学問の自由とは

第23条 学問の自由は、これを保障する。この条文が日本国憲法に示された学問の自由についての規定である。
この「学問の自由」という意味は中々深い意味を持っていると思う。300年以上前の事件がある。社会の学説として支配していたものが地球中心の、天動説である。それは地球の周りを太陽が回転している宇宙観。当時の権力者は宗教であったのだろう。ガリレオ・ガリレイが権力支配者の世界観に対して、反対の地動説を唱えた。宗教裁判によって、ガリレオ・ガリレイは300年間も不届きな学説を唱えた罪で有罪と判決された。「学問の自由」は生活をも賭けた本気が試される大切な生きる「自由」の尊さなのだと思う。平和への戦いでもあるのだ。自由の学問・研究が保証されない世界がどの様なものかを思ってほしい。
10億円もの政府予算が・・。だから総合的、俯瞰的(高い所から見下ろす、という意味のようだ)な活動を求める観点から‥。と、専門的な研究者組織の「日本学術会議」に政治的権力の行使(任命拒否)は学問の専門性の内容に政治家が評価を下す奇妙な事件と思う。『俯瞰的』な能力を要求することが果たして政治家・行政組織に許された評価権限と言えるのだろうか。10億円の言葉は経済的な権力支配で『学問の自由』と言う崇高な現代社会の守るべき未来への希望の砦を掻き崩す虞を感じる。政府予算は必ずしも日本の為だけでなく、世界に学問の崇高な価値で、経済的だけでなく貢献する施策でなければならない筈だ。
『学問の自由』は未来への平和と希望を生かす砦である。思想・信条の精神の独立を守る砦でもある。
『自由』の尊さは、それが困難な闘いを勝ち取ってこそ得られるものだから。学問は本来経済的でないところにその価値があるものと考える。

日本の教育制度について。

先日新潟県の高等学校の校則について、教育長が質問に答えていたようだ。行政官が教育内容の生徒の校則について答える姿は異常に思える。学校教育に現場でどれだけの経験と能力があって、子供の教育に精通していると言えるのかと疑問に思わざるを得ない。教育委員会の責任者は教育委員長で、教育現場での実績を積んだ教育の専門家が担うべき役割の筈だ。行政職の役割ではない筈だ。

文部科学大臣。教育の行政トップは「教育の政治的中立性」からして、本来政治家が担えるものではない筈だ。教育界から実績のある現場を知り尽くした教育の専門家しか担当できないはずであろう。『学問の自由』と言う重い政治行政の判断は専門家の意見に従ってこそ担保される筈である。教育勅語に郷愁を抱くような大臣は、教育における政治的中立性の意味からも失格の筈だ。

今日、30年以上かけて、漸く辿り着いた。エネルギー流が電圧・電流 (2020/10/1) に懐中電灯の直流電気現象として自然の神髄に辿り着いた。決して日本国家のために学問の自由の思想はある訳ではない。世界の子供たちが、本当の教育を受けられるようにとの思いが根底に在って辿り着いたと思う。平和と真理は尊いものだ。経済に代えられないとも思える程の尊さ。経済競争が原因で戦争になる危険を学問の自由の砦で阻止しなければならない。子供たちが懐中電灯の自然現象を、決して『電子』などの偽りに依らないことを理解する教育であってほしい。学校が学習指導要領に縛られない学問の自由が教育できる場であってほしい。

エネルギー流が電圧・電流

電圧・電流の物理的正体(2020/09/29)。

長い電気回路の解釈を通して、感覚的に納得できたかと思う。『電荷』概念を捨てて、電気磁気学の科学論の常識から離れて遠い道を辿ってきた。パワーエレクトロニクスと言う新しい電力制御技術に出会い、その回路制御技術を通して『エネルギー』の実在性を感覚的に身に深く刻むことが出来た。様々な過程を経て、理論と『エネルギー』の間の不協和を謎として追究してきたように思う。電気回路は電圧と電流なしには解釈できない。その電圧と電流が回路の線路空間を流れる『エネルギー』の流れとして捉えて良いとの結論を得た。

