしかなかろうが、電気技術論からの率直な違和感でもある。自然世界の認識で『電荷』否定が論点の基になる。

物理学理論と電磁現象
19世紀という100年は科学技術の台頭期とでも思える。中でも電気技術とその基礎理論が確立した時代であったと思う。1864年、早々とマックスウエルの電磁場方程式によって電磁現象の統一的理論が出現した。今でもその理論と方程式は偏微分形式で、高度な専門性を持って理解されている。このマックスウエル電磁場方程式が表現する内容がここで議論するアインシュタインの『特殊相対性理論』の基礎となっていると考えたい。『運動している物体の電気力学について』という1905年の論文が所謂『特殊相対性理論』という内容なのである。しかし、その論文の電気力学という内容が具体的に何を指すかが分からない。マックスウエルの電気力学がアインシュタインの理論の構築の基になっている。今になれば、当時の電気現象の解釈はまだ暗中模索の中にあった筈だ。『静電界は磁界を伴う』などという解釈から程遠かった。然しながら電気現象だけでなく、もっと謎の多い世界が科学の対象となり、19世紀の終わりにはレントゲン線や放射線という目に見えない自然世界の謎解きが始った。自然世界の解釈が見えない物理現象の解明に向き、自然科学のある意味混迷期にも在った。そこにアインシュタインの自然感覚と異なる異次元の理論が唱えられ、その新しい解釈、それが物理学理論として時代の学術の牽引役を担ったと思う。今改めて、アインシュタインの論文の翻訳文を読み、更に理論の軌道修正が迫られていると思った。別に改めて論じたい。

物理学理論でのmc^2^の意味
20世紀は物理学理論が世界の科学の話題の中心となって来た。特にアインシュタインの『特殊相対性理論』が科学論の原典のように華やかな世相を成してきた。アインシュタインが唱えた、mc^2^も自然世界解釈論の原点として科学常識となって現在に至っている。先日検索してmc^2^の、その意味を尋ねた。

驚いたことに殆どの解説が右の式の意味についてである。所謂アインシュタインの『特殊相対性理論』の光の伝播特性の解釈の√(1- β^2^) を質量とエネルギーの関係の関係にまで広げた論説である。よく見かける黒板に書き記しているアインシュタインの写真には、分母の式はない。E=mc^2^ の式だけである。論文標題  E=Mc^2^ :the most urgent problem of our time  (E=Mc^2^-現代の重要問題) Science illustrated,  vol. 1, no. 1  (1946), pp. 16~17 として、昭和21年にアインシュタインが「質量とエネルギーの等価性の法則を理解するには、特殊相対性理論以前の・・」との書きだして論じている。この論文を書いた時点では、アインシュタインは少し過去の主張に疑いを持っていたかとも思う。質量もエネルギーに統合されると解釈していたと読み取れる部分が有る。それはバートランドラッセル卿の主張に近いと。

E=mc^2^ [J] の式と異なり、分母の√(1- β^2^)が有る。光速度c[m/s]に対して質量m[kg]の物体の速度がv[m/s]の時のエネルギーを表した式のようだ。特殊相対性理論の § 10.  ゆるやかな加速度を受けた電子の力学 で電子の質量に関する論から、勝手に創り出された式であろう。アインシュタインの論文には無い式だ。

検索記事よ!  何故か? この式にそれ程の特別な意義あると言うのか?何も無い筈だ。

E=mc^2^[J]の式の意味を理解していない解説だ。やはり物理学理論等の教育内容で『エネルギー』の意味をすべて質量の持つものとして考えている処に根源的誤りがある。原子核分裂で、分裂生成原子の運動エネルギーの他に熱(輻射)、光そのもののエネルギーがその中にあることをどう捉えているかが気掛かりである。空間に『エネルギー』が体積を持って実在していることを認識していない。光が半波長の長さの空間にも『エネルギー』として実在している意味を理解していないからだ。振動がエネルギーに成る訳は無いのだから。光の振動数がどのような物理的意味を持つと考えているのか。みんな『エネルギー』の解釈の問題なんだ。