直流回路のエネルギー流。

電池などの電源からランプを点灯する回路。それは最も基本となる直流回路だ。その電気回路は二本の電線で囲まれた空間を『エネルギー』がほぼ光速度で伝送される機能設備と言えよう。電線路はその空間が電気的特性、コンデンサとコイルによって特徴付けられる機能回路である。電線路の単位長さ当たりの持つ静電容量 C[F/m] とインダクタンス L[H/m] によってその空間の特性が特徴づけられる。その C L によって電気『エネルギー』の電線路特性が決まる。電源の特性は電線路に供給する『エネルギー』の供給能力で評価できる。電源端子の線路容量 C で供給する『エネルギー』の分布が決まる。それがそのまま電圧と言う技術量を表すことになる。電源の電池やその他の直流電源は技術的な電圧規定値、定格値でその能力を評価できる。電源から送出される『エネルギー』は線路特性に因る伝送速度 c で次の式で決まる。

c=1/√(LC) [m/s]

電線路の分布した『エネルギー』がδ[J/m] なら、その伝送速度が c となる。この伝送特性は、高周波伝送であろうと商用電源であろうと全く違いはない。直流回路も同じ基本特性にある。

直流回路の反射現象。

直流回路のエネルギー反射現象と言う認識は無いと思う。ここで述べる解釈は、おそらく科学論としては評価されないかも知れない。何故なら、全く科学的手法の原則である実験的検証による説得力のある論ではないから。しかし、電気現象が全て『エネルギー』の光速度伝播であるとの認識に立てば、その伝播空間と『エネルギー』の関係から電磁波の周波数に因る差異がある筈が無いとしか考えられない。となれば、伝送回路の空間特性により、特性インピーダンスの意味も負荷の整合性で直流回路においても全く同じ筈と考える。伝送エネルギーが負荷に到来しても、整合性の執れていない負荷では、その内のある分の反射現象が起きる筈だ。

反射現象で、反射エネルギーはどの電線路側を戻るか?ここにその判断の鍵があるようだ。プラス側を戻るか、マイナス側を戻るかに判断を下さなければならない。

反射エネルギーは負側の伝送エネルギーの到来側をそのまま反転して戻る。そう結論を付けた。

負荷の反射は回路の特性インピーダンスZoと負荷抵抗Rとの関係で整合が採れているかどうかに因る。今負荷抵抗が回路のZoのα倍とする。図のように負荷で伝送エネルギーδpの内のδrが反射するとする。負側電線路のエネルギー分布量δは二つの合成となる。負荷で反射して、電源に到来する『エネルギー』分布波δr分だけ電源から送出する『エネルギー』δpは少なくなる。電線路エネルギーギャップはδ=δp+δrと、電圧保持分布量に成っているから。

模式図。上の関係を模式図にまとめる。

負荷が整合に在れば、α=1である。『エネルギー』の反射は無く、電源供給の『エネルギー』δ分布で、そのまま負荷に吸収・変換される。

【実験的課題】α<1の時。特性インピーダンスZo より負荷抵抗が小さい場合に当たる。この時、電源の供給能力があれば、あくまでも電圧を規定値に保つべくδpを増加するかと言う問題になる。一つの実験的検証の課題が浮かぶ。プラス側を反射波δrが電源に戻る。その分多く電線路エネルギーギャップがδ=δp-δr、V=√(δ/C) となるように、δpが多く送出されれば解決となる。実験的に確認したい未解決問題。

関連記事。

電流と電圧の正体 (2013/05/16) 。電気の真相(3)-電圧と負荷-(2015/09/25) 。電圧-その意味と正体- (2016/05/15) 。エネルギー伝播現象 (2020/06/27) 。『電圧』という意味  (2020/07/04) 。電圧とエネルギー (2020/07/10) 。技術概念『電流』とその測定 (2018/09/24) 。などの解釈を経てきた。

 

定在波の発生原理

定在波とは(2020/09/22)。ここで解説する意味には『電圧』と『電流』で定在波を論じる。しかしその『電圧』と『電流』の意味には深い意味が有るので、一般的な電気回路の『電圧』『電流』とは少し異なる意味かも知れない。それは測定法に関わるので、その点も含めてご理解いただきたい。この定在波測定回路については後の記事に示したい。

電気現象はその基本が『エネルギー』一つの振る舞いである。しかし商用周波と高周波あるいは直流とそれぞれ回路解析法は異なる手法が適用される。高周波回路は電線路長に対して電気信号の波長が短いために、その電気現象は特異なものに観えることになる。それが定在波と言う波についてであろう。定在波は電線路終端短絡の場合に顕著に、そこからの反射波と伝送波の間に起こる現象として強く現れる。負荷終端の場合は、様々な影響が定在波分布に現れる。専門的な解説が多く示されている。しかし、とても内容が複雑で筆者には難しい。それも波動と言う波形が何を表現したものかが分からない。ここでは伝送波も反射波も全て『エネルギー』の分布密度波として捉える解釈について論じたい。

インピーダンス整合。

負荷インピーダンスが電線路の特性インピーダンスと整合して居れば反射波はない。すべて負荷に伝送エネルギーが吸収されて反射するエネルギーは生じない。それがインピーダンスマッチングと言う状態なのだろう。

電線路電圧の概念。

電気現象は『電荷』を否定して初めてその真相が見えてくる。高周波であろうと直流であろうと、電源は電線路の空間を通して、『エネルギー』を負荷に供給する回路技術である。二本の電線a と b の間に高周波電圧を掛けるとする。その電圧を掛けるという物理的意味をどのように解釈するかと言う難しい話になる。まさか電線に正の電荷と負の電荷を交互に電源から送出するなどとは考え難いだろう。①には、『エネルギー』の波の伝播で示した。電線路に電圧測定装置、オッシロスコープ等を繋げば②の様な電圧波形が得られるから、電圧と言う物理量が自然世界に存在すると誰もが考え易い。しかしその電圧と言う物理量は、人が科学技術に依って獲得した測定技術の賜物であって、簡単に電線路に電圧が在ると理解するには、それはとても深い物理的意味を知らなければ分かり難い概念なのである。

定在波とエネルギー流。

終端短絡の定在波とは。電線路の位置によって、電圧や電流と言う概念の分布を測定すると、測定値が正弦波状の分布になる。その分布波形を定在波と言う。終端短絡の時、『エネルギー』は電源から伝送され、終端ですべての『エネルギー』が反射する。その往復の『エネルギー』の波動が重なり合い、その密度分布の大きさが電線路の位置によって決まった脈動をする。図の電圧の定在波をVで示し、電流の分布をIで示した。電圧定在波Vは常に零の位置がある。『エネルギー』は電線路を光速度で流れるから、電線路の位置によって流れが違う訳はない。それなのになぜ測定値が異なる正弦波分布になるかと言う疑問が沸く。そこに『定在波』と言う意味が隠されているのだ。

今、図のように電線路の長さが電源電圧波長の2倍の長さとし、その終端を短絡する。電線路を短絡するなどという事は普通は短絡事故と考える。しかし、高周波電圧波形の場合は、『エネルギー』密度がそれほど高くなる前に極性が反転して、高密度にならないため、短絡しても事故とならずに済む。極性の切り替えが早く高密度エネルギーにならずに済むためである。短絡終端に到達したエネルギー波はすべて反射して電源側に戻る。その反射伝送は到来『エネルギー』波の反対側の電線近傍を、即ち反対側電線を戻る。

電線路電圧の意味の追加説明。この事は別の記事にして示したい。短絡終端は当然電圧は零である。電圧零という意味は二本の電線路の両方が同じエネルギー分布であれば、それ電線路間の電圧は零である。電圧とはエネルギー分布ギャップを評価するものである。それは乾電池電圧の『エネルギー』の意味と同じものである。二本の電線間にエネルギーの分布差が無ければ、如何にエネルギーが大きかろうと電圧は零である。エネルギーギャップ零は電圧零である。

この記事は

金澤:分布定数線路実習に対する一考察。新潟県工業教育紀要 第3号、(昭和42年)。に載せた定在波分布波形の意味が良く分からずに、改めた考えてみた。実験での測定データなどは他にあまり見当たらない。その意味でとても貴重な資料と考える。正直に当時を振り返れば、よくこんな実験をして、報告記事にしたと驚いている。その訳は今でもそのデータの意味が良く理解できないのだ。その意味を少し掘り下げて理解してみたい。その第一報として定在波と『エネルギー』の関係だけを論じた。一般の解説には『エネルギー』の観点はほとんど示されていないように思う。

 

原子構造と8面磁極

原子構造(2020/09/13)。

原子構造論など全くの素人が申し上げるのは大変恐縮である。しかし、『電子』の存在を否定したら、標準的原子構造論を信じられなくなる。専門家の論理を否定せざるを得なくなる。誠に不遜の極みとお恥かしい次第です。