むすび mc^2^ の解釈は、質量m[kg]がすべてエネルギーに変換されれば、その結果には質量は消え、すべてが熱と光(電気も含む)のエネルギーに等価に変換されるという意味である。それを述べようとして検索したら特殊相対論の√(1- β^2^) に戸惑った。それは間違った世界の解釈論と思う。光を振動数で解釈している限りは、自然世界の正しい認識には到達できない。『質量-エネルギー等価則』のE=Mc^2^[J]の意味を認識して欲しい。

(参考記事):光の速度と空間特性 (1911/05/22) 。光とは何か?-光量子像- (1912/01/15)

2019年の春

(2019/05/11)追記。不図気になった。2月は何故28日なのか。4、6、9および11月は30日だ。1月と3月から1日ずつ2月に入れれば、2月も30日となる。それなのに何故2月だけ28日に成っているのか。世界中が太陽暦で、その暦歴に成っている訳は?

『仲春令月、時和気清』 後漢の2世紀に活躍した張衡と言う人(科学者?)の「帰田賦」にある言葉らしいが、令月は2月の目出度い春立つ月と言う意味らしい。1年が春で始まる2月という意味が含まれて、特別に28日に成ったのだろうか?

春はどこから来るかしら。
太陽と地球の回転する相対関係で地表の寒暖が変わる。季節の四季が地球の表情を変えている。人は気温に合わせて衣替えをする。しかし特別変化は見えない。動物は四季に合わせて、生活行動が変わる。春に子供を生み、同じサイクルを繰り返す。そのサイクルの基になるのは植物である。

植物の生命は地球の生命 太陽と植物が地球を作って来た。植物が生命の基にある。

沈丁花の新芽 切り捨てた枝を室内で、花瓶に生けて置いた。花が枯れ、小さく縮れて落ちた。その先に新芽が伸びどんどん成長する。花瓶には水道水だけだ。殆ど電灯(LED)の光と空気と水だけだ。この新芽の、その質量の基は光化学反応だけであるのか。炭酸ガスと室内灯の光と水分子だけから作られるとは、その植物の生命力を何と理解すれば良いのか。正しく自然の神の仕業だ。

 

 

ベニカナメ 新芽が真っ赤に輝いている。これは葉緑素とは違うのだろうか。これも光化学反応の生命の輝きか。自然の多様性に拍手。

 

 

 

岩八つ手

鉢から庭に下ろしたら花が咲かずに葉が茂る。

 

 

 

 

 

 

 

トキワ碇草 花の姿は可憐にしてあでやかだ。一瞬に葉が覆い尽くして、花が隠れれしまう。葉は大きく開き、晩秋まで茂る。その葉も冬には枯れてしまう。

 

 

 

 

 

物理学理論と磁束

はじめに 物理学あるいは物理学理論は、自然の深い仕組みを解き明かす特別の論理的思考能力を持った専門家集団が唱える真理と考えるだろう。それは科学技術の更にその奥に隠れている深遠な自然世界を解き明かし、科学技術の理論的拠り所としての学問分野が物理学と思うだろう。その自然世界の基本の描像は電子の周回する原子構造論と電子の流れる電線路電流、更にその電流によって定義される磁束などが電磁界の論拠としての物理学構成概念である。それが世界の物理学であろう。しかしそんなに多様な基本構成物理量が世界の根源であるとは理解できないし、信じられない。最近、磁気概念や磁束の物理的意味を解剖してみた。それは物理学でなく、電気技術の知見をひも解くことによって様々な科学技術用語の本質が明らかに成って来た。物理学が科学技術の技術概念を深く追究してこそ本当の自然世界が明らかになることを認識すべきという結論になる。電荷や磁束の空間像を示す事が、それらが自然世界に実在するかどうかを判断するに欠かせない筈だ。その空間像が物理学に問われている。世界は抽象ではなく具象世界だ。磁束について、アメリカのNASA宇宙技術開発の成果の一つと聞いているロイヤーインバータ回路の原理から具体的な例で、電圧が一義的なその発生起因であることを示し、アンペアの法則による電子流で磁束が発生するという誤解を解いて欲しい。
磁束の物理概念
マグネットは何処にでもある日常生活に密接な磁気製品でもある。物理学を教える先生方は教科書の中味である物理量などすべて明確に捉え切っている筈だと考えたい。しかし現実は、変圧器の磁束について励磁電流が発生原因であると殆どの方が考えているように思う。それは間違っている。変圧器や電磁コイルの物理現象を解きほぐせば、少なくとも励磁電流がなければ磁束が生じないということは無いのであり、磁束はそのコイル端子に印加する電圧によって一義的に決まってしまうのである。その意味を物理学では馴染みがないであろうが、インバータ回路を使って具体的に示して解説したい。それはファラディーの法則の科学技術論の理解の為でもある。磁束という物理量が、実際に実在するという解説ではないから。自然世界の本質は磁束さえ、エネルギー流に纏まるのであるから。しかし少なくとも、まず一段階としての誤解を解いて欲しいのだ。