八面体と軸性エネルギー流。八面体の表面は軸性エネルギー流(Axial Energy flow)の磁極との解釈を提案した。図の赤い丸は N 極、青い丸は S 極を示す。水素原子は最小のマグネット単位原子と解釈する。もし『電子』を考えるなら、それはもっと小さな軸性エネルギー体のマグネットと考えればよいかも知れない。しかし電気回路ではそんな『電子』も必要ない。分布定数回路を考えれば、そこには電線路空間内のエネルギー分布流しか考えられない。従来の分布定数回路と言うインピーダンス認識も考え直す必要に迫られる。

原子の基本的特徴。周期律表に示されるように、やはり8の周期性で特徴付けられるのは確かであろう。中心には核があり、その周りを『電子』が取り囲んでいるような構造体として原子を捉えているのが常識的科学論である。原子は他の原子と結合する性質を基本的に備えている。原子の空間像をどのように捉えるかは、その結合の機能を何に求めるかに係っていよう。常識論である原子構造は外郭電子同士の結合にしか説明が付かない。だから「共有結合」なる電子間の結合力を頼りにする以外ない。あるいは電子が理由は不明だが、相手の原子に移り、その結果イオン結合なる結合理論を唱える。そんな電荷間の「クーロン力」に論理性が成り立つと考えること自体が、失礼ながら何も考えていないとしか思えない。

新電磁気学の事始め (2020/09/15) 。『電子』周回構造の原子論批判の為の記事とした。

新電磁気学の事始め

電気磁気学への希望 (2020/09/14)。それは大きな代償を払わなければ難しい。困難の原因は現在のあらゆる科学理論の拠り所たる『電荷』概念の否定しかないから。

教育。 教育基本法(原)(昭和22年3月31日)の前文。

われらは、さきに、日本国憲法を確定し、民主的で文化的な国家を建設して、世界の平和と人類の福祉に貢献しようとする決意を示した。この理想の実現は、根本において教育の力にまつべきものである。                   われらは個人の尊厳を重んじ、真理と平和を希求する人間の育成を期するとともに、普遍的にしてしかも個性豊かな文化の創造を目指す教育を徹底しなければならない。

この教育の基本方針によって、真理を希求する人間の育成を期するためにも、過去の科学理論の矛盾を勇気をもって排除する以外に、未来への希望は無いものと覚悟すべきである。

第一の要諦。

決して電荷は自然界に存在しない。従って、「電荷間に生じる力」なる表現は論理的な矛盾を含み、使ってはいけない。「クーロンの法則」は間違った法則であった。それを教科書から排除してこそ未来の教育が始まる。記事の右上の検索で、クーロン力で検索すると過去の幾つかの記事が現れる。不可解な電荷 (2019/5/26) もその一つ。それは『電子』なる概念も否定されることになる。この主張は所謂「不協和音」(9月7日の新潟日報座標軸の記事を見て知った欅坂46の歌詞を見て、弱気になった。)になる。原子構造論の否定にもなるから。恐ろしい結果になる事、即ち教科書の電子論を否定する事が、また高分子結合の水素結合とは何か?の極めにもつながる事だから。すべてが軸性エネルギー流(Axial energy flow)の磁気結合につながる予測を生むから。『エネルギー』一つの基礎概念にまとまるから。

子供達への教育は、子供たちが余裕をもって日常生活が送れるように、少ない内容の広く応用につながる大事な基礎に重点を置くことに勤めなければならない。

『エネルギー』の意味を考えて欲しい。

 

 

給与の現金渡額?

(2020/09/12).

給与の手渡額。何故銀行口座振り込みでなかったのか?

昭和55年の給与表。

①短期共済掛金。9110円。②長期共済掛金。12908円。(公立学校共済組合加入者の掛金だ)。③銀行口座振込でなく、現金渡額(手渡し)?扶養手当3000円?

昭和55年4月。電気科主任手当てが既に「願いにより職を免じる。」の辞令で勤務が無いのに、筆者名義で労働金庫に振り込み(誰に行く)?私の役目は?

公立学校共済加入の証明(加入期間昭和39年4月~昭和55年3月)が欲しい。

Why does the update stop at 30% ?

(2020/09/12).アップデートで、更新プログラムを構成しています。の途中で30%で進まなくなる。必ず停止して、再起動に入る。

30%が個人情報の確認ではないかと思う。

中断、再起動の訳が(名前)「カナザワ ヨシヒラ」が確認できないからではないか?10年間同じ現象が続く。

信濃川

きっと自然の命を教えてくれた、それが信濃川だった(2020/09/09)。

信濃川。

それは故里

我が心

紺碧の空

水面に輝く

白い雲

 

水飛沫

銀鱗の跡

山肌の緑陰

嗚呼大河

永遠なれ

思い出を連れてくる信濃川。思い出せば、不思議がいっぱい。人はみな、人類を『霊長類』と誇りにしているかも知れない。近頃、運動能力が落ちて考える。当たり前と思っていたことが、不思議に思える。以前も考えたかも知れない、『二足歩行』のことを。当たり前が当たり前に思えなくなる。爪先立ちになっても歩ける。100m10秒以下で走り切るスーパー能力の持ち主もいる。長い荷物に二本の支持棒を付けて、立たせようとしても力学設計が難しい。接地面積と重心の位置の関係が平衡の要だ。歩くとなれば、一本足での平衡力学だ。爪先立ちで階段を昇るなど、ロッボト工学の研究対象かも知れない。不思議な夢の中にある。『霊長類』の話は、生物間のコミュニケーションのことだ。人と人以外の生物との。

信濃川での鯉とのコミュニケーション。鯉の思いを自分が受け止められなかった後悔が何時までも残る。『霊長類』などと人を思えないのだ。高校生の頃か、浪人の頃か定かではない。夏は毎日『古淵』と言う崖の深い水辺で、一人泳いでいた。誰もいない毎日だった。岩の張り出しから底の深さが知れない深みに飛び込んで、過ごした。欠かさぬ毎日の日課のように。ある日もそこに行って、さて泳ごうかと思ってその深みに目をやった。直ぐ足元のその水面に大きな鯉がじっと動かずにいる。当然鯉は自分がそこまで歩いてくる足音の響きを知っていた筈だ。深い水の中ならいざ知らず、水面でじっと待っていたかのようにしか考えられない。その水面で手を伸ばせば、すぐに触れる近くである。じっと動かないのだ。その大きな鯉を見て、一瞬たじろいだ。体長30㎝以上は有った。少し眺めてから、足でその足元をトンと突いた。するとゆっくりと向きを変えて、深みに静かに入って行った。少しも逃げる様子もなく、ゆっくりと諦めて去った感じである。その日は泳ぐことが出来なかった。思い出せば、その時何故、鯉と水中でハイタッチでもやれなかったのかと後悔が残る。もしもの話で、ひょっとしたら、毎日鯉と戯れていたかも知れない竜宮城の例えにと。

別にも、雀の稲穂の恩返し。プールサイドの揚羽蝶。助けたカラス。雨蛙。みんな不思議なお伽の世界。

 

科学論の土俵は

科学論の対象範囲は無限の広がりになっている(2020/08/31)。科学論を戦わし、勝者と敗者がわかる土俵は無いのか。生活の夢はどのような土俵で勝ち取ればよいのか。

科学論は基本的に科学者の組織に所属して、その所属機関の一員、科学研究者として生活資金の保障の下で研究が可能である。その上で研究内容の発表を通して、その科学者としての評価が社会的に成される。その研究論文はそれぞれの研究分野ごとに異なる学術機関誌上に、その研究部門の専門の査読者によって吟味され、価値あると評価されて発表されるものと理解している。それが科学論の土俵であろう。科学者が競う科学論には、その特殊性によって土俵が限られたことになる様である。特殊という意味は、そこで論じられる内容が普通の市民にとっては余りにも限られた概念や意味の用語で語られるため、全く関わり得ないものである。特に現代科学論は狭い専門領域によって分野別に仕切られてしまった。それぞれの科学研究者は厳しい競争社会の中で、その専門的研究に専念して、それぞれの土俵上で格闘されている。