磁束と電圧 右の具体的回路例を基に説明したい。AとBの二組のトランジスタスイッチを直流電源と組み合わせて、変圧器に繋ぐ。AのスイッチとBのスイッチを交互に半周期ごとに断続的にオンする。その時磁束は図のように階段状に変化する。その磁束は励磁電流が流れようと流れまいと関係なく、電圧値と時間だけ(即ち電圧時間積分)で決まる。この解釈は変圧器だけでなく、一般のコイルにも当てはまるのである。コイル端子に印加される電圧値と時間で磁束は決まると考えるべきである。理論の統一という事の大切さは、広く基礎概念によって無駄な思考を省き、分かり易くするということにある。図のようなスイッチングモードでは、半サイクル(T/2)の内4/7の間電圧Eが印加されることになる。その間に磁束は最大磁束の2倍 2Φm の増加をすると考えられる。ファラディーの法則は E=n(dφ/dt) および φ=∫(E/n)dt と表される。その法則から、電圧Eが時間T/2(8/14)=2T/7の間印加されて、磁束が 2Φm だけ増加するとなれば、次式が成り立つ。

2Φm=E/n×(2T/7)

従って、  E=7n(1/T)Φm [V=(J/F)^1/2^]

が得られる。このように、印加電圧とその印加時間だけで磁束は決まると考えるべきだ。その磁束発生原因として、励磁電流などの複雑な解釈概念を介入させるべきではない。この磁束は、すべてのコイルや電気回路全般に言えることである。その意味は電線内の電子流という『電流』概念の物理的解釈の論理性が問われているということである。『磁束』という物理量も『電流』と同じく、その物理量の実在性が物理学理論として検証されなければならない筈だ。その具体的な空間像が。

むすび

電流と磁気の概念矛盾について述べなければならない。それは自然世界を理解するに欠かせない思考作務である。電気論では電線内を電子が流れるという。何故電子(電荷と質量)が金属導体内を通ると、金属導体の外に磁束が発生するのか。電子は磁気を持つと定義されているのか。電子のスピンでは磁束の発生の解説にはならない筈だ。その電子と磁束の関係の疑問に答えるのが物理学である。電流という科学技術概念の正体を明らかにしてこそ物理学である。物理学は科学技術現象を詳細に検証すべき学問分野の筈だから。それは子供達に教えるという責任が有ることに通じると思う。数式で説明する事では済まない基本が有る筈だ。身に背負い切れない重力を感じながらも。

 

月に立つは夢か

1年は12カ月
月が1年に12回満月に輝くから。昔の電気も無かった、太陽と夜の月明かりに人はどんな思いで暮らしていただろうか。今と違う地球上の営みであった。
科学技術と月
大空には人工衛星が数限りなく浮かんでいる。地球上の様子を空から眺めて暮らす時代だ。きっと何時かは月に立つ日が来るだろう。それを夢と思う。今は宇宙船に人が暮らす。様々な科学実験が成されている。しかし、月に立つにはどんな準備が必要だろうか。月の重力加速度は幾らだろうか。気体はあるのだろうか。月に着陸するには宇宙船はどんな飛行体が可能だろうか。着陸する滑走路はどのように整備すれば良いだろうか。月から飛び立つにはどのように発射台を建設すれば良いだろうか。建設作業に必要な人員はどう確保すればよいだろうか。ロケットか飛行船は乗組員だけで無事発射できるだろうか。燃料の補給はどのようにすればよいか。そんな幼稚な愚問が頭をかすめた。

花鳥風月 やっぱり空気の中で、春の花を見、桜に驚き、海の魚を食し、秋の虫の声を聞きながら過ごしたい。やっぱりそんなありふれた平和が好いかも。