スポーツにはその技量を競う土俵がある。科学研究と異なる一般社会に開かれた市民生活の場では、日常的に様々な土俵がある。みんな生活と夢とを結びつける土俵であろう。

教育あるいは理科教育の土俵。理科と言う教科は自然世界を科学的に捉えて、その基礎教育によって培われた科学的知識や感性を、後に社会生活の上で科学者に成るばかりでなく、あらゆる場面で的確な自然現象の解釈に生かす能力として重要である。さて、そこで気掛かりな事がある。それは科学研究の現代的姿が全く教育とかけ離れてしまったことである。学校教育で取り上げられる理科教育内容と最先端の科学研究内容との間の隔たりが極めて大きく、矛盾を孕んだままに放置されている事である。昔の「ロウソクの科学」のようなファラディーの話の時代との隔世の感がある。その原因は何に在るのだろうか。生命の科学、医学生理学のような研究分野はとても複雑で高度の専門的であり乍ら、その基礎となる理科教育については何も殆ど疑問もなく、現状の基礎概念がそのまま科学常識として是認されている。高度な専門分野の研究者は、その最先端の研究に心血を注ぐが故に、学校教育の基礎、物理学の基礎などを考える余裕などない。では、物理学科の教育の専門家がその基礎の概念を研究対象として疑問を拾い上げるかと思っても、殆どそのような事はしない。原子構造が原子核とその周りを周回する電子で構成されているとの古典的認識(誰も古典的とは考えない)で、少しも違和感を持たないように思う。『電荷』概念とクーロンの法則の間の論理的矛盾など少しも問題にしない。それは何故なんだろうか。同じ『電荷』同士は反発して、近付かない筈だ。しかしコンデンサの充電現象は『正電荷』同士、『負電荷』同士が集合、密接する事に矛盾も感じない。その思考の有り方を一体どのように、科学論の論理性と言う観点から捉えれば良いのかと考え込まざるを得ない。

日本政府(文部科学省)の教科書検定制度。社会的仕組みの問題としても考えなければならないような気がする。『電荷』に関して以下に述べる。

『電荷』否定論。ブログで一般市民も理解できるかと、電気回路現象や基礎的物理論の矛盾を取り上げて論じてきた。既に10年は過ぎた。しかし、ブログ記事に対して、専門家が批判を寄せる事はない。少なくとも『電荷』や『電子』で物理現象を大学講義でなさって居られる方が多いにも拘らず、反論も期待したが全く無い。ブログでの記事はそれを期待したが、やはり科学論を戦わす土俵としては期待外れの無駄であったかと、誠に残念である。情報の溢れるインターネットの場に、そこに土俵が在るかとの期待でもあったが。教科書の内容と言う、誠に基礎的な事であれば、一般の市民が質問できる場として有効な土俵と考えた。やはり『電荷』に関する公開の場での討論会が在れば、開かれた科学論となるとの期待を持っている。そんな機会に壇上で参加したい。新しい『パラダイム』に向けて。

教育とオームの法則

オームの法則(2020/09/05)。

電気の学習で最初に学習するのは『オームの法則』ではなかろうか。電気回路の電圧と電流と言う電気の基礎を学習するものである。懐中電灯は誰でも家庭に備え付けられていて、手に取って見る事が出来るだろう。その電気回路は最も基本の電池とランプの回路だ。その回路の意味を教える理科での指導法を述べたい。

自然の本質・真理を教えることを主眼に。本筋を易しく教える。その後に技術法則の意味や使い方を教える。それが大事だ。

最初から電圧や電流などの言葉を教えるべきでない。そんな難しい概念が理解できる訳はないから。その意味を教えようとするなら、そこには必ず曖昧な解釈が入る。『電子』などこの自然の世界には存在しないのだから。

学校教育。学校で教えるとすれば、電池と豆電球を電線でつなぐ。するとランプが点灯して光る。その訳を教えるとき、電池のプラス端子から電流が流れ出て、豆電球に流れて、電球が明るく光ると教るだろう。その教え方が間違っているとは言えない。それは正しいのだ。その先に疑問が沸き、何故かと考えるかも知れない。そこでパソコンや携帯端末でインターネットから学習しようとすると、本当は『電子』が電流の逆に流れていると解説されている事に戸惑うことになるだろう。学校教育は教科書によって教える。その教科書の内容や教え方は文部科学省と言う政府機関で細かく決められて、その『学習指導要領』の指導指針で厳格に決められて、勝手な指導は出来ないことになっている。教師の教育指導法に自由が許されない仕組みだ。

オームの法則の学習指導法の理想。

学校教育の内容とは違うが、電気回路現象は教科書のような解説では本当のことは理解できないのだ。兎角数式で解くと程度の高い理解に結びつくと考えるのではなかろうか。本当はそうでは無いのだ。数式は確かに高度な科学技術を理解するにはとても有効で、便利ではある。しかし、その数式で解いたからと言って、懐中電灯の電気現象が理解できる訳ではないのだ。何処までも何か納得できないで疑問が残るかも知れない。しかし今まで誰もがその疑問に真剣に向き合ってこなかったのではなかろうか。何処かで、電流が流れる事で分かったことにして置こう。それが科学技術社会での常識の世界で社会に役立てる道であるから。と決まる。『オームの法則の真相』は電気現象の自然現象を理解しなければ分からないのだ。言葉で述べて説明できなければ、本当の電気現象の真相を知ることはできないのだ。それは誰もが簡単に理解できることだと思う。その真相を説明したい。

上の図はその電気回路の真相の説明用の図である。電線の中を電流や『電子』が流れる訳ではないのだ。しかしオームの法則によれば、流れる電流は

I=E ÷ R [A]

と簡単に数式によって算出できる。その値は電流計で測る値と等しい結果になる。それだけで、オームの法則が如何に優れた科学技術法則かが分かるだろう。それなのに、その計算に依て理解することは、この電気回路の本当の自然現象を理解したことには成らないのだ。電線の中など何も流れてはいないのだ。流れるのは、電線で囲まれた空間内の『エネルギー』しかないのだ。それも光の速度で瞬間に流れるのだ。電気信号が伝わる速度は光速度だと昔から分かっていた。『電子』が電線の中を光速度で流れられる訳などないのだ。それなのに、何故か『電子』が電線の中を流れると解釈するだけで、信号が光速度で伝播する事との関係を突き詰めて考えようとして来なかったのではないか。電気回路の電線で囲まれた空間を光やスマホの電波と同じく、光速度で流れる『エネルギー』なのだ。図のように、それも電線の負側の近くの空間に多く流れる現象なのだ。電線の正の側は『エネルギー』の伝送空間を規定するだけに近い役割と見做せるだろう。あくまでも自然現象には『電子』や『電荷』は全く存在しないのが、その真相である。だからと言って、その空間の『エネルギー』の流れを測定するなど不可能な事である。見る事も測ることも出来ない物理量『エネルギー』が自然世界を支配している現実世界なのだ。この事は数式など計算しなくても、誰でも基本として認識すべき真相なのだ。その上でこそ『オームの法則』が如何に優れた科学技術法則であるかが理解できる筈なのだ。空間を流れる『エネルギー』を電流計と電圧計で計測する技術を完成させた事の意味をよく理解しなければならないのだ。それは素晴らしい人類の科学技術として完成するまでの努力の結晶なのだ。空間に流れる目に観えない、測れない『エネルギー』を電圧と電流と言う二つの計測器によって測れるようにしたのだ。これほど簡便な量的理解ができる法はないのだ。電流計や電圧計が如何に優れた科学技術の成果であり、文化であるか。それを理解することが、理科教育の本筋でなければならない。

電気回路はすべて『エネルギー』が空間を流れる現象である事を理解することである。それが全ての科学理論の理解の基礎となるのだ。これは科学や理科の教育で、すべての方に理解してほしい基本と思う。広い科学の分野で、その分野ごとに独特の概念が使われるが、それはそれで専門分野ごとに違っても良いだろう。しかし学校教育の基礎で、余りにも複雑な科学技術概念をそのまま教える事は、子供たちの自主性と創造性を損なう意味で考え直して欲しい。しかも結局理解できないモヤモヤの気分を後に残す。そして多くの細かいことを記憶させる膨大な内容によって子供たちの折角の豊かな感性と日常生活のゆとりを損なうことになる。

〈問題〉。上の回路で、負荷が要求する『エネルギー』を電源はどのように判断するか?もちろん電池に認知機能などない筈だ。電池が送り出す『エネルギー』はどのように決まるか?

「答」。電源は『負荷』のことなど一切関わりない。何も知らなくても自然の摂理でそのままの『エネルギー』の量が決まる。その意味を考えてください。計算式では答えに辿り着けない